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ABSTRACT 
 
An exact solution of the unsteady free convection boundary-layer flow of an incompressible fluid past an inclined 
oscillating plate with the flow generated by Newtonian heating in the presence of radiation is presented here. The 
resulting coupled linear partial differential equations for the velocity, the temperature and the concentration are 
non-dimensionalized and their solutions have been obtained in closed form with the help of Laplace-transform 
technique. The obtained solutions satisfy governing equations as well as the boundary conditions. A parametric 
study of all involved parameters is conducted and a representative set of numerical results for the velocity, 
temperature, concentration, skin-friction, Nusselt number and Sherwood number is illustrated graphically and 
physical aspects of the problem are discussed in detail. 
 
Keywords: Newtonian heating, oscillating plate, Unsteady free convection, Heat transfer, Mass transfer, thermal 
Radiation, inclined plate, Incompressible fluid. 
_____________________________________________________________________________________________ 
 

INTRODUCTION 
 

The phenomena of free convection arise in the fluid when temperature change causes density variation leading to 
buoyancy forces acting on the fluid elements. Natural convection heat transfer plays an important role in our 
environment and in many engineering devices. This can be seen in our everyday life in the atmospheric flow, which 
is driven by temperature differences. Soundalgekar [1] first presented an exact solution to the flow of a viscous 
incompressible fluid past an impulsively started infinite vertical plate by Laplace transform technique. In this case 
the plate was assumed to be isothermal. Free convection effects on flow past an exponentially accelerated vertical 
plate was studied by Singh and Naveen Kumar [2]. The skin friction for accelerated vertical plate has been studied 
analytically by Hossain and Shayo [3].Das et al. [4] discussed transient free convection flow past an infinite vertical 
plate with periodic temperature variation and Soundalgekar et al. [5] studied the same problem with periodic heat 
flux. An excellent review of existing theoretical and experimental work on unsteady boundary layers can be found in 
books by Stuart [6], Telionis [7] and Pop [8]. Raptis et al. [9] studied the free convection flow of water near a 
moving plate. Das et al.[10] analyzed the flow problem with periodic temperature variation and 
Muthucumaraswamy [11] considered the natural convection with variable surface heat flux. Chandran [12] 
presented natural convection with ramped wall temperature. 
 
Furthermore, there are applications of interest in which combined heat and mass transfer by natural convection 
occurs between a moving material and the ambient medium, such as the design and operation of chemical 
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processing equipment, design of heat exchangers, transpiration cooling of a surface, chemical vapor deposition of 
solid layers, flow in a desert cooler, nuclear reactors, and many manufacturing processes like hot rolling, hot 
extrusion, wire drawing, continuous casting, and fiber drawing. In view of such application, Gebhart and Pera [13] 
studied the effects of mass transfer on a steady free convection flow past a semi infinite vertical plate by the 
similarity method, and it was assumed that the concentration level of the diffusing species in the fluid medium was 
very low. This assumption enabled them to neglect the diffusion-thermo and the thermo-diffusion effects, as well as 
the interfacial velocity at the wall due to species diffusion. Following this assumption, Soundalgekar [14] studied the 
effects of mass transfer on the free convection flow past an impulsively started infinite vertical plate and presented 
an exact solution by the Laplace transform method. Soundalgekar and his co-researchers [15-18] investigated the 
effects of simultaneous heat and mass transfer on free convection flow past an infinite vertical plate under different 
physical situations. An analytical study to examine the mass transfer effects flow past an exponentially accelerated 
vertical plate was performed by Jha et al.[19] and Muthucumaraswamy et al.[20, 21]. Recently, Narahri[22] used 
Laplace transform technique to study the mass transfer and free convection current effects on unsteady viscous flow 
with ramped wall temperature. Saravana etal. [23] studied the mass transfer effects on MHD viscous flow past an 
impulsively started infinite vertical plate with constant mass flux. 
 
In all the studies mentioned above the plate was either (i) moving with uniform velocity or (ii) it was uniformly 
accelerated or (iii) there was exponentially accelerated motion of the plate. However flow past a vertical plate 
oscillating in its own plane has many industrial applications. Free convection flow along a harmonically oscillating 
plate has many industrial applications. The first exact solution of the Navier-Stokes equation was given by Stokes 
[24], which is concerned with the flow of incompressible fluid past a horizontal plate oscillating in its own plane. 
Such a flow past an infinite vertical plate oscillating in its own plane was first studied by Soundalgekar [25]. Similar 
problem of flow past an oscillating plate was investigated by Turbatu et al. [26], Revankar [27] and Gupta et al. 
[28]. Gupta employed the Laplace transform technique to study the flow in the Ekman layer on an oscillating plate. 
Further, mass transfer effects on flow past an oscillating plate considered by Lahurikar et al. [29].  
 
In all these investigations the effects of radiation is not taken into account. When the temperature of the surrounding 
fluid is rather high, radiation effects on the flow become significant. In some industrial applications such as glass 
production, furnace design, thermonuclear fusion, casting and levitation and in space technology applications such 
as cosmic flight aerodynamics, rocket propulsion systems, plasma physics, and space craft reentry 
aerothermodynamics which operate at higher temperature, radiation effects play an important role. Keeping in view 
this fact, Hossain et al. [29] determined the effect of radiation on the natural convection flow of an optically thick, 
viscous, incompressible flow past a heated vertical porous plate with a uniform surface temperature and a uniform 
rate of suction, where the radiation was included by assuming the Rosseland diffusion approximation. Raptis and 
Perdikis [30] studied the effects of thermal radiation and free convective flow past a uniformly accelerated vertical 
plate. Soundalgekar et al. [31] further presented exact solution to radiation effect on flow past an impulsively started 
vertical plate. Radiation effects on mixed convection along an isothermal vertical plate were studied by Hossain and 
Takhar [32].  Makinde [33] focused on the thermal radiation and mass transfer past a moving porous plate. 
Muthucumaraswamy [34, 35] obtained exact solutions taking into account the effects of thermal radiation under 
different boundary conditions. Recently, Deka and Das [36] investigated radiation effects past a vertical plate using 
ramped wall temperature, Jana and Ghosh [37] investigated radiative heat transfer in the presence of indirect natural 
convection. Effects of radiation on unsteady MHD free convective flow past an oscillating vertical porous plate 
embedded in a porous medium with oscillatory heat flux was studied by Manna etal.[39]. Diffusion-thermo and 
radiation effects on mhd free convective heat and mass transfer flow past an infinite vertical plate in the presence of 
a chemical reaction of first order was discussed by Raveendra Babu [40] and his co-researchers. Further, Seshaiah 
[41] etal. analyzed thermal diffusion and radiation effects on unsteady MHD free convection heat and mass transfer 
flow past a linearly accelerated vertical plate with variable temperature and mass diffusion. 
 
The above studies did not access the flow from an inclined surface, a regime of considerable importance in glass 
manufacturing, external aerosol particle deposition processes (Jayaraj[42]), powder technology fluidization 
processes (Doroodchi et al.[43]), film cooling chemical engineering systems electronic circuit cooling mechanisms, 
solar energy collector (Beg[44]).Recently, thermal radiation effects on unsteady hydromagnetic gas flow along an 
inclined plane with indirect natural convection has been investigated by  Ghosh et al.[45]. Barik [46] discussed the 
mass transfer and radiation effect on an exponentially accelerated inclined porous plate with variable temperature in 
the presence of heat source. Similar problem was studied by Reddy [47]. 
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In all the studies cited above the flow is driven either by a prescribed surface temperature or by a prescribed surface 
heat flux. Here a different driving mechanism for unsteady free convection along a vertical surface is considered; 
here the flow is set up by Newtonian heating from the surface. Heat transfer characteristic are dependent on the 
thermal boundary conditions. In general there are four common heating processes specifying the wall-to-ambient 
temperature distributions, prescribed surface heat flux distributions, conjugate conditions where heat is specified 
through a bounding surface of finite thickness and finite heat capacity. The interface temperature is not known a 
priori but depends on the intrinsic properties of the system, namely the thermal conductivity of the fluid and solid 
respectively. Newtonian heating, where the heat transfer rate from the bounding surface with a finite heat capacity is 
proportional to the local surface temperature and is usually termed conjugate convective flow. This configuration 
occurs in many important engineering devices, for example: 
 
(i) In heat exchangers where the conduction in solid tube wall is greatly influenced by the convection in the fluid 
flowing over it. 
(ii) For conjugate heat transfer around fins where the conduction within the fin and the convection in the fluid 
surrounding it must be simultaneously analyzed in order to obtain the vital design information. 
(iii) In convective flows set up when the bounding surfaces absorbs heat by solar radiation. 
  
Therefore we conclude that the conventional assumption of no interaction of conduction-convection coupled effects 
is not always realistic and it must be considered when evaluating the conjugate heat transfer processes in many 
practical engineering applications. The Newtonian heating condition has been only recently used in convective heat 
transfer. Merkin [48] was the first to consider the free-convection boundary-layer over a vertical flat plate immersed 
in a viscous fluid whilst [49, 50, 51] considered the cases of vertical and horizontal surfaces embedded in a porous 
medium. The studies mentioned in [49 - 51] deal with steady free convection. In this area the authors of this [52, 53] 
were the first one to give exact solution to the unsteady free convection boundary-layer flow from a flat vertical 
plate with Newtonian heating and the solution was obtained in closed form using Laplace transform technique.  Our 
work was further extended by Narahari and Nayan [54], Raju et al. [55] and Narahari and Ishak [56] in which they 
incorporated the effects of thermal radiation and mass transfer with Newtonian heating under different boundary 
conditions like impulsively started plate, exponentially accelerated plate, moving plate etc. An exact solution of the 
unsteady free convection flow of a viscous incompressible, optically thin, radiating fluid past an impulsively started 
vertical porous plate with Newtonian heating was investigated by Mebine and Adigio[57]. 
 
To the best of authors’ knowledge, so far, no study has been reported in the literature which investigates the 
unsteady free convection flow of an incompressible viscous fluid past an inclined plate with Newtonian heating and 
constant mass diffusion. The plate is oscillating in its own plane. In this study, the equations of the problem are first 
formulated and transformed into their dimensionless forms where the Laplace transform method is applied to find 
the exact solutions for velocity, temperature and concentration. Moreover, expressions for skin friction, Nusselt 
number, and Sherwood number are obtained and are plotted graphically and discussed for the pertinent flow 
parameters. 
 
Mathematical Analysis 
Consider the unsteady free convective flow of a viscous incompressible, absorbing-emitting, non-scattering, 
optically-thick fluid past an tilted plate inclined at an angle α to the vertical. The plate is oscillating in its own plane. 
The x*-axis is taken along the oscillating plate and y*-axis is chosen normal to the plate. Initially, for time t* ≤ 0, the 

plate and fluid are at the constant temperature 
*T∞  and concentration 

*C∞  to 
*C∞ in a stationary condition. At time t* 

≥ 0, the plate starts an oscillatory motion in its plane with the velocity with U0 cos (ω* t *), where U0 is the amplitude 
and ω* is the frequency of the plate oscillations. It is assumed that rate of heat transfer from the surface is 

proportional to the local surface temperature T* and the concentration level near the plate is raised from
*C∞  to

*

wC . 

Since the plate is considered infinite in the x* direction, hence all physical variables will be independent of x*. 
Therefore, the physical variables are functions of y* and t* only. Applying the Boussinesq approximation which 
states that all fluid properties are constant with the exception of the density variation in the buoyancy term, the free 
convective is governed by the following equations:- 

* 2 *
* * * * *

* *2

u u
g (T T )cos g (C C )cos

 t y ∞ ∞
∂ ∂= ν + β − α + β − α
∂ ∂

                            (1) 
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* 2 *
r

p * *2 *

qT T
C k

 t y y

∂∂ ∂ρ = −
∂ ∂ ∂

                                       (2) 

* 2 *

* *2

C C
D  

t y

∂ ∂=
∂ ∂

                                 (3) 

 
With the following initial and boundary conditions: 

  

* * * * * * *

*
* * * * * * * *

0 w*

* * * * * *

t 0 : u 0, T T , C C for all y 0

T h
t 0 : u U cos t , T , C C at y 0

y k

: u 0, T T ,C C as y

∞ ∞

∞ ∞

≤ = = = >


∂ > = ω = − = = ∂ 
= → → → ∞ 

                           (4) 

 
The radiation heat flux under Rosseland approximation [58] is expressed by 

4 *

r * *

4 T
q

3k y

σ ∂= −
∂

                                              (5) 

This model is valid for optically-thick media in which thermal radiation propagates only a limited distance prior to 
experiencing scattering or absorption. The local thermal radiation intensity is due to radiation emanating from 
proximate locations in the vicinity of which emission and scattering are comparable to the location of interest. For 
zones where conditions are appreciably different thermal radiation has been shown to be greatly attenuated before 
arriving at the location under consideration. The energy transfer depends on conditions only in the area adjacent to 
the plate regime i.e. the boundary layer regime. Rosseland’s model yields accurate results for intensive absorption 
i.e. optically-thick flows which are optically far from the bounding surface. It is assumed that the temperature 
difference within the flow are sufficiently small and then (5) can be linearized by expanding T*4 into Taylor series 

about 
*T∞ , which after neglecting higher order terms takes the form: 

 
*4 *3 * *4T 4T T 3T∞ ∞≅ −                                               (6) 

 
In view of (5) and (6), (2) reduces to 
 

*3* 2 *

p * * *2

16 TT T
C k+

t 3k y
∞ σ∂ ∂ρ =  ∂ ∂ 

                                            (7) 

 
To reduce the above equations into their non-dimensional forms, we introduce the following non-dimensional 
quantities:- 
 

 

* 2 ** *
0 0

2
0 0

* * * *
p

* * *
W

* * ** *3
W

3 3 *
0 0

t U y Uu
u    , t    , y    ,     

U U

CT T C C
, C , Pr    , Sc

T C C k D

g (C C )g T 16 T
Gr    ,Gm    , R

U U 3k k

∞ ∞

∞ ∞

∞∞ ∞

ω ν= = = ω = ν ν 
µ− − ν θ = = = = − 
ν β −ν β σ
= = =


                              (8) 

Substituting the transformation (8) into equations (1), (3) and (7), we obtain the following non-dimensional partial 
differential equations: 
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2

2

u u
Gr cos Gm Ccos

 t y

∂ ∂= + θ α + α
∂ ∂

                                           (9) 

2

2
Pr (1 R)

t y

∂ θ ∂ θ= +
∂ ∂

                                         (10) 

 
2

2

C C
Sc

t y

∂ ∂=
∂ ∂

                               (11) 

The corresponding initial and boundary conditions in non-dimensional form are: 

t  0 : u    0,   0, C 0 for all y > 0

t  0  : u  cos t,  (1 ), C 1  at y  0
y

: u 0,  0,C 0 as y   

≤ = θ = =
∂θ > = ω = − γ + θ = = ∂ 
→ θ → → → ∞ 

                                  (12) 

Where,  

0

h

kU

νγ =  is the Newtonian heating parameter, when γ = 0 then θ = 0 which physically corresponds that no heating 

from the plate exists [59,60], Gr is the Grashof number, Gm is the modified Grashof number, Pr is the Prandtl 
number, Sc is the Schimdt number and R is the Radiation parameter respectively. Radiation parameter embodies the 
relative contribution of heat transfer by thermal radiation to thermal conduction. Large R (>1) values therefore 
correspond to thermal radiation dominance and small values (<1) to thermal conduction dominance (Siegel and 
Howell). For R = 1 both conduction and radiative heat transfer modes will contribute equally to the regime. Clearly 
the term in r. h. s. of (10) is an augmented diffusion term i.e. with R = 0, thermal radiation vanishes and eqn. (10) 
reduces to the familiar unsteady one-dimensional conduction-convection equation. Rests of the physical variables 
are defined in Nomenclature. 
 
Analytical solutions by the Laplace transform method 
The thermal and concentration equations (10) and (11) are uncoupled from the momentum equation (9). One can 
therefore solve for the temperature variable θ(y, t) and concentration variable C(y, t) whereupon the solution of u(y, 
t) can also be obtained, using Laplace transform technique. The Laplace transform method solves differential 
equations and corresponding initial and boundary value problems. The Laplace transform has the advantage that it 
solves initial value problems directly without determining first a general solution and non-homogeneous differential 
equations without solving first the corresponding homogeneous equations. Applying the Laplace transform with 
respect to time t to the eqs. (9) - (11) we get, 
 

2

2

2

2

2

d u (y,q)
q u (y,q) u (y,0) Gr cos (y,q) Gm cos C(y,q)

d y

d (y,q)
Pr q (y,q) (y,0) (1 R)

d y

d C(y,q)
Sc q C(y,q) C(y,0)

d y


− = + α θ + α 


θ  θ −θ = +  



  − =  
                                                

(13) 

Here, 

qt qt qt

0 0 0

u (y,q) e u(y, t)dt, (y,q) e (y, t)dt and C(y,q) e C(y, t)dt denotes

Laplace transformsof u(y, t), (y, t)andC(y, t) respectively.

∞ ∞ ∞
− − −= θ = θ =

θ

∫ ∫ ∫
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Using the initial condition (12), we get 

2

2

2

2

2

d u (y,q)
q u (y,q) Gr cos (y,q) Gm cos C(y,q) 0

d y

d (y,q) Pr
q (y,q) 0

d y 1 R

d C(y,q)
qSc C(y,q) 0

d y


− + α θ + α = 


θ  − θ =  +  

− =


                                            (14) 

The corresponding transformed boundary conditions are: 

2 2

q
u (y,q)

q

d (y,q) 1
(y,q)

d y q

1
C(y,q) at y 0

q

u (y,q) 0, (y,q) 0,C(y,q) 0 as y

=
+ ω

 θ = −γ + θ 
 

= =

→ θ → → → ∞

                                                                                    (15) 

The solutions of (14) subject to the boundary conditions (15) are: 

eff

eff

y q y q y q

2

y qPr y qScy q
2 22

y qPr

y qSc
2

1 1 ac
u (y,q) e e e

2(q iw) 2(q iw) q ( q c)

ac b b
e e e

q qq ( q c)

c
(y,q) e

q ( q c)

1
C (y,q) e

q

− − −

− −−

−

−

= + +
+ − −

− + −
−

θ =
−

=

                                      (16) 

Where, 

eff
eff eff

Gr cos Gmcos Pr
a ,b ,c and Pr

Pr 1 Sc 1 1 RPr

α α γ= = = =
− − +

,Preff is the effective Prandtl number  

 
By taking the inverse Laplace transform of (16) the solutions are derived as: 

4 eff(y,t) F (y Pr , t,c)θ =                                            (17) 

1C(y,t) F (y Sc, t)=                                             (18) 

5 5 4 eff 42

2 eff 2 3 eff 3

3 3

1 a
u (y,t) [F (y, t, i ) F (y, t, i )] F (y Pr , t,c) F (y, t,c)

2 c
a

F (y Pr , t) F (y, t) a F (y Pr , t) F (y, t)
c

b F (y Sc, t) F (y, t)

 = − ω + ω − − 

   + − + −   

 − − 

                                     (19) 
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Note that the above solution for the velocity variable given by equation (19) is not valid for fluids with Prandtl 
number and Schimdt number unity (ie. Preff ≠ 1 and Sc ≠ 1). A Schmidt number of unity (Sc = 1) indicates that 
momentum and mass transfer by diffusion are comparable, and velocity and concentration boundary layers almost 
coincide with each other. As the Prandtl number is a measure of the relative importance of the viscosity and thermal 
conductivity of the fluid, the case Pr = 1 corresponds to those fluids whose momentum and thermal boundary layer 
thickness are of the same order of magnitude. Moreover the exact solutions of the free convection problem  
Case I: When Preff ≠ 1and Sc = 1 is given below: 

5 5 4 eff 42

2 eff 2 3 eff 3

2

1 a
u (y,t) [F (y, t, i ) F (y, t, i )] F (y Pr , t,c) F (y, t,c)

2 c
a

F (y Pr , t) F (y, t) a F (y Pr , t) F (y, t)
c

yGmcos
F (y, t)

2

 = − ω + ω − − 

   + − + −   

α+

                                               (20) 

Case II: When Sc ≠ 1and Preff = 1 is given below: 

5 5 3 3

4

1
u (y,t) [F (y, t, i ) F (y, t, i )] b F (y Sc, t) F (y, t)

2
yGr cos

F (y, t, )
2

 = − ω + ω − − 

α+ γ
γ

                                      (21) 

Case III: When Sc = 1and Preff = 1is given below: 

[ ] [ ]

[ ]

5 5 4 2

2

1 yGr cos yGr cos
u (y,t) [F (y, t, i ) F (y, t, i )] F (y, t, ) F (y, t)

2 2 2

yGmcos
F (y, t)

2

α α= − ω + ω + γ −
γ

α+
                         (22) 

Here, 

( )

( )

2

2

2

1

v
4t

2

2 v
4t

3

t v

4

t v v
5

v
F (v, t) erfc

2 t

t v
F (v, t) 2 e verfc

2 t

v v t
F (v, t) t erfc v e

2 2 t

v v
F (v, t, ) e erfc t erfc

2 t 2 t

1 v v
F (v, t, ) e e erfc t e erfc t

2 2 t 2 t

−

−

ψ −ψ

ψ − ψ ψ

 =  
 

 = −  π  

   = + −    π  

   ψ = − ψ −   
   

    ψ = − ψ + + ψ    
   





                                               (23)

 

erfc (x) being the complementary error function defined by 
x

0

22
erfc (x)    1 erf (x) , erf (x)    exp ( )d= − = − η η

π ∫
 

erfc (0)    1,  erfc ( ) 0.= ∞ =  

and erfc (x1 + iy1) is the complementary error function of the complex argument which can be calculated in terms of 
tabulated numerical values of the auxiliary function W1(z), z = x1 + iy1 [61]. The table given in [61] does not give 
erfc (x1 + iy1) directly but an auxiliary function W1 (x1 + iy1) that is defined as 
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2)1iy1x

11111
e )ixy  W  )iy  (x erfc

+(−+−(=+  

Some properties of W1 (x1 + iy1) are 

)iy  x  W  )iy xW
112111

+(=+−(  

2
1 1(x iy )

1 1 1 2 1 1W (x   iy )    2e W (x iy )− −− = − +  

where W2 (x1 + iy1) is complex conjugate of W1 ( x1 + iy1). 
Also v and Ψ are dummy variables and F1, F2, F3, F4 and F5 are dummy functions. 

Knowing the velocity field, we now study the changes in the skin-friction. It is given by:-
*

*

*

y 0

u

y
∗

=

 ∂τ = − µ  ∂ 
 

                                                                         (24) 
The dimensionless expression for skin-friction evaluated from (19) is given by: 

2

0 y  0

du

 U dy

ττ
ρ

∗

=

= = −                               (25) 

( ) ( ) ( )2

i t i t

c t eff
eff

1 e t e t
(1 i) erf (1 i) (1 i) erf (1-i) 

2 2 2 2 2 2t

Pr ta t t
1 e 1 erf (c t) Pr 1 2 2a 2b Sc 1

c

ω − ω      ω ω ω ω= + + + + −         π          

 + − + − + − − −
  π π π

                           (26) 

Another phenomenon in this study is to understand the effects of t and Pr on Nusselt number. In non-dimensional 
form, the rate of heat transfer is given by:- 

( ) *

2

*

** *
0 y 0

eff c t

T 1
Nu   - 1

y (0)U T T

1
c Pr 1

e 1 erf (c t) 1

∞ =

υ ∂= = +
∂ θ−

 
 = +
  + −  

                                                (27)

 

The dimensionless expression of Sherwood number is given by: 

y 0

C Sc
Sh

y  t=

∂= − =
∂ π

                                            (28) 

   
RESULTS AND DISCUSSION 

 
In order to discuss the effect of various physical parameters on the velocity field, thermal boundary layer, 
concentration boundary layer, skin-friction, Nusselt number and Sherwood number the numerical computation of the 
analytical solutions, obtained in the preceding section, have been carried out and shown graphically. The regime is 
controlled by seven thermo-physical parameters which are radiation parameter (R), Prandtl number (Pr), Grashof 
number (Gr), modified Grashof number (Gm), Schmidt number (Sc), Newtonian heating parameter (γ), phase angle 
(ωt) and single geometric parameter which is angle of inclination (α) and time (t).  
 
In figure 1 the evolution of dimensionless temperature profiles θ (y, t) inside the boundary layer, against span wise 
coordinate y for different values of Boltzmann-Rosseland radiation parameter R is shown. Again Pr = 0.71 i.e. Pr < 

1, so that heat diffuses faster than momentum in the regime. 
*3

*

16 T
R

3k k
∞σ= and as discussed earlier this embodies 
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the relative contribution of heat transfer by thermal radiation to thermal conduction. R corresponds to an increase in 
the relative contribution of thermal radiation heat transfer to thermal conduction heat transfer. As for R<<1, thermal 
conduction heat transfer will dominate and vice versa for R > 1. Larger values of R therefore physically correspond 
to stronger thermal radiation flux and in accordance with this, the maximum temperatures are observed for R = 3. 
Rosseland's radiation diffusion model effectively enhances the thermal diffusivity, as described by Siegel and 
Howell. From this figure it is depicted that an increase in radiation parameter leads to an increase in the temperature 
in the boundary layer region which implies that radiation tends to enhance fluid temperature. 
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Figure 1: Temperature profiles for different values of radiation parameter R when t = 0.2, Pr = 0.71 and    = 1.Figure 1: Temperature profiles for different values of radiation parameter R when t = 0.2, Pr = 0.71 and    = 1.Figure 1: Temperature profiles for different values of radiation parameter R when t = 0.2, Pr = 0.71 and    = 1.Figure 1: Temperature profiles for different values of radiation parameter R when t = 0.2, Pr = 0.71 and    = 1.
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Figure 2 exhibits the influence of dimensionless time t on the thermal boundary layer. It is observed that there is an 
enhancement in fluid temperature as time progresses. 
 
Figure 3 illustrates the influence of Prandtl number Pr on fluid temperature taking Pr = 0.71, 1.0, 7.0 and 100 which 
physically corresponds to air, electrolytic solution, water and engine oil respectively at 200C temperature and 1 
atmospheric pressure. It is inferred that the thickness of thermal boundary layer is greatest for Pr = 0.71 (air), then 
for Pr = 1.0 (electrolytic solution) and then for Pr = 7.0 (water) and finally lowest for Pr = 100 (engine oil) ie. an 
increase in the Prandtl number results in a decrease of temperature. Pr signifies the relative effects of viscosity to 
thermal conductivity. The reason is that smaller values of Prandtl number are equivalent to increasing thermal 
conductivity and therefore heat is able to diffuse away from the heated surface more rapidly than for higher values 
of Prandtl number.  
 
From figure 4 it is reported that an increase in the Newtonian heating parameter γ the thermal boundary layer 
thickness also increases and as a result the surface temperature of the plate increases. From figures 1 to 4 it is found 
that the maximum of the temperature occur in the vicinity of the plate and asymptotically approaches to zero in the 
free stream region. 
 
In Figures 5 and 6 the concentration profiles are shown for different values of the Schmidt number Sc and time t 
respectively. Different values of Schmidt number Sc = 0.22, 0.3, 0.6, 0.78, 0.94 and 2.62 are chosen, they physically 
correspond to Hydrogen, Helium, water vapour, Ammonia, Carbon dioxide and Propyl Benzene respectively at 250C 
temperature and 1 atmospheric pressure. The profiles have a common feature that the concentration decreases 
exponentially from the surface to zero value far away in the free stream. A comparison of curves in the figures show 
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that the velocity decreases with increasing Schmidt number while the concentration boundary layer enhances for 
increasing times. This is consistent with the fact that the increase of Sc means decrease of molecular diffusivity that 
result in decrease of concentration boundary layer. Hence, the concentration of species is higher for small values of 
Sc and lower for large values of Sc.  
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Figure 2: Temperature profiles for different values of time t when R = 1,Pr = 0.71 and   = 1.Figure 2: Temperature profiles for different values of time t when R = 1,Pr = 0.71 and   = 1.Figure 2: Temperature profiles for different values of time t when R = 1,Pr = 0.71 and   = 1.Figure 2: Temperature profiles for different values of time t when R = 1,Pr = 0.71 and   = 1.
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Figure 3: Temperature profiles for different values of Prandtl number Pr when R = 5, t = 0.2 and   = 0.1Figure 3: Temperature profiles for different values of Prandtl number Pr when R = 5, t = 0.2 and   = 0.1Figure 3: Temperature profiles for different values of Prandtl number Pr when R = 5, t = 0.2 and   = 0.1Figure 3: Temperature profiles for different values of Prandtl number Pr when R = 5, t = 0.2 and   = 0.1
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Figure 4: Temperature profiles for different values of Newtonian heating parameter    when R = 1,Pr = 0.71 and t = 0.2.Figure 4: Temperature profiles for different values of Newtonian heating parameter    when R = 1,Pr = 0.71 and t = 0.2.Figure 4: Temperature profiles for different values of Newtonian heating parameter    when R = 1,Pr = 0.71 and t = 0.2.Figure 4: Temperature profiles for different values of Newtonian heating parameter    when R = 1,Pr = 0.71 and t = 0.2.
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Figure 5: Concentration profiles for different values of Schmidt number Sc when t = 0.9.Figure 5: Concentration profiles for different values of Schmidt number Sc when t = 0.9.Figure 5: Concentration profiles for different values of Schmidt number Sc when t = 0.9.Figure 5: Concentration profiles for different values of Schmidt number Sc when t = 0.9.

Sc = 0.22,0.3,0.6,0.78,0.94,2.62Sc = 0.22,0.3,0.6,0.78,0.94,2.62Sc = 0.22,0.3,0.6,0.78,0.94,2.62Sc = 0.22,0.3,0.6,0.78,0.94,2.62

 
The velocity profiles u(y, t) in case of radiation and pure convection are shown in Figure 7. It is revealed from this 
figure that the radiation parameter R has an accelerating influence on fluid flow. Physically, it is due to the fact that 
an increase in the radiation parameter R for fixed values of other parameters decreases the rate of radiative heat 
transfer to the fluid, and consequently, the fluid velocity increases.  
 
Figure 8 illustrates the influence of Prandtl number Pr on the flow field. It is evident from the figure that the fluid 
velocity overshoots the plate velocity in the regions close to the boundary. This overshooting is more pronounced 
for low Prandtl number fluids than for higher Prandtl number fluids. Also the thickness of momentum boundary 
layer is more for fluid with low Prandtl number. The reason underlying this behavior arises from the fact that the 
increase in the Prandtl number is due to the increase in the viscosity of the fluid, which makes the fluid thick and 
hence the fluid moves slowly. For Pr =1, the momentum and thermal boundary layers will have same thickness. 
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Figure 6: Concentration profiles for different values of time t Sc when Sc = 0.6.Figure 6: Concentration profiles for different values of time t Sc when Sc = 0.6.Figure 6: Concentration profiles for different values of time t Sc when Sc = 0.6.Figure 6: Concentration profiles for different values of time t Sc when Sc = 0.6.
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Figure 7: Velocity profiles for different values of radiation parameter R when Pr = 0.71,Sc = 0.3,Gr = 1,Gm = 3,t = 0.9,Figure 7: Velocity profiles for different values of radiation parameter R when Pr = 0.71,Sc = 0.3,Gr = 1,Gm = 3,t = 0.9,Figure 7: Velocity profiles for different values of radiation parameter R when Pr = 0.71,Sc = 0.3,Gr = 1,Gm = 3,t = 0.9,Figure 7: Velocity profiles for different values of radiation parameter R when Pr = 0.71,Sc = 0.3,Gr = 1,Gm = 3,t = 0.9,
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The effects of Grashof number Gr and modified Grashof number Gm on velocity are shown in figures 9 and 10. It is 
observed that the velocity increases with increasing values of Gr and Gm. Physically, this is possible because as the 
Grashof number and modified Grashof number increases, the contribution from the thermal and mass buoyancy near 
the plate becomes significant and hence a rise in the velocity near the plate is observed. This gives rise to an increase 
in the induced flow. For higher values of Gr, the fluid velocity overshoots the plate velocity in the regions close to 
the boundary. 
 
Figure 11 displays the effects of Schmidt number Sc on the velocity field. It is inferred that the velocity decreases 
with increasing Schmidt number. An increasing Schmidt number implies that viscous forces dominate over the 
diffusion effects. Schmidt number in free convection flow regimes represents the relative effectiveness of 
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momentum and mass transport by diffusion in the velocity (momentum) and concentration (species) boundary 
layers. Smaller Sc values correspond to lower molecular weight species diffusing in air (eg. Hydrogen (Sc = 0.16), 
Helium (Sc = 0.3), water vapour (Sc = 0. 6), oxygen (Sc = 0.66), ammonia (Sc = 0.78), carbon dioxide (Sc = 0.96)) 
and higher values to denser hydrocarbons diffusing in air (e.g. Propyl benzene in air (Sc = 2.62). Effectively 
therefore an increase in Sc will counteract momentum diffusion since viscosity effects will increase and molecular 
diffusivity will be reduced. The flow will therefore be decelerated with a rise in Sc as testified by figure 11. It is also 
important to note that for Sc ~ 1, the velocity and concentration boundary layers will have the same thickness. For 
Sc < 1 species diffusion rate greatly exceeds the momentum diffusion rate and vice versa for Sc > 1. 
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Figure 8: Velocity profiles for different values of Prandtl numberPr when R = 2,Sc = 0.3,Gr = 1,Gm = 3,t = 0.9,Figure 8: Velocity profiles for different values of Prandtl numberPr when R = 2,Sc = 0.3,Gr = 1,Gm = 3,t = 0.9,Figure 8: Velocity profiles for different values of Prandtl numberPr when R = 2,Sc = 0.3,Gr = 1,Gm = 3,t = 0.9,Figure 8: Velocity profiles for different values of Prandtl numberPr when R = 2,Sc = 0.3,Gr = 1,Gm = 3,t = 0.9,
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Figure 9: Velocity profiles for different values of Grashoff number Gr when R = 2,Sc = 0.3,Pr =0.71,Gm = 3,t = 0.9,Figure 9: Velocity profiles for different values of Grashoff number Gr when R = 2,Sc = 0.3,Pr =0.71,Gm = 3,t = 0.9,Figure 9: Velocity profiles for different values of Grashoff number Gr when R = 2,Sc = 0.3,Pr =0.71,Gm = 3,t = 0.9,Figure 9: Velocity profiles for different values of Grashoff number Gr when R = 2,Sc = 0.3,Pr =0.71,Gm = 3,t = 0.9,
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Figure 10: Velocity profiles for different values of Modified Grashoff number Gm when R = 2,Sc = 0.3,Pr =0.71,Gr = 1,t = 0.9,Figure 10: Velocity profiles for different values of Modified Grashoff number Gm when R = 2,Sc = 0.3,Pr =0.71,Gr = 1,t = 0.9,Figure 10: Velocity profiles for different values of Modified Grashoff number Gm when R = 2,Sc = 0.3,Pr =0.71,Gr = 1,t = 0.9,Figure 10: Velocity profiles for different values of Modified Grashoff number Gm when R = 2,Sc = 0.3,Pr =0.71,Gr = 1,t = 0.9,
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Figure 11:Velocity profiles for different values of Schmidt number Sc when R=0.1,Pr=0.71,Gr=10,Gm=20, t=0.9Figure 11:Velocity profiles for different values of Schmidt number Sc when R=0.1,Pr=0.71,Gr=10,Gm=20, t=0.9Figure 11:Velocity profiles for different values of Schmidt number Sc when R=0.1,Pr=0.71,Gr=10,Gm=20, t=0.9Figure 11:Velocity profiles for different values of Schmidt number Sc when R=0.1,Pr=0.71,Gr=10,Gm=20, t=0.9
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Figure 12 displays the effect of Newtonian heating parameter γ on the dimensionless velocity. It is found that as the 
Newtonian heating parameter increases the density of the fluid decreases, and the momentum boundary layer 
thickness increases and as a result the velocity increases within the boundary layer. 
 
Representative velocity profiles for five typical angles of inclination (α = 0, π/6, π/4, π/3, π/2) are presented in figure 
13. It is revealed from this figure that on increasing the angle of inclination, the velocity decreases. The fact is that 
as the angle of inclination increases the effect of the buoyancy force due to thermal and mass diffusion decrease by a 
factor of cos α. Consequently the driving force to the fluid decreases and as a result velocity profiles decrease. From 
this figure it is also noticeable that the effect of buoyancy force (which is maximum for α = 0) overshoots the main 
stream velocity significantly. 
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Figure 12:Velocity profiles for different values of Newton Heating parameter   when R=2,Pr=0.71,Sc=0.3,Gr=2,Gm=2, t=0.9Figure 12:Velocity profiles for different values of Newton Heating parameter   when R=2,Pr=0.71,Sc=0.3,Gr=2,Gm=2, t=0.9Figure 12:Velocity profiles for different values of Newton Heating parameter   when R=2,Pr=0.71,Sc=0.3,Gr=2,Gm=2, t=0.9Figure 12:Velocity profiles for different values of Newton Heating parameter   when R=2,Pr=0.71,Sc=0.3,Gr=2,Gm=2, t=0.9
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Figure 13:Velocity profiles for different values of angle of inclination when R=2,Pr=0.71,Sc=0.94,Gr=2,Gm=2, t=0.9Figure 13:Velocity profiles for different values of angle of inclination when R=2,Pr=0.71,Sc=0.94,Gr=2,Gm=2, t=0.9Figure 13:Velocity profiles for different values of angle of inclination when R=2,Pr=0.71,Sc=0.94,Gr=2,Gm=2, t=0.9Figure 13:Velocity profiles for different values of angle of inclination when R=2,Pr=0.71,Sc=0.94,Gr=2,Gm=2, t=0.9
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The variation of fluid velocity u(y, t) due to the oscillation of the plate is depicted in figure 14 taking fluids as water 
(Pr = 7.0) and air (Pr = 0.71). The boundary condition for y→ ∞ is replaced by identical ones at ymax where the 
velocity profiles decay to the relevant boundary condition. We choose ymax = 4.0. It is noticed that on increasing 
phase angle ωt from 0 to π/2 the plate velocity decreases. A comparative study of data presented in figure 14 show 
that the thickness of momentum boundary layer is greater for Pr = 0.71 as compared to Pr = 7.0. The inverse 
variation of temperature with the Prandtl number is also observed for velocity. The phase angle ωt = 0 corresponds 
to no oscillation of the plate, then the fluid approaches to its maximum velocity of magnitude 1 whereas for the 
phase angle ωt = π/2, the velocity gains its minimum value of magnitude 0. The oscillations near the plate are of 
great significance; however, these oscillations reduce for large values of the independent variable y and approach to 
zero as y tends to infinity. 



Preeti Jain and R. C. Chaudhary                             Adv. Appl. Sci. Res., 2013, 4(6):285-306       
 _____________________________________________________________________________ 

300 
Pelagia Research Library 

0000 0.50.50.50.5 1111 1.51.51.51.5 2222 2.52.52.52.5 3333 3.53.53.53.5
0000

0.20.20.20.2

0.40.40.40.4

0.60.60.60.6

0.80.80.80.8

1111

1.21.21.21.2

1.41.41.41.4

1.61.61.61.6

yyyy

V
e

lo
ci

ty
V

e
lo

ci
ty

V
e

lo
ci

ty
V

e
lo

ci
ty

Figure 14:Velocity profiles for different values of phase angle  when R=0.2,Sc=0.22,Gr=1,Gm=5, t=0.9,Figure 14:Velocity profiles for different values of phase angle  when R=0.2,Sc=0.22,Gr=1,Gm=5, t=0.9,Figure 14:Velocity profiles for different values of phase angle  when R=0.2,Sc=0.22,Gr=1,Gm=5, t=0.9,Figure 14:Velocity profiles for different values of phase angle  when R=0.2,Sc=0.22,Gr=1,Gm=5, t=0.9,
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Figure 15:Velocity profiles for different values of time t when R=0.2,Sc=0.3,Gr=1,Gm=5,Pr=0.71,Figure 15:Velocity profiles for different values of time t when R=0.2,Sc=0.3,Gr=1,Gm=5,Pr=0.71,Figure 15:Velocity profiles for different values of time t when R=0.2,Sc=0.3,Gr=1,Gm=5,Pr=0.71,Figure 15:Velocity profiles for different values of time t when R=0.2,Sc=0.3,Gr=1,Gm=5,Pr=0.71,
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Figure 17: Variation of Nusselt number for different values of Prandtl number (Pr),radiation parameter (R),Figure 17: Variation of Nusselt number for different values of Prandtl number (Pr),radiation parameter (R),Figure 17: Variation of Nusselt number for different values of Prandtl number (Pr),radiation parameter (R),Figure 17: Variation of Nusselt number for different values of Prandtl number (Pr),radiation parameter (R),
Newtonian heating Parameter (   ).Newtonian heating Parameter (   ).Newtonian heating Parameter (   ).Newtonian heating Parameter (   ).
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Figure 18: Sherwood number variation for different values of Schimdt number (Sc).Figure 18: Sherwood number variation for different values of Schimdt number (Sc).Figure 18: Sherwood number variation for different values of Schimdt number (Sc).Figure 18: Sherwood number variation for different values of Schimdt number (Sc).
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In order to highlight the effect of temporal variable t on the flow field figure 15 is presented herein taking different 
phase angles ωt is revealed that as the time progresses the thickness of momentum boundary layer increases because 
the contribution from the buoyancy force near the plate become significant and hence the velocity increases 
monotonically with the temporal variable t. From figures 7-15 we observe that the velocity becomes maximum in 
the vicinity of the plate and then decreases away from the plate and finally takes asymptotic values far away from 
the plate. 
 
Figure 16(a) illustrates the combined effects of Schmidt number (Sc), angle of inclination (α) and Newtonian 
heating parameter (γ) on skin friction when plotted against time t taking ωt = π/2. It is found that an increase in the 
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angle of inclination would produce a decrease in the buoyancy force s and hence reduce the skin friction coefficient. 
For horizontal plate (α = π/2) as expected the velocity is minimized since gravitational acceleration effects are 
negated. With a decrease in angle of inclination to π/3 and eventually to the minimum (vertical) orientation (α = 0) 
the flow is strongly accelerated as gravitational acceleration effects are maximized. Similar effect is exhibited on 
increasing the Newtonian heating parameter i.e. skin friction reduces on increasing γ whereas on increasing Schimdt 
number it increases. 
 
Figure 16(b) elucidates that with increasing radiation (R), Prandtl number (Pr) and modified Grashof number (Gm) 
frictional shear stress decreases while reverse happens for increasing Grashof number (Gr). It is investigated that 
skin friction falls with an increase in Pr, physically, this is true because an increase in the Prandtl number is due to 
increase in the viscosity of the fluid, which makes the fluid thick and hence a decrease in the velocity of the fluid. 
Therefore skin friction decreases with increasing Pr. 
 
Figure 17 displays dimensionless rate of heat transfer Nusselt number (Nu) against time t. This figure shows that 
increasing Prandtl number and Newtonian heating parameter γ enhances the heat transfer coefficient. This may be 
explained by the fact that frictional forces become dominant with increasing values of Pr and yield greater heat 
transfer rate. Furthermore, as time advances, the value of Nu is decreasing and after some time it becomes constant. 
Nusselt number decreases on increasing radiation R which implies that radiation tends to reduce rate of heat transfer 
at the plate. 
 
From figure 18, it is observed that the Sherwood number increases with increasing Sc, while reverse happens for 
increasing time t. 
 
The present analytical (Laplace transform) solutions provide other researchers with solid benchmarks for numerical 
comparisons. The authors have used this method in other articles where they have bench marked approximate 
methods such as numerical, asymptotic or experimental methods against analytical (Laplace transform) solutions. 
Further, all these graphical results discussed above are in good agreement with the imposed boundary conditions 
given by (12). Hence, this ensures the accuracy of our results. 
 
Nomenclature 
Cp Specific heat at constant pressure 
C* Species concentration in the fluid 

*
wC  Species concentration near the plate 

*C∞  Species concentration in the fluid far away from the plate 

C Dimensionless concentration 
D Mass diffusivity 
g Magnitude of the acceleration due to gravity 
h Heat transfer coefficient 
k Thermal conductivity of the fluid 
k* Mean absorption coefficient 
Gr Thermal Grashof number 
Gm Modified Grashof number 
Pr Prandtl number 
qr Radiative heat flux in the y* direction 
R Radiation parameter 
Sc Schmidt number 
T* Temperature of the fluid 

T
∗
∞

 Ambient temperature 

t* Time 
t Non-dimensional time 
u* Dimensional velocity along x*-direction 
u(y,t) Dimensionless velocity 
y*  Cartesian coordinate normal to the plate 
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y Dimensionless coordinate axis normal to the plate 
 
Greek symbols 
α Angle of inclination of the plate  
β Volumetric Coefficient of thermal expansion 
β* Volumetric Coefficient of mass expansion 
ρ Density of the fluid 
θ Dimensionless temperature 
µ Coefficient of viscosity 
ν Kinematic viscosity 
σ Stefan-Boltzmann constant  
τ* Skin-friction 
τ Dimensionless skin-friction 
θ Dimensionless temperature 
ω Frequency of oscillation 
ωt Phase angle 

 
CONCLUSION 

 
An exact solution of the unsteady free convection boundary-layer flow of an incompressible fluid past an inclined 
oscillating plate with the flow generated by Newtonian heating in the presence of radiation was studied. The 
resulting coupled linear partial differential equations which describe the problem are non-dimensionalized and their 
solutions have been obtained in closed form with the help of Laplace-transform technique. The obtained solutions 
satisfy governing equations as well as the boundary conditions are discussed through graphs for different values of 
parameters entering into the problem. The following conclusions can be drawn from the results obtained: 
 
1.The dimensionless temperature profiles increase with increase in radiation parameter, time and Newtonian heating 
parameter whereas reverse happen for increasing Prandtl number. 
2.The dimensionless concentration profiles decrease with increase in Schimidt number while reverse happen for 
increasing time. 
3.The dimensionless velocity profiles increase with increase in radiation parameter, Grashoff number, Modified 
Grashoff number, Newtonian heating parameter and time while the thichness of momentum boundary decrease with 
increase in Prandtl number, Schimdt number, angle of inclination of the plate and phase angle ωt of the oscillating 
plate. 
4.Skin-friction profiles show an increase with increase in Schimdt number while the increase in angle of inclination 
of the plate and newtonian heating parameter the dimensionless skin friction profiles decrease. 
5.Dimensionless rate of heat transfer which is Nusselt number increases as Prandtl number and Newtonian heating 
parameter enhances but contrary to this, as time and radiation parameter increases the rate of heat transfer decreases. 
6.The Sherwood number increases with increasing Schimdt number, while reverse happens for increasing time t. 
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