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ABSTRACT

The thermal instability of a couple-stress fluid heated from below in a porous medium acted upon by uniform
vertical magnetic field and rotation is investigated. Following the linearized stability theory and normal mode
analysis, the paper mathematically established the conditions for characterizing the oscillatory motions which may
be neutral or unstable for rigid boundaries at the top and bottom of the fluid. It is established that all non-decaying
slow motions starting from rest, in a couple-stress fluid of infinite horizontal extension and finite vertical depth,
which is acted upon by uniform vertical magnetic field and rotation, and a constant vertical adverse temperature
gradient, are necessarily non-oscillatory intheregime

£ Qp27T2 + I:)lTA <1
m-1)) (@m°F-R)

where T, isthe Taylor number, Q isthe Chandrasekhar number, £ isthe porosity, B is the dimensionless medium

permeability of the porous medium and F is the couple-stress parameter. The result is important since it holds for
all wave numbers and the exact solutions of the problem investigated are not obtainable in closed form, when both
the boundaries are perfectly conducting and rigid.
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INTRODUCTION

Twentieth century has witnessed tremendous advaonethe technological front. A detailed accounttbé
theoretical and experimental study of the onsettt@rmal instability in Newtonian fluids, under varg

assumptions of hydrodynamics and hydromagnetics, bdegen given by Chandrasek[ﬁir and the Boussinesq

approximation has been used throughout, which sthte the density changes are disregarded irthadk derms in
the equation of motion, except in the external daierm. The formation and derivation of the basjoations of a
layer of fluid heated from below in a porous medjuming the Boussinesq approximation, has beemgivea
treatise by Josep[@]. When a fluid permeates through an isotropic aochdgeneous porous medium, the gross
effect is represented by Darcy’s law. The studyagér of fluid heated from below in porous mediaristivated
both theoretically and by its practical applicaion engineering. Among the applications in engiimgedisciplines
one can name the food processing industry, the iaémrocessing industry, solidification, and thentrifugal
casting of metals. The development of geothermalgnaesources has increased general interest jprtiperties of
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convection in a porous medium. Stommel and Feo{d‘ﬁ]/ and Linde|{14] have remarked that the length scales
characteristic of double-diffusive convecting lag/@r the ocean may be sufficiently large so thatEharth’s rotation
might be important in their formation. Moreoveretiotation of the Earth distorts the boundaries dfexagonal
convection cell in a fluid through porous mediumgdahis distortion plays an important role in theraction of
energy in geothermal regions. The forced convedtioa fluid saturated porous medium channel has lsesadied

by Nield et a[16]. An extensive and updated account of convectigmoious media has been given by Nield and

Bejan [lﬂ

The effect of a magnetic field on the stabilitysoich a flow is of interest in geophysics, partidylén the study of
the earth’s core, where the earth’s mantle, whatsist of conducting fluid, behaves like a porowesdiam that can
become conductively unstable as result of difféatidiffusion. Another application of the resultsflow through a
porous medium in the presence of magnetic fielidh ihe study of the stability of convective geothat flow. A

good account of the effect of rotation and magnfédid on the layer of fluid heated from below Heeen given in a

treatise by Chandrasekl{ﬁ] .

MHD finds vital applications in MHD generators, MHilbw-meters and pumps for pumping liquid metals in
metallurgy, geophysics, MHD couplers and beariagsl physiological processes such magnetic thek&jith the
growing importance of non-Newtonian fluids in maaléechnology and industries, investigations of sflgids are
desirable. The presence of small amounts of additivr a lubricant can improve bearing performancmbreasing
the lubricant viscosity and thus producing an iaseein the load capacity. These additives in ddaht also reduce
the coefficient of friction and increase the tengpere range in which the bearing can operate.

Darcy's law governs the flow of a Newtonian fluilrdugh an isotropic and homogeneous porous medium.
However, to be mathematically compatible and phasic consistent with the Navier-Stokes equations,

Brinkman[4] heuristically proposed the introduction of theméliD2 g, (now known as Brinkman term) in
&

addition to the Darcian term(kﬁJ g . But the main effect is through the Darcian teBrinkman term contributes
1
very little effect for flow through a porous mediufherefore, Darcy’s law is proposed heuristicadlygovern the

flow of this non-Newtonian couple-stress fluid thgh porous medium. A number of theories of the eicr

continuum have been postulated and applied (S{ﬁ&}s Lai et al[lZ]; Walicka[28]). The theory due to
Stokes{Zd allows for polar effects such as the presenceoople stresses and body couples. Stok&q theory
has been applied to the study of some simple latioc problems (see e.g. Sinha e{2ﬁ; Bujurke and

