
Available online at www.pelagiaresearchlibrary.com 
 

 
 

   
Pelagia Research Library 

 
Advances in Applied Science Research, 2015, 6(6):153-158    

 
 

  
   

ISSN: 0976-8610  
CODEN (USA): AASRFC 

 

153 
Pelagia Research Library 

Characterization of rotatory thermohaline instability in porous medium: 
Darcy Brinkman Model 

 
Jyoti Prakash and Kanu Vaid 

 

Department of Mathematics and Statistics, Himachal Pradesh University, Summer Hill, Shimla, India 
_____________________________________________________________________________________________ 

 
ABSTRACT 
 
The present paper prescribes upper bounds for oscillatory motions of  neutral or growing  amplitude in rotatory 
thermohaline configurations of Veronis and Stern types in porous medium(Darcy-Brinkman model) in such a way 
that also result in sufficient conditions of stability for an initially bottom-heavy as well as initially top-heavy 
configuration. 
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INTRODUCTION 
 

The hydrodynamic instability that manifests under appropriate conditions in a static horizontal initially 
homogeneous viscous and Boussinesq liquid layer of infinite horizontal extension and finite vertical depth  which is 
kept under the simultaneous action of a uniform vertical temperature gradient and a  gravitationally opposite 
uniform vertical concentration gradient in the force field of gravity is known as thermohaline instability. 
Thermohaline instability problem has been extensively investigated in the recent past on account of its interesting 
complexities as a double diffusive phenomenon (heat and salt) as well as its direct relevance in many problems of 
practical interest in the fields of oceanography, astrophysics, limnology and chemical engineering etc. For a broad 
view of the subject one may be referred to Turner [1] and Brandt and Fernando [2]. Two fundamental configurations 
have been studied in the context of thermohaline convection problem, one by Veronis [3], wherein the temperature 
gradient is destabilizing and the concentration gradient is stabilizing and another by Stern [4] wherein the 
temperature gradient is stabilizing and the concentration gradient is destabilizing. The main results derived by 
Veronis and Stern for their respective problems  are that instability might occur in the configuration through a 
stationary pattern of motions or oscillatory motions provided the destabilizing temperature gradient or the 
concentration gradient is sufficiently large but compatible with the conditions that the total density field is 
gravitationally stable. Thus thermohaline configurations of the Veronis and the Stern type can be classified into the 
following two classes: 
 
1. The first class, in which thermohaline instability manifests itself when the total density field is initially bottom 
heavy, and 
2. The second class, in which thermohaline instability manifests itself when the total density field is initially top 
heavy. 
 
Banerjee et al. [5] derived a characterization theorem for thermohaline convection of the Veronis type that disallow 
the existence of oscillatory motions of neutral or growing amplitude in an initially bottom heavy configuration for 
the certain parameter regime. 
 
The problem of thermohaline instability in porous media has attracted considerable interest during the past few 
decades because of its wide range of applications including the ground water contamination, disposal of waste 
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material, food processing, prediction of ground water movement in aquifers, the energy extraction process from the 
geothermal reservoirs, assessing the effectiveness of fibrous insulations etc.((Nield and Bejan [6]), (Straughan 
[7])).The thermohaline instability problem in porous media has been extensively investigated and the growing 
volume of work devoted to this area is well documented by Nield and Bezan [6] and Vafai [8]. Prakash and Vinod 
[9] have proved the nonexistence of nonoscillatory motions in thermohaline convection of Stern type in porous 
medium. In the early researches most of the researchers have studied double diffusive convection in porous medium 
by considering the Darcy flow model which is relevant to densely packed, low permeability porous medium. 
However, experiments conducted with several combinations of solids and fluids covering wide ranges of governing 
parameters indicate that most of the experimental data do not agree with the theoretical predictions based on the 
Darcy flow model. Hence, non-Darcy effects on double diffusive convection in porous media have received a great 
deal of attention in recent years. Poulikakos [10] has used the Brinkman extended Darcy flow model for the problem 
to investigate the linear stability analysis. Recently, Givler and Altobelli [11] have demonstrated that for high 
permeability porous media the effective viscosity is about ten times the fluid viscosity. Therefore, the effect of 
viscosities on the stability analysis is of practical interest. Thus in the present paper the Brinkman extended Darcy 
model has been used to investigate the thermohaline convection in porous medium. 
 
The work of Banerjee et al. [5] have been extended to rotatory thermohaline instability problem in a porous medium 
by Prakash and Gupta [12] in the form of characterization theorems for rotatory thermohaline convection of Veronis 
type and Stern type that disapprove the existence of oscillatory motions of growing amplitude in initially bottom-
heavy configurations of the two types respectively and left open the possibility for the derivation of the analogous 
theorems for an initially top-heavy configuration of the Veronis type and an initially top-heavy configuration of the 
Stern type. 
 
Moreover, when compliment of the sufficient condition contained in the characterization theorems of Prakash and 
Gupta [12] holds good, oscillatory motions of growing amplitude can exist, and thus it is important to derive bounds 
for the complex growth rate of such motions when both the boundaries are not dynamically free, so that exact 
solutions in the closed form are not obtained. Thus present communication, which prescribes upper bounds for the 
oscillatory motions of neutral or growing amplitude in rotatory thermohaline configurations of Veronis and Stern 
types in porous medium in such a manner that also results in sufficient conditions for stability for an initially top 
heavy or initially bottom configuration, may be regarded as a further step in this scheme of extended investigations. 
 
1 Mathematical formulation and analysis 
An infinite horizontal porous layer filled with a viscous fluid is statically confined between two horizontal 
boundaries �	 = 	0 and �	 = 	� maintained at constant temperatures �₀ and �₁	and solute concentrations 	₀ and 	₁ at 
the lower and upper boundaries respectively, where �₁	 < 	�₀	and 	₁	 < 		₀	(as shown in Fig.1). The layer is rotating 
about its vertical axis with constant angular velocity	����
.  It is further assumed that the saturating fluid and the porous 
layer are incompressible and that the porous medium is a constant porosity medium. Darcy-Brinkman model has 
been used to investigate the present problem. Let the origin be taken on the lower boundary � = 0 with z-axis 
perpendicular to it. 

 
Fig.1 Physical Configuration 

 
The governing hydrodynamic equations in the non dimensional form are given by (Prakash and Gupta [12]): 

 ���� − ����� − ��� + ��
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 ����� − ��� − �
� − ��

��� # = −��
� �" ��,                                                              (4) 

 
with boundary condition 
� = � = ϕ = �� = # = 0 at z = 0 and z =1 (both boundaries are rigid)                            (5) 
 
Theorem 1:- If �%, �, �, ϕ, #�, �% = %' + 3%4�, %' ≥ 0, %4 ≠ 0 is a non-trivial solution of equations (1)-(4), together 
with boundary condition (5)  and � > 0, � > 0	and		�� ≥ 0, then  
 

|%| < ;<=
(*+>?@A�ΛBδ�BCDEFG

HΩ� − 1 , 

 

where  Ω = ;<=
�AJK @K�ΛBδ�B?@ACDEF�

,    L = min� ,
∈(′*+

,Λ�	  and  P = <
<=

  

 
Proof: Multiply equation (1) by w* throughout, integrating the resulting equation over vertical range of z and 
utilizing equations (2)-(4), we get 
 

ΛQ �∗��� − �����	�� − ��� + ��
����

1 Q �∗��� − ����	��		 +�
1

	��� Q ���� − �� − $&'%∗��∗	�� − � ��S Q ϕ ��� − �� − (′�∗*+
, � ϕ∗dz − Q # �Λ��� − ��� − �∗

� − ��
��� #∗dz =�

1
�
1

�
1

0	.                                                                                                                           (6)                 
 
Integrate various terms of equation (6) for an appropriate number of times and using boundary conditions (5), we get 

ΛQ �|���|� + 2��|��|� + �?|�|��	�� + ��� + ��
����

1 Q �|��|� + ��|�|��	�� − 	��� Q �|��|� + ��|�|�	��� +�
1

�
1

� ��S Q �|Dϕ|� + a�|ϕ|��dz − ���$%∗&' Q |�|��
1 �� + � ��$′%∗&' Q |ϕ|��

1 dz + ΛQ �|D#|� + a�|#|���
1

�
1 �� +��

∗

� +
��

��� Q |#|�dz�
1 = 0.                            (7) 

 
Equating real and imaginary part of (7) equal to zero and cancelling %4�≠ 0� throughout from imaginary part, we 
have  

ΛQ �|���|� + 2��|��|� + �?|�|��	�� + ��+� + ��
����

1 Q �|��|� + ��|�|��	�� − 	��� Q �|��|� + ��|�|�	��� −�
1

�
1

���$&'%' Q |�|����
1 + � ��S Q �|Dϕ|� + a�|ϕ|��dz + � ��$′&'%' Q |ϕ|��

1 dz + ΛQ �|D#|� + a�|#|���
1 dz +�

1 ��+� +
��

��� Q |#|�dz�
1 = 0                              (8) 

 
and 
�
� Q �|��|� + ��|�|��	�� + ���$&' Q |�|��

1 �� − � ��$′&' Q |ϕ|��
1 dz − �

ϵ
Q |#|�dz�
1 = 0.�

1       (9)    

 
Multiplying equation (9) by %' and adding resulting equation to equation (8),  we get  

ΛQ �|���|� + 2��|��|� + �?|�|��	�� + ���+� + ��
����

1 Q �|��|� + ��|�|��	�� −�
1

	��� Q �|��|� + ��|�|�	���+� ��S Q �|Dϕ|� + a�|ϕ|��dz +Λ Q �|D#|� + a�|#|���
1 dz +�

1
�
1 ��

�� Q |#|�dz�
1 = 0.  (10)                                                                                                                             

 
Also, since �, �, ϕ,# vanish at � = 0	�X�	� = 1, the Rayleigh-Ritz inequality (Schultz [13]) gives 

Q |Dw|�dz ≥�
1 Z� Q |w|��

1 �� ,                                                                             (11) 

Q |D�|�dz ≥�
1 Z� Q |�|��

1 ��,                                                                                     (12) 

Q |Dϕ|�dz ≥�
1 Z� Q |ϕ|��

1 ��,                                                                                                       (13) 

Q |D#|�dz ≥�
1 Z� Q |#|��

1 ��,                                                                                                       (14) 
 
Furthermore, utilizing the Schwartz inequality, we have 

�Q |w|�dz�
1 �

F
A �Q |D�w|�dz�

1 �
F
A ≥	 [−Q w∗D�w���

1 [ = Q |Dw|�dz ≥ Z��
1 Q |w|�dz�

1 . 

 

Consequently,	Q |D�w|�dz�
1 ≥ π? Q |w|�dz�

1 ,                                                                (15) 
and thus  
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Q |�D� − a���|�dz�
1 = Q �|D�w|� + 2a�|Dw|� + a?|w|�	�dz�

1 ≥ �Z� + ���� Q |w|�dz.�
1         (16)            

 
Further,  

Q |w|�dz�
1 = Q w	w∗dz�

1  = Q �D� − a� − $%&'���D� − a� − $%∗&'��∗�
1 dz 

																		= 	 Q |�D� − a���|�dz + 2$&'%'�
1 Q �|D�|� + a�|�|��dz�

1 + $�|%|�&'� Q |�|�dz.�
1     (17)               

 
Since σ\ ≥ 0, it follows from inequality (17) that 
 

Q |w|�dz ≥ 	Q |�D� − a���|�dz + $�|%|�&'� Q |�|��
1 dz�

1
�
1                                         (18) 

 
and  

 Q |w|�dz ≥ 	Q |�D� − a���|�dz.�
1

�
1                                                                                         (19) 

 
Also, emulating the derivation of inequality (15), we have 

Q |�D� − a���|�dz�
1 = Q �|D�θ|� + 2a�|Dθ|� + a?|θ|�	�dz�

1 	≥ �Z� + ���� Q |θ|�dz.�
1             (20) 

 
Combining inequality (18) and (20), we obtain   

Q |w|�dz ≥	�
1 ]�Z� + ���� + $�|%|�&'�^ Q |�|��

1 dz.                                               (21) 
 
Further, 

Q |w|�dz�
1 = �Q |w|�dz�

1 �
F
A �Q |w|�dz�

1 �
F
A  

      ≥ ]�Z� + ���� + $�|%|�&'�^
F
A �Q |�|��

1 dz�
F
A �Q |�D� − a��θ|�dz�

1 �
F
A                                                                 

       ≥ �Z� + ��� _1 + (A|�|A*+A
�πAB`A�A a

F
A [− Q θ

∗�D� − a��θdz�
1 [	 (Using Schwartz inequality) 

                   = �Z� + ��� _1 + (A|�|A*+A
�πAB`A�A a

F
A Q �|D�|� + a�|�|��dz.�

1                                         (22) 

 
Using inequalities (11),(13),(14),(16),(22) in equation (10) and utilizing the fact σ\ ≥ 0,we have 

bΛ�Z� + ���� + �π� + a����
��c Q |�|�dz�

1 + � ��S�π� + a�� Q |ϕ|�dz + bΛ�π� + a�� + ��
��c Q |#|�dz�

1 <�
1

<�A
�πAB`A� _1 + (A|�|A*+A

�πAB`A�A a
�F
A Q |�|�dz.�

1 		                                                               (23) 

 
Equation (9) upon using inequality (11) implies 

� �� Q |ϕ|��
1 dz > >πAB`AG

�(′*+
Q |�|�dz�
1 − �

ϵ(′*+
Q |#|�dz�
1 ,                                                               (24) 

 
and 

Q |#|�dz�
1 > �Z� + ��� Q |�|�	�� − � ��$′&'d Q |ϕ|��

1 dz�
1 .                                                      (25) 

 
Inequality (23) coupled with each of inequality (24) and (25) yield the following inequalities 

_�Z� + ���� �Λ + τ

�(′*+
� + �π� + a����

��a Q |�|�dz + _�π� + a��Λ + ��
�� − >πAB`AGτ

�(′*+
a Q |#|�dz�

1 < <�A
�πAB`A� _1 +�

1

(A|�|A*+A
�πAB`A�A a

�F
A Q |�|�dz�

1                             (26) 

 and 

2bΛ�Z� + ���� + �π� + a����
��c Q |�|�dz + � ��d$′&' e>π

AB`AGτ
�(′*+

− b�π� + a��Λ + ��
��cf Q |ϕ|��

1 	dz	 <�
1

<�A
�πAB`A� _1 + (A|�|A*+A

�πAB`A�A a
�F
A Q |�|�dz.�

1                                                              (27)  

 
Now if  L = min	� ,

∈(′*+
,Λ�,then depending on the value of L exactly one of the inequalities (26)-(27) will imply that  

b�Z� + �����Λ + 	L� + �π� + a����
��c Q |�|�dz	 < <�A

�πAB`A� _1 + (A|�|A*+A
�πAB`A�A a

�F
A Q |�|�dz.�

1
�
1      (28) 
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Since the minimum value of  
�πAB`A�A

`A  is 4π2 (for a2 = π2) and the minimum value of 
�πAB`A�g

`A  is 
�hπK
?  (for a2 = 

πA

�  

),therefore it follows from inequality (28) that 
 

_�h? Z?�Λ + 	L� + 4Z���
��a _1 + (A|�|A*+A

�πAB`A�A a
F
A < � = P� .                                                        (29) 

 
Inequality (29) implies that 

|%| < >πAB`AG
(*+

HΩ� − 1 ,                                                                                                            (30) 

 

where  Ω = ;<=
�AJK @K�ΛBδ�B?@ACDEF�

        

 
Further it follows from inequality (28) that 

�π� + a�� _�π
AB`A�A
`A �Λ + 	L� + ��

��a < � = P� .                                                                    (31) 

 

Since the minimum value of  
�πAB`A�A

`A  is 4π2 (for a2 = π2), therefore it follows from inequality (31) that  

�π� + a�� < ;<=
]	?πA	�ΛB	j�BCDEF^ .                                                                                                   (32) 

 
Combining inequalities (30) and (32), we get  

|%| < ;<=
(*+>?@A�ΛBδ�BCDEFG

HΩ� − 1,  
 
which complete the proof of the theorem 
 
Theorem 1, from the physical point of view of hydrodynamic stability theory, may be stated as: the complex growth 
rate % = %' + 3%4 of an arbitrary oscillatory perturbation �%4 ≠ 0� of neutral or growing amplitude �%' ≥ 0� in 
rotatory thermohaline convection in porous medium of Veronis’ type lies inside a semicircle in the right half of the 

%'%4-plane whose center is at the origin and radius equals 
;<=

(*+>?@A�ΛBδ�BCDEFG
HΩ� − 1.  

 
This result is uniformly valid for an initially top heavy �P > 1� as well as an initially bottom heavy �P < 1� 
configuration. 
 
Corollary 1: If �%, �, θ, ϕ, hl�, % = %' + 3%4 , %4 ≠ 0 is a non trivial solution of equations (1) to (4), together with 
boundary condition (5) and R>0,� > 0, �� > 0 and        
 

 P <
AJ
K @K�ΛB	j�B?@ACDEF	

<=
	  then  %' < 0. 

 
Proof: Follows from Theorem 1 
Corollary 1 implies that oscillatory motions of growing amplitude are not allowed in rotatory thermohaline 
convection in porous medium of Veronis’ type if the initial stability parameter P does not exceed the value 
AJ
K @K�ΛB	j�B?@ACDEF	

<=
 . Further this result is uniformly valid for an initially top heavy �P > 1� as well as an initially 

bottom heavy �P < 1� configuration.  
 
Remarks: The following remarks, now deserve attention 

1. If 0 < R ≤ Ro ≤ �h
? Z?�Λ + 	L� + 4Z���

�� and %4 ≠ 0  even then Corollary 1 implies that %' < 0 . This result is 

the characterization theorem of Prakash and Gupta [12], which we see is built into our characterization Corollary 1. 

2. If  0 < R ≤ �h
? Z?�Λ + 	L� + 4Z���

�� < �o and σp ≠ 0, even then Corollary 1  implies that σ\ < 0, a new result 

that obviously cannot be averred from characterization theorem of Prakash and Gupta [12]. 
 
Theorem 2: If  �%, �, �, ϕ, ℎs�, % = %' + 3%4 , %' ≥ 0, %4 ≠ 0 is a non-trivial solution of equations (1)-(4), together 
with boundary condition (5) and � < 0, � < 0	,	�� > 0 then   

|σ| 	< 			 λt	|u|
(′*+>?@A>ΛB	jv GBCDEFG

HΩv� − 1                    
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where   Ωv 	= 	 λt	|u|
,_AJK @K>ΛB	jvGB?@ACDEFa

 , L̅ = min	� �
�(*+

,Λ�		    and       P̅ 	= |ux|
|<|  

 
Proof: Replace R with – |R| and 	Ro	 with  −	|Ro	|  in equation (1) and adopting a similar procedure used in proving 
Theorem 1, we obtain the desired result. 
 
Corollary 2: If �%, �, θ, ϕ, hl�, % = %' + 3%4 , %4 ≠ 0 is a non trivial solution of equations (1) to (4), together with the 

boundary condition (5) and R<0,� < 0, �� > 0 and P̅ < ,_AJK @K>ΛB	jv GB?@ACDEFa	
|<| 	 then  %' < 0. 

 
Proof: Follows from theorem 2 
Corollary 2 implies that oscillatory motions of growing amplitude are not allowed in rotatory thermohaline 
convection in porous medium of Stern type if the initial stability parameter P does not exceed the value 
,_AJK @K>ΛB	jv GB?@ACDEFa	

|<|  . Further this result is uniformly valid for an initially top heavy �P > 1� as well as an initially 

bottom heavy �P < 1� configuration. We also have 
 

3. If 	0 < |Ro| ≤ |R| ≤ S _�h? Z?>Λ + 	LvG + 4Z���
��a and %4 ≠ 0  then %' < 0 , a more general result than that 

following from theorem 2 of Prakash and Gupta [12] for the present problem. 

4. If 	0 < |Ro| ≤ S _�h? Z?>Λ + 	LvG + 4Z���
��a < |�| and	σp ≠ 0, then	σ\ < 0, a new result that obviously cannot be 

averred from characterization theorem 2 of Prakash and Gupta [12]. 
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