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ABSTRACT 
 
The effects of chemical reaction and radiation on a steady two-dimensional flow of a viscous incompressible 
electrically conducting fluid near an isothermal vertical stretching sheet, in the presence of viscous dissipation and 
heat generation are studied. The governing equations are transformed by using similarity transformation and the 
resultant dimensionless equations are solved numerically using the Runge – Kutta fourth order method with 
shooting technique. The effects of various governing parameters on the velocity, temperature, concentration, skin-
friction coefficient, Nusselt number and Sherwood number are computed and discussed in detail. Comparison of the 
obtained numerical results is made with previously published results. It is found that, the velocity and concentration 
decreases with increasing the Schmidt number (Sc), chemical reaction parameter (Kr), and the velocity as well as 
temperature decreases with increasing the radiation parameter (F), while the velocity as well as temperature 
increases with increasing the heat generation parameter (Q). 
 
Keywords: chemical reaction; MHD; Radiation; Free convection; Steady flow; viscous dissipation; heat generation. 
_____________________________________________________________________________________________ 
 

INTRODUCTION 
 
Sakiadas [1] first presented boundary layer flow over a continuous solid surface moving with constant speed. 
Erickson et al.[2] extended Sakiadas problem to include blowing or suction at the moving surface and investigated 
its effects on the heat and mass transfer in the boundary layer. Danberg and Fansber [3] investigated the nonsimilar 
solution for the flow in the boundary layer past a wall i.e. stretched with a velocity proportional to distant along the 
wall. Gupta and Gupta [4] studied the heat and mass transfer corresponding to similarity solution for the boundary 
layer over an isothermal stretching sheet subject to blowing or suction. Elbashbeshy [5] investigated heat transfer 
over a stretching surface with variable and uniform surface heat flux subject to injection and suction. Samad and 
Mobebujjaman [6] reported the MHD heat and mass transfer free convection flow along a vertical stretching sheet in 
the presence of magnetic field with heat generation. 
 
At high operating temperatures, radiation effect can be quite significant. Many processes in engineering areas occur 
at high temperatures and knowledge of radiation heat transfer becomes very important for the design of the pertinent 
equipment. Nuclear power plants, gas turbines and various propulsion devices for aircraft, missiles, satellites and 
space vehicles are example of such engineering areas. Takhar et al. [7] studied the radiation effects on MHD free 
convection flow for nongray-gas past semi-infinite vertical plate. Ghaly and Elbarbary [8] reported the effect of 
radiation on free convection flow on MHD along a stretching surface with uniform free stream. Anjali Devi and 
Kayalvizhi [9] presented analytical solution of MHD flow with radiation over a stretching sheet embedded in a 
porous medium.  
 
In all the studies mentioned above the heat due to viscous dissipation is neglected. Gebharat [10] has shown the 
importance of viscous dissipative heat in free convection flow in the case of isothermal and constant heat flux at the 
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plate. Israel-Cookey et al [11] investigated the influence of viscous dissipation and radiation on unsteady MHD free 
convection flow past an infinite heated vertical plate in a porous medium with time dependent suction. Suneetha et 
al [12] investigated radiation and mass transfer effects on MHD free convection flow past an impulsively started 
isothermal vertical plate with viscous dissipation. Ganeswara Reddy and Bhaskar Reddy [13] presented soret and 
dufour effects on steady MHD free convection flow past a semi-infinite moving vertical plate in a porous medium 
with viscous dissipation. Mohammed Ibrahim and Bhaskar Reddy [14] studied the radiation and mass transfer 
effects on MHD free convection flow along a stretching surface with viscous dissipation and heat generation. 
 
The heat source/sink effects in thermal convection, are significant where there may exist a high temperature 
differences between the surface (e.g. space craft body) and the ambient fluid. Heat Generation is also important in 
the context of exothermic or endothermic chemical reaction. Vajravelu and Hadjinicolaou [15] studied the heat 
transfer characteristics in the laminar boundary layer of a viscous fluid over a stretching sheet with viscous 
dissipation or frictional heating and internal heat generation. Hossain et al [16] studied problem of the natural 
convection flow along a vertical wavy surface with uniform surface temperature in the presence of heat 
generation/absorption. Kesavaiah et.al [17] reported that the effects of the chemical reaction and radiation 
absorption on unsteady MHD convective heat and mass transfer flow past a semi-infinite vertical permeable moving 
plate embedded in porous medium with heat source and suction. 
 
Combined heat and mass transfer problems with chemical reaction are of importance in many processes and have, 
therefore, received a considerable amount of attention in recent years. In processes such as drying, evaporation at the 
surface of a water body, energy transfer in a set cooling tower and the flow in a desert cooler, heat and the mass 
transfer occur simultaneously. Possible applications of this type of flow can be found in many industries, For 
example, in the power industry, among the methods of generating electric power is one in which electrical energy is 
extracted directly from a moving conducting fluid. Many practical diffusive operations involve the molecular 
diffusion of a species in the presence of chemical reaction within or at the boundary. There are two types of 
reactions; A homogeneous reaction is one that occurs uniformly throughout a give phase.  The species generation in 
a homogeneous reaction is analogous to internal source of heat generation. In contrast, A heterogeneous reaction 
takes place in a restricted region or within the boundary of a phase. It can therefore be treated as a boundary 
condition similar to the constant heat flux condition in heat transfer. So the study of heat and mass transfer with 
chemical reaction is of great practical importance to engineers and scientists because of its almost universal 
occurrence in many branches of science and engineering. The chemical reactive species in a laminar boundary layer 
flow over a flat plate was demonstrated by Chambre and Young [18]. The effect of transfer of chemically reactive 
species in the laminar flow over a stretching sheet explained by Andersson et al. [19]. Afify  [20] explicated the 
MHD free convective flow of viscous incompressible fluid and mass transfer over a stretching sheet with chemical 
reaction. Liu [21] studied the momentum, heat and mass transfer of a hydromagnetic flow past a stretching sheet in 
the presence of uniform transverse magnetic field. Sudhakar Reddy et al. [22], Raja sekhar et al. [23], Kishan and 
Srinivas [24], Anjalidevi and David [25] and Kishan and Deepa [26] investigated the effects of various parameters 
on fluid flow quantities. 
 
However the interaction of chemical reaction and radiation effects of an electrically conducting and diffusing fluid 
past a stretching surface has received little attention. Hence an attempt is made to investigate the radiation effects on 
a steady free convection flow near an isothermal vertical stretching sheet in the presence of a magnetic field, heat 
generation/absorption, viscous dissipation and chemical reaction. The governing equations are transformed by using 
similarity transformation and the resultant dimensionless equations are solved numerically using the Runge-Kutta 
fourth order method with shooting technique. The effects of various governing parameters on the velocity, 
temperature, concentration, skin-friction coefficient, Nusselt number and Sherwood number are shown in figures 
and tables and analyzed in detail. 
 
Mathematical Analysis 
A steady two-dimensional free convection flow of a viscous incompressible, electrically conducting, radiating and 
dissipating fluid adjacent to a vertical sheet with mass transfer and heat generation is considered. The flow is 
assumed to be in the direction of x′ -axis, taken along the vertical plate and the y′ - axis normal to the plate. Two 

equal and opposite forces are introduced along the x′ -axis (see Figure A), so that the sheet is stretched keeping the 

origin fixed. The plate is maintained at a constant temperaturewT ′ , which is higher than the constant temperature 

T∞
′  of the surrounding fluid and a constant concentration wC ′ , which is greater than the constant concentration C∞

′
of the surrounding fluid. A uniform magnetic field is applied in the direction perpendicular to the plate.  
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Figure A. Sketch of the physical model. 

 
The fluid is assumed to be slightly conducting, and hence the magnetic field is negligible in comparison with the 
applied magnetic field. It is further assumed that there is no applied voltage, so that electric field is absent. The fluid 
is considered to be a gray, absorbing emitting radiation but non-scattering medium and the Rosseland approximation 
is used to describe the radiative heat flux in the energy equation. It is also assumed that all the fluid properties are 
constant except that of the influence of the density variation with temperature and concentration in the body force 
term (Boussinesq’s approximation). Then, under the above assumptions, the governing boundary layer equations are 
 
Continuity equation:                   
 

0
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x y
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                                                                                                                              (1) 
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Energy equation: 
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Species equation: 
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                                                       (4) 

 
The boundary conditions for the velocity, temperature and concentration fields are 
 

u cx= ,  0v = ,  wT T=  ,  wC C=   at   y = 0 

,u u∞→   T T∞→   , C C∞→           as y → ∞                                                 (5) 

where 0c > , and u∞  is the free stream velocity. 