Jayarama[E]; Lin [13]). According to the theory of Stok[a%‘j, couple-stresses are found to appear in noticeable
magnitudes in fluids with very large molecules. girthe long chain hyaluronic acid molecules arenfoas
additives in synovial fluid, Walicki and Walic{<29] modeled synovial fluid as couple stress fluid inrtan joints.
The study is motivated by a model of synovial fluithe synovial fluid is natural lubricant of jointf the
vertebrates. The detailed description of the joimbsication has very important practical implicats; practically all
diseases of joints are caused by or connectedamittalfunction of the lubrication. The external @ffincy of the
physiological joint lubrication is caused by moreahanisms. The synovial fluid is caused by the emnof the
hyaluronic acid, a fluid of high viscosity, nearaael. A layer of such fluid heated from belowaiporous medium
under the action of magnetic field and rotation nfimg applications in physiological processes. MHibBds
applications in physiological processes such asnetag therapy; rotation and heating may find amglans in
physiotherapy. The use of magnetic field is beirgdenfor the clinical purposes in detection and @freertain
diseases with the help of magnetic field devices.

Sharma and Thak{@]] have studied the thermal convection in couplesstréiuid in porous medium in
hydromagnetics. Sharma and Sharlﬁ%Z] have studied the couple-stress fluid heated fratovb in porous

medium. Kumar and KumE&]] have studied the combined effect of dust partialesgnetic field and rotation on

couple-stress fluid heated from below and for thsecof stationary convection, found that dust gladi have
destabilizing effect on the system, where as tha&tiom is found to have stabilizing effect on tlystem, however
couple-stress and magnetic field are found to ek stabilizing and destabilizing effects undataiae conditions.
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Sunil et al.[27] have studied the global stability for thermal cection in a couple-stress fluid heated from below

and found couple-stress fluids are thermally mdebls than the ordinary viscous fluids. Gupta E[B]alhave
studied the effect of )y -irradiation on thermal stability of CR-39 polymehere as the effect of thickness of the
porous materials on the peristaltic pumping, whes tube wall is provided with non-erodible poroirsnlg has
been investigated by Reddy et[]ﬂ. The effect of magnetic field and rotation on thesolutal convection in

Walters B’ elastico-viscous fluid has been consideby Kango and Ralli]aO]. Saravana et al[19] have

considered the heat and mass transfer on the wdysidscoelastic second order Rivlin-Ericksen flypdst an
impulsive started infinite vertical plate in theepence of a foreign mass and constant mass flualong into
account of viscous dissipative heat at the plateunhe influence of a uniform transverse magnigicl. The
electrically conducting flow of couple-stress fluid a vertical porous layer has been investigate@&teenadh et

al [24]. The above studies were helpful in studying pomaserials and thermal stability.

Pellow and Southwe[ll?] proved the validity of PES for the classical RayfheBénard convection problem.

Banerjee et :{Q] gave a new scheme for combining the governing teapsaof thermohaline convection, which is
shown to lead to the bounds for the complex grawaté of the arbitrary oscillatory perturbationsytmal or unstable
for all combinations of dynamically rigid or freelndaries and, Banerjee and Bane[ﬂ,]aestablished a criterion on

characterization of non-oscillatory motions in hgdlynamics which was further extended by Gupta et[Z]I.
However no such result existed for non-Newtoniardflconfigurations, in general and for couple-strésiid
configurations, in particular. Ban){él] have characterized the non-oscillatory motionsduaple-stress fluid in the
presence of magnetic field in a porous medium.

Keeping in mind the importance of non-Newtonianidtuin general and couple-stress fluid in particudes stated
above, this article attempts to characterize thdllagry motions in the couple-stress fluid heafexin below in a
porous medium in the presence of uniform verticagrretic field and rotation with realistic rigid-ighorizontal
boundaries and it has been established that thet ohmstability in a couple-stress fluid in a pos medium heated
from below, in the presence of uniform vertical metic field and rotation, cannot manifest itself aillatory

motions of growing amplitude if the thermal TaytmrmberT ,, the Chandrasekhar number Q, the porositythe
couple-stress parameter of the flud F and the umdi permeability P, satisfy the

Qo7 |, RT,
(2m*-1)) (2m°F-PR)

inequalityé‘( <1, when the bounding surfaces are rigid of infinherizontal

extension.

2. FORMULATION OF THE PROBLEM AND PERTURBATION EQUATIONS
Here we consider an infinite, horizontal, incompgibke electrically conducting couple-stress fldayer, of

thickness d, heated from below so that, the tentyperand density at the bottom surface z = 0 Tarend 0, and

at the upper surface z = d aré, and P, respectively, and that a uniform adverse tempezatu

gradientﬂ(= dr
dz

j is maintained. The fluid is acted upon by a umfovertical rotation Q(0,0,Q) and a

uniform vertical magnetic fieltH (0,0, H). This fluid layer is flowing through an isotropamd homogeneous

porous medium of porosiy and of medium permeabilik&.

Let o, p, T/}, U and q(u,v,w) denote respectively the fluid density, pressuemperature, resistivity,

magnetic permeability and filter velocity of theifl, respectively Then the momentum balance, maksbe, and
energy balance equation of couple-stress fluidