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ABSTRACT

The present paper prescribes upper bounds for oscillatory motions of neutral or growing amplitude in rotatory
thermohaline configurations of Veronis and Stern types in porous medium(Darcy-Brinkman model) in such a way
that also result in sufficient conditions of stability for an initially bottom-heavy as well as initially top-heavy
configuration.
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INTRODUCTION

The hydrodynamic instability that manifests undepprapriate conditions in a static horizontal idltia
homogeneous viscous and Boussinesq liquid layefioite horizontal extension and finite verticamth which is
kept under the simultaneous action of a uniformtie@r temperature gradient and a gravitationalppasite
uniform vertical concentration gradient in the fordield of gravity is known as thermohaline instipi

Thermohaline instability problem has been extergiuevestigated in the recent past on account ®frteresting
complexities as a double diffusive phenomenon (hedtsalt) as well as its direct relevance in mamplems of
practical interest in the fields of oceanographstra@hysics, limnology and chemical engineering Etr a broad
view of the subject one may be referred to Turti¢ahd Brandt and Fernando [2]. Two fundamentafigorations
have been studied in the context of thermohalimevection problem, one by Veronis [3], wherein tmperature
gradient is destabilizing and the concentrationdignat is stabilizing and another by Stern [4] wilweréhe
temperature gradient is stabilizing and the comatioh gradient is destabilizing. The main resul&sived by
Veronis and Stern for their respective problems that instability might occur in the configuratidirough a
stationary pattern of motions or oscillatory mosoprovided the destabilizing temperature gradientthe
concentration gradient is sufficiently large butnguatible with the conditions that the total densiigid is

gravitationally stable. Thus thermohaline confidimas of the Veronis and the Stern type can besiflad into the
following two classes:

1. The first class, in which thermohaline instabilmanifests itself when the total density fieldingially bottom
heavy, and

2. The second class, in which thermohaline instghihanifests itself when the total density fieklinitially top
heavy.

Banerjee et al. [5] derived a characterization teeofor thermohaline convection of the Veronis typat disallow
the existence of oscillatory motions of neutralgoowing amplitude in an initially bottom heavy capfration for
the certain parameter regime.

The problem of thermohaline instability in porougdia has attracted considerable interest duringotst few
decades because of its wide range of applicatinalsiding the ground water contamination, dispodaivaste
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material, food processing, prediction of groundevahovement in aquifers, the energy extraction ggedrom the
geothermal reservoirs, assessing the effectivenédibrous insulations etc.((Nield and Bejan [6{Btraughan
[7])).The thermohaline instability problem in posouedia has been extensively investigated and rtheimg
volume of work devoted to this area is well docutedrby Nield and Bezan [6] and Vafai [8]. Prakasd &inod
[9] have proved the nonexistence of nonoscillatomgtions in thermohaline convection of Stern typeporous
medium. In the early researches most of the releestave studied double diffusive convection irope medium
by considering the Darcy flow model which is relevdo densely packed, low permeability porous mediu
However, experiments conducted with several contlaing of solids and fluids covering wide rangegoterning
parameters indicate that most of the experimerdtd do not agree with the theoretical predictioased on the
Darcy flow model. Hence, non-Darcy effects on deutliffusive convection in porous media have reatiaggreat
deal of attention in recent years. Poulikakos H#8 used the Brinkman extended Darcy flow modetHferproblem
to investigate the linear stability analysis. ReenGivler and Altobelli [11] have demonstratedathfor high
permeability porous media the effective viscosityabout ten times the fluid viscosity. Therefole effect of
viscosities on the stability analysis is of praatimterest. Thus in the present paper the Brinkewtanded Darcy
model has been used to investigate the thermohadimeection in porous medium.

The work of Banerjee et al. [5] have been extertdadtatory thermohaline instability problem in @rpus medium
by Prakash and Gupta [12] in the form of charazt#ion theorems for rotatory thermohaline convectdVeronis

type and Stern type that disapprove the existefi@esallatory motions of growing amplitude in iratly bottom-

heavy configurations of the two types respectivatygl left open the possibility for the derivationtbé analogous
theorems for an initially top-heavy configuratiohtbbe Veronis type and an initially top-heavy caniiation of the
Stern type.

Moreover, when compliment of the sufficient congliticontained in the characterization theorems ak&sh and
Gupta [12] holds good, oscillatory motions of grogriamplitude can exist, and thus it is importandé¢ave bounds
for the complex growth rate of such motions whethbihe boundaries are not dynamically free, so &aict
solutions in the closed form are not obtained. Tpwesent communication, which prescribes upper éedior the
oscillatory motions of neutral or growing amplitugterotatory thermohaline configurations of Veroaisd Stern
types in porous medium in such a manner that asaolts in sufficient conditions for stability fon anitially top

heavy or initially bottom configuration, may be aeded as a further step in this scheme of extemlestigations.

1 Mathematical formulation and analysis

An infinite horizontal porous layer filled with aiscous fluid is statically confined between two ikhontal
boundariex = 0 andz = d maintained at constant temperatufgsandT, and solute concentratiofig andS; at
the lower and upper boundaries respectively, wiigrec Ty andS; < S, (as shown in Fig.1). The layer is rotating
about its vertical axis with constant angular vi#§o@. It is further assumed that the saturating flund the porous
layer are incompressible and that the porous medsuenconstant porosity medium. Darcy-Brinkman nddes
been used to investigate the present problem. Hestotigin be taken on the lower boundary 0 with z-axis
perpendicular to it.
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Fig.1 Physical Configuration

The governing hydrodynamic equations in the nonedisional form are given by (Prakash and Gupta {12])

A®? — a?)w — (24 D7) (D* — a®)w = Ra?6 — Ry +T, 2D, )

(D? —a? — EcP)O = —w, 2

(- Ee) g, ®
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(A@? = a®) =2 = D57 ¢ = =1,"2Dw, @

with boundary condition
w=0=6=Dw=_=0 atz =0 and z =1 (both boundaries are rigid) (5)

Theorem 1:- If (o,w,0,9,0),(c =0, +i0;),0, = 0,0; # 0 is a non-trivial solution of equations (1)-(4)g&ther
with boundary condition (5) am®l> 0,R; > 0 and T, = 0, then

ARg 2
lof < EPp(4m2(A+8)+Dg1) Q L,
yl .
where Q = Rs —, 6= mln(;,,A) and 1 =2
(Bt (a+d)+an2Dgt) €E'P, Rs

Proof: Multiply equation (1) by wthroughout, integrating the resulting equation overtical range of z and
utilizing equations (2)-(4), we get
1 «rp2 252 o -1\ (1,,*(p2 2
A [y w'(D? = a?) Wdz—(z-i-Da )fow (D?-a®>)wdz +
Ra? [} 0(D? — a* — ER,0")0" dz — Rya®t [ ¢ (D? —a? = E25) ¢*dz - [, { (A(D? = a?) = Z = D; 1) ¢"dz =

T

0. (6)
Integrate various terms of equation (6) for an apgate number of times and using boundary comikti®), we get
A f3(UD?w? + 2a2|Dwl? + a*|wl?) dz + (2 + D;*) f, (IDwI? + a?|w|?) dz — Ra? [;(ID6I? + a?|6|? )dz +
Rsa?t [ (ID9|? + a®|¢|2)dz — Ra*Ea*P, [,16|? dz + Ra*E'a*P. [0 dz + A [, (IDC|? + a?[¢|?) dz + ("— +

— 1
D) f}1¢1%dz = o. ()

Equating real and imaginary part of (7) equal tmzend cancellings;(# 0) throughout from imaginary part, we
have

A f3(UD*w? + 2a2|Dwl? + a*|wl?) dz + (% + D;*) [ (IDwI? + a*|w[?) dz — Ra? [;(ID6I? + a?|6|? )dz
Ra’EP,a, [,1617dz + Rya?t [, (IDI? + a%(0|2)dz + Rsa®E'P.a, [[10]% dz + A [ (IDZ|? + a?(¢|?) dz + ("— +

;") [171dz = 0 ®)
and

1,1 1 ool 101

Zfo (IDw|? + a®|w|?) dz + Ra*EP, [, 16|* dz — Rsa*E'P, [, 1¢|* dz — Zfo ||?dz = 0. (9)

Multiplying equation (9) by, and adding resulting equation to equation (8),geke
A J3(D?*w? + 202 |Dw? + a*|wl?) dz + (22 + Dg*) [ (IDw? + a?|wl?) dz —
Ra? [ (IDI? + a?|6]? Ydz+Rsa’t [, (IDYI? + a?[9|*)dz + A [ (IDS|? + a?[¢|?) dz + Dz [,1¢|?dz = 0. (10)

Also, sincew, 0, ¢,¢ vanish atz = 0 and z = 1, the Rayleigh-Ritz inequality (Schultz [13]) gives

1 1
J, IDw|?dz = n? [ |w|?*dz , (11)
J,1D61?dz > 2 [16]2 dz, (12)
J,ID|?dz = 72 [ 10| dz, (13)
J,ID¢|2dz =2 [||? dz, (14)

Furthermore, utilizing the Schwartz inequality, have

1 1
(follwlzdz)2 (follDzwIzdz)2 > |—f01W*D2WdZ| = folllede > m? follwlzdz.

Consequentlyf01|D2w|2dz >t f01|w|2dz, (15)
and thus
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1D = a®)w|2dz = [} (ID*w|? + 2a2|Dw|? + a*|w|? )dz > (n? + a?)? [} |w|?dz. (16)
Further,
follwlzdz = folww*dz = fol(D2 —a%?—EoP)O(D? —a?—Ec*P.)0* dz

= [}1(D? —a*)8|?dz + 2EP.0, [, (ID|? + a|68|2)dz + E2|o|?,2 [ 1617dz. (17)

Sincec, = 0, it follows from inequality (17) that

J,Iwl?dz > [}|(D? —a*)8|%dz + E?|o|?B2 [16]? dz (18)
and
[ 1wl?dz > [|(D? —a*)8|?dz. (19)
Also, emulating the derivation of inequality (18)¢ have
J,1(D? — a?)0|%dz = [ (ID?6]? + 2a%[D6I? + a*[0]? )dz > (w2 + a?)? [[6]?dz. (20)
Combining inequality (18) and (20), we obtain
JyIwl?dz > {(n? + a*)? + E?|o|*R.?} []16]? dz. (21)
Further,

1 1

JyIwizdz = ([ wl2dz)” (1 Iwi2dz)?
1 1 1
> {(n? + a2)? + E2|o1?R2): (1612 dz)* (f;1(D? - a2)0]%dz)?
1

2 2 EXoPPr\Z | (1laeinz L2 . . .
>(m*+a?)i1+ a7 J, 87(D* —a*)6dz| (Using Schwartz inequality)
1
E%|o|?Pr*\2 (1
£n? + a?) {1 + (H;:az)z} [1(D6 + 2%(01%)dz. (22)

Using inequalities (11),(13),(14),(16),(22) in etjoa (10) and utilizing the fact, > 0,we have
{A(@? +a®)? + (n® +a®)D; "} [ Iwl?dz + Rea?t(n? + a2) [[|0/2dz + {A(x? + a®) + D'} [ 1¢1?dz <

1
2 2 2p 2V 5
{1+ [ wlPdz. (23)

(n2+a2) (n2+a2)2

Equation (9) upon using inequality (11) implies

7[2 az
Roa? [J1017 dz > 22 [lwi2dz - —— [1¢12dz, (24)
and
[ 1¢17dz > (w2 + a?) [ |w|? dz — Rsa®E P.e [ || dz. (25)
Inequality (23) coupled with each of inequality 24d (25) yield the following inequalities
T _ 1 _ n%+a?)t 1 Ra?
{2 + a2 (A + o) + @ + 29D} [JIwldz + {2 + a)A + D7t = 0 [ligj2dz < S {1+
1
E2|o|2P2) 2 1
) oz (26)
and

TEZ 2 T
2{A(? +a?)? + (@ + a?)Dg "} f wl2dz + Roa?eE B[S0 — (w2 +a2)A + D31} [1912 dz <

2
Ra? {1 " E?|o|?Py } 2 follwlzdz- 27)

(n%2+a2) (n2+a2)2

Now if § = min(j,A),then depending on the value®éxactly one of the inequalities (26)-(27) will ilpghat

1
(% + a2 (A + 8) + (12 +a?)Dg"} [ Iwltdz < 2o {1 4 212 2y, (28)

(n2+a2) (n2+a2)2
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2 25\2 2 253 4 2
Since the minimum value o(-fz:Ta) is 4n° (for & =) and the minimum value é’-f;;) is 274” (for & :%
),therefore it follows from inequality (28) that
2 2p 2 1
27 4 2pn-1 E%|o|"Pr7Y2 _
{Erta+ 8) + 42D {1+ (HZHZ)Z} <R =R, (29)

Inequality (29) implies that

o < &) JoF —1, (30)

AR
27 a4 2p-1
o (A+8)+4m?Dg )

where Q = (

Further it follows from inequality (28) that
2 2y2
(n? + a?) {% (A+ 6+ D,;l} <R =R, (31)

Since the minimum value 0912:# is 4n® (for & = n°), therefore it follows from inequality (31) that

2 2 ARS
(n® +a%) < {4an? (A+ &)+D71} " 32)

Combining inequalities (30) and (32), we get

ARg Qz —_ 1‘

o] < EPp(4m2(A+8)+Dz1)

which complete the proof of the theorem

Theorem 1, from the physical point of view of hydyoamic stability theory, may be stated as: thepgermgrowth
rate o = o, + io; of an arbitrary oscillatory perturbatiofw; # 0) of neutral or growing amplitudés, > 0) in
rotatory thermohaline convection in porous medidrveronis’ type lies inside a semicircle in thehidhalf of the

. .. . ARg 2 _
o,0;-plane whose center is at the origin and radius 4 (o ooT) VvQ© —1.

This result is uniformly valid for an initially topreavy (A > 1) as well as an initially bottom heavyl < 1)
configuration.

Coroallary 1: If (o,w,0,¢,h,),0 = 0, + i0;,0; # 0 is a non trivial solution of equations (1) to (#gether with
boundary condition (5) and R>®,> 0,T, > 0 and

¥n4(A+ 8)+4m?pg?t

A< then g, < 0.

S

Proof: Follows from Theorem 1

Corollary 1 implies that oscillatory motions of gfimg amplitude are not allowed in rotatory thermlote

convection in porous medium of Veronis’' type if thetial stability parametert does not exceed the value

2704 (A+ 8)+4n?Dgt . . . . "

w . Further this result is uniformly valid for anitially top heavy(1 > 1) as well as an initially
S

bottom heavy(1 < 1) configuration.

Remarks: The following remarks, now deserve attention

1L fO<R<R< 24—7714(A + 8) +4n2D;* ando; # 0 even then Corollary 1 implies that < 0 . This result is
the characterization theorem of Prakash and G2 \hich we see is built into our characterizat@orollary 1.
2. If 0<R< 24—7714(A + 8) +4n2D; < R, ando; # 0, even then Corollary 1 implies that < 0, a new result
that obviously cannot be averred from charactaamaheorem of Prakash and Gupta [12].

Theorem 2: If (o,w,0,d,h,),0 =0, +i0;,0, = 0,0; # 0 is a non-trivial solution of equations (1)-(4)gather
with boundary condition (5) anfl < 0,R; < 0, T, > 0 then

X IR| Qz 1
E'P(4m2(A+8)+DZ1) N

lo] <
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X IR|
1{24—77T4(A+ 3)+411:2D(;1}

6= min(j,A) and 1 ==&l

where Q = =
IR|

Proof: Replace R with 4R| and Ry with — |R,| in equation (1) and adopting a similar procediged in proving
Theorem 1, we obtain the desired result.

Coroallary 2: If (o,w,0,¢,h,),0 = g, + ig;, 0; # 0 is a non trivial solution of equations (1) to (Bhgether with the

27 4 = 2p-1

‘L'{TTL' (A+8)+4m?Dg }
IR

boundary condition (5) and R, < 0, T, > 0 and1 < then g, < 0.

Proof: Follows from theorem 2

Corollary 2 implies that oscillatory motions of gfimg amplitude are not allowed in rotatory thermote

convection in porous medium of Stern type if thdtiah stability parameterd does not exceed the value

1{24—7114 (A+8)+4m? Dgl}
IR

bottom heavy(A < 1) configuration. We also have

. Further this result is uniformly valid for anitially top heavy(1 > 1) as well as an initially

3. If 0<|Rg|] <|R| < r{%n‘*(A +8)+ 4n2D;1} ando; # 0 theno, <0 , a more general result than that
following from theorem 2 of Prakash and Gupta [fiR]the present problem.

4. 1f0 < |Rg| < T{%n”‘(A +6)+ 4n2D;1} < |R| ando; # 0, theno, < 0, a new result that obviously cannot be
averred from characterization theorem 2 of PralkashGupta [12].
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