 
By using the Rosseland approximation [27], we have 
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                                                                                                                                           (6) 

 
By using (6), the energy equation (3) becomes 
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In order to write the governing equations and the boundary conditions in dimensionless form, the following non-
dimensional quantities are introduced. 
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In view of the equation (8), the equations (1), (2), (4) and (7) reduce to the following non-dimensional form (with 
dropping the bars) 
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The corresponding boundary conditions are 
 
u x= ,   0v =  ,   1θ =  ,   1φ =          at   y = 0 

1u =  ,    0θ =  ,    0φ =   as  y → ∞                                              (13) 

 

Introducing a dimensionless stream function ψ defined in the usual way  
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                                                                                           (14) 

 
the continuity equation (9) is identically satisfied and the momentum equation (10),  energy equation (11)  and 
concentration equation (12)  becomes 
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and the boundary conditions (13) become 
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Introducing  
 

( , ) ( ) ( )x y f y xg yψ = + ,                                                                                                                     (19) 

 

in equations (15), (16) and (17) and equating coefficient of 0x  and 1x ,  we obtain the coupled non-linear ordinary 
differential equations 
f f g gf Mf Gr Gcθ φ′′′ ′ ′ ′′ ′= − + − −                                                                 (20) 

2( )g g gg Mg′′′ ′ ′′ ′= − +                                                                                                                        (21) 
3 2 2 2(3 4(1 ) ) 3Pr 12 (1 ) 3 Pr 3 Pr 0F r Fg r r F Q F Ecfθ θ θ θ θ θ′′ ′ ′ ′′+ + + + + + + =                                      (22) 

0rScg K Scφ φ φ′′ ′+ − =                                                (23) 

 
where a prime denotes differentiation with respect to y . 

In view of (19), the boundary conditions (18) reduce to 
 

0f =  ,  0f ′ =  , 0g =  , 1g′ =  ,  1θ =  ,  1φ =     at    y = 0 

1f ′ →   ,  0g′ →  ,  0θ →  ,  0φ →   as  y → ∞                                           (24) 

 
The physical quantities which are of importance for this type problem are the skin friction coefficient, the Nusselt 
number and Sherwood number, which are defined by 
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Using (19), the quantities in  (26) can be expressed as 
 

0

[ (0) (0)]w

y

u
cR cR f xg

y
τ µ µ

=

 ∂ ′′ ′′= = + ∂ 
    , 

(0)
cR

Nu
u

θ
∞

′= ,  (0)
cR

Sh
u

φ
∞

′= .                                          (28) 

 
 Solution of the Problem 
The shooting method for linear equations is based on replacing the boundary value problem by two initial value 
problems and the solutions of the boundary value problem is a linear combination between the solutions of the two 
initial value problems. The shooting method for the non-linear boundary value problem is similar to the linear case, 
except that the solution of the non-linear problem cannot be simply expressed as a linear combination of the 
solutions of the two initial value problems. Instead, we need to use a sequence of suitable initial values for the 
derivatives such that the tolerance at the end point of the range is very small. This sequence of initial values is given 
by the secant method, and we use the fourth order Runge-Kutta method to solve the initial value problems. 
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Following Rosenhead [28] and Carnahan et al [29] , the value of y at infinity is fixed at 4. The full equations (20) - 
(23) with the boundary conditions (24) were solved numerically using Runge-Kutta method algorithm with a 
systematic guessing (0), (0), (0) (0)f g h θ′′ ′′ ′ ′  and (0)φ ′  by the shooting technique until the boundary conditions 

at infinity ( )f y′  decay exponentially to one, also ( ), ( ), ( )g y h y yθ′  and ( )yφ  to zero. The functions 

, ,f g h′ ′ −  θ  and  φ  are shown in Figures. 

 
RESULTS AND DISCUSSION 

 
As a result of the numerical calculations, the dimensionless velocity, temperature and concentration distributions for 
the flow under consideration are obtained and their behavior have been discussed for variations in the governing 
parameters viz., the thermal Grashof number Gr, solutal Grashof number Gc, magnetic field parameter M, Radiation 
parameter F, the parameter of relative difference between the temperature of the sheet and temperature far away 
from the sheet r, Prandtl number Pr, Eckert number Ec, heat generation parameter Q and Schmidt number Sc. In the 
present study, the following default parametric values are adopted. Gr = 2.0, Gc = 2.0, M = 0.5, Pr = 0.71,F = 1.0, r 

= 0.05, Q = 0.1, rK  = 0.5, Sc = 0.6, Ec=0.01. All graphs therefore correspond to these unless specifically indicated 

on the appropriate graph. 
 
In order to ascertain the accuracy of our numerical results, the present study is compared with the previous study. 
The velocity and temperature profiles are compared with available theoretical solution of Ghaly and Elbarbary 
(Ghaly and Elbarbary 2001) Radiation effects on MHD free convection flow of a gas at a stretching surface with a 
uniform free stream in Fig (a) and Fig (b). It is observed that the present results are in good agreement with that of 
Ghaly and Elbarbary. 
 
Velocity components f ′  and g′  as well as the temperature θ  and concentration φ  distribution are presented in 

Figs.1 - 12 for various values of governing thermo physical parameters. 
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Fig.(b) comparison of the temperature with F 
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Fig.2(a) variation of the velocity component f ′  with M 
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Fig.2(b)  variation of temperature with M 
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Fig.3(a) variation of the velocity component f ′  with Pr Fig.3(b) variation of the temperature with Pr 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.0

0.5

1.0

1.5

2.0

ƒ ƒ ƒ ƒ ||||

y

F = 1.0,2.0,3.0,4.0

 

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

θθθθ

y

F = 1.0,2.0,3.0,4.0

 

Fig.4(a) variation of the velocity component f ′  with F Fig.4(b) variation of the temperature with Pr 
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Fig.6(a) variation of the velocity component f ′  with Q Fig.6(b) variation of the temperature with Q 
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Fig.7(a) variation of the velocity component f ′  with Ec Fig.7(b) variation of the temperature with Ec 
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Fig.8(a) variation of the velocity component f ′  with Sc Fig.8(b) variation of the concentration  with Sc 
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Fig.12 variation of the heat flux (0)θ ′  with F and M  

 
Fig.1(a). shows the variation of the dimensionless velocity component f ′  for several sets of values of thermal 

Grashof number Gr. As expected, it is observed that there is a rise in the velocity due to enhancement of thermal 
buoyancy force. Here, the positive values of Gr correspond to cooling of the plate. Also, as Gr increases, the peak 
values of the velocity increases rapidly near the plate and then decays smoothly to the free stream velocity. 
 
The variation of the dimensionless velocity component f ′  for several sets of values of solutal Grashof number Gc 

is depicted in Fig.1(b). As expected, the fluid velocity increases and the peak value is more distinctive due to 
increase in the species buoyancy force. The velocity distribution attains a distinctive maximum value in the vicinity 
of the plate and then decreases properly to approach the free stream value. 
 
For various values of the magnetic parameter M, the dimensionless velocity component f ′ is plotted in Fig.2(a). It 

can be seen that as M increases, the velocity decreases. As M increases, the Lorentz force, which opposes the flow, 
also increases and leads to enhanced deceleration of the flow. This result qualitatively agrees with the expectations, 
since the magnetic filed exerts a retarding force on the free convection flow. Fig.2(b). shows that the  dimensionless 
temperature profiles for different values of magnetic parameter M. It is observed that the temperature increases with 
an increase in the magnetic parameter M. 
 
Fig.3(a). illustrates the dimensionless velocity component f ′ for different values of the Prandtl number Pr. The 

numerical results show that the effect of increasing values of Prandtl number results in a decreasing velocity. From 
Fig.3(b), it is observed that an increase in the Prandtl number results a decrease of the thermal boundary layer 
thickness and in general lower average temperature with in the boundary layer. The reason is that smaller values of 
Pr are equivalent to increasing the thermal conductivities, and therefore heat is able to diffuse away from the heated 
plate more rapidly than for higher values of Pr. Hence in the case of smaller Prandtl numbers as the boundary layer 
is thicker and the rate of heat transfer is reduced. 
 
The effect of the Radiation parameter F on the dimensionless velocity component f ′  and dimensionless 

temperature are shown in Figs. 4(a) and 4(b) respectively. Fig.4 (a) shows that velocity component f ′  decreases 

with an increase in the radiation parameter F. From Fig.4(b) it is seen that the temperature decreases as the radiation 
parameter F increases. This result qualitatively agrees with expectations, since the effect of radiation is to decrease 
the rate of energy transport to the fluid, thereby decreasing the temperature of the fluid. 
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The influence of the parameter of relative difference between the temperature of the sheet and the temperature far 
away from the sheet r on dimensionless velocity f ′  and temperature profiles are plotted in Figs. 5(a) and 5(b) 

respectively. Fig.5(a) shows that dimensionless velocity f ′  increases with an increase in r. It is observed that the 

temperature increases with an increase in r (Fig.5 (b)). 
 
Figs. 6(a) and 6(b) depict the dimensionless velocity f ′ and temperature profiles for different values of the heat 

generation parameter Q. It is noticed that an increase in the heat generation parameter Q results in an increase in the 
dimensionless velocity f ′  and temperature with in the boundary layer. 

 
The effect of the viscous dissipation parameter i.e., the Eckert number Ec on the dimensionless velocity component 
f ′  and temperature are shown in Figs. 7(a) and 7(b) respectively. The positive Eckert number implies cooling of 

the plate i.e., loss of heat from the plate to the fluid. Hence, greater viscous dissipative heat causes a rise in the 
temperature as well as the velocity, which is evident from Figs. 7(a) and 7(b). 
 
The influence of the Schmidt number Sc on the dimensionless velocity f ′  and concentration profiles are plotted in 

Figs. 8(a) and 8(b) respectively. As the Schmidt number increases the concentration decreases. This causes the 
concentration buoyancy effects to decrease yielding a reduction in the fluid velocity. The reductions in the velocity 
and concentration profiles are accompanied by simultaneous reductions in the velocity and concentration boundary 
layers. These behaviors are clear from Figs. 8(a) and 8(b).  The effects of the chemical reaction parameter Kr on 
dimensionless velocity component f ′  and concentration profiles are plotted in Figs. 9(a) and Fig. 9(b). As the 

chemical reaction parameter number increases the concentration and velocity profiles are decreases. These behaviors 
are clear from Figs. 9(b) and 9(a). 
 
Fig. 10 describes the behavior of the dimensionless velocity component g′  with changes in the values of the 

magnetic field parameter M. It is seen, as expected, that velocity component g′  decreases with an increase in the 

magnetic field parameter M. 
 
Figs.(11) and (12) describe the behavior of  f ′′ (0) and the heat flux θ ′ (0) with changes in the values of the flow 

parameters F and M. we observe that the effect of increasing M is the decrease in the wall temperature gradient θ ′
(0)  and f ′′ (0). On the other hand, the magnitude of θ ′ (0) increases while that of f ′′ (0) decreases as F increases. 

 
Finally, in order to verify the proper treatment of the present problem, we will compare the obtained numerical 
solution with the exact values of  (0)g′′ . The exact solution of (21) (( )g y v= − ) is given by  

 

1
( ) (1 )

1
M yg y e

M
− += −

+
                                                                                                                               (29) 

 
In the following table, the given numbers between brackets refer to the exact values and the given numbers without 
brackets refer to the approximated values. Vajravelu and Hadjinicolaou (Vajravelu and Hadjinicolaou 1997) 
convective heat transfer in an electrically conducting fluid at stretching surface with uniform free stream, have 
obtained   for       (0)g′′  ( M = 0.01) the value -1.0025, while our result is -1.005 and the exact value is -1.00499. 

Therefore, the present results are in satisfactory agreement with the exact values. 
 

F Gr M Pr (0)g′′  

1.0 
1.0 
2.0 

0.5 
0.5 
0.5 

0.1 
0.01 
0.1 

0.72 
0.72 
0.72 

-1.04881 (-1.04881) 
-1.005    (-1.00499) 
-1.04881  (-1.04881) 

 
Table 1 Variation of  f ′′ , g′′ , θ ′ ,φ′  at the plate with Gr, Gc, M for Pr = 0.71,  F = 1.0, r = 0.05, Q = 0.1, Ec = 0.01, Sc = 0.6 ,Kr = 0.5. 

 
Gr Gc M (0)f ′′  (0)g′′  (0)θ ′  (0)φ ′  

2.0 
3.0 
2.0 

2.0 
2.0 
3.0 

0.5 
0.5 
0.5 

3.10574 
3.99741 
3.71935 

-1.22491 
-1.22491 
-1.22491 

-0.22901 
-0.222828 
-0.225685 

-0.691255 
-0.691255 
-0.691255 
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2.0 2.0 1.0 2.61222 -1.41424 -0.222342  -0.680714 

Table 2 Variation of f ′′ , g′′ ,θ ′ ,φ′  at the plate with Pr, F, Q, Ec, Sc for  Gr = 2.0 , Gc = 2.0, M = 0.5 

 

Pr F Q Ec Sc Kr (0)f ′′  (0)g′′  (0)θ ′  (0)φ ′  

0.71 
1.0 
0.71 
0.71 
0.71 
0.71 
0.71 

1.0 
1.0 
2.0 
1.0 
1.0 
1.0 
1.0 

0.1 
0.1 
0.1 
0.15 
0.1 
0.1 
0.1 

0.01 
0.01 
0.01 
0.01 
0.05 
0.01 
0.01 

0.6 
0.6 
0.6 
0.6 
0.6 
0.78 
0.6 

0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
1.0 

3.10574 
3.04696 
3.04058 
3.14024 
3.12343 
3.00728 
2.96197 

-1.22491 
-1.22491 
-1.22491 
-1.22491 
-1.22491 
-1.22491 
-1.22491 

-0.22901 
-0.251104 
-0.255139 
-0.204972 
-0.193933 
-0.229774 
-0.230082 

-0.691255 
-0.691255 
-0.691255 
-0.691255 
-0.691255 
-0.797555 
-0.889375 

 
The effect of various parameters on the functions , ,f g θ′′ ′′ ′  and φ′  at the plate surface is tabulated in Tables 1 and 

2 for r = 0.05. It is observed that the magnitude of the wall temperature gradient increases as Prandtl number Pr or 
radiation parameter F increases, while it decreases as the magnetic parameter M or the heat source/sink parameter Q 
or the Eckert number Ec increases. The magnitude of the wall concentration gradient decreases as the magnetic field 
parameter M increases, while it increases with  an increase in the Schmidt number Sc and chemical reaction 
parameter Kr. Furthermore, the negative values of the wall temperature and concentration gradients, for all values of 
the dimensionless parameters, are indicative of the physical fact that the heat flows from the sheet surface to the 
ambient fluid. 
 

CONCLUSION 
 

 The problem of steady, hydromagnetic, mass transfer, laminar, free convection boundary layer flow along a 
stretching surface in the presence of thermal radiation, heat generation and viscous dissipation was investigated. A 
similarity transformation was employed to change the governing partial differential equations into ordinary ones. 
These equations were solved numerically by fourth order Runge-Kutta method. A wide selection of numerical 
results have been presented giving the evolution of the velocity, temperature and concentration as well as skin 
friction coefficient, heat transfer rate and mass transfer rate. The following points are concluded 
 
1. An increase in the radiation parameter leads to decreases in both velocity ad temperatures. This result 
qualitatively aggresses with expectation, since the effect of radiation is to decrease the rate of energy transport to the 
fluid, thereby decreasing the temperature of the fluid. 
2. An increase in the values of heat generation parameter leads to an increase in both velocity and temperature. 
3. An increase in the viscous dissipation leads to an increase in both velocity and temperature. 
4. We observe that the effect of increasing M is the decrease in the wall temperature gradient (0)θ ′  and (0)f ′′ . 

5. We observe that the magnitude of (0)θ ′  increases and (0)f ′′ decreases as radiation parameter increases. 

6. We observe that the magnitude of the wall concentration gradient decreses as magnetic fluid parameter M 
increases while it increases with an increase in the Schmidt number Sc and chemical reaction parameter Kr. 
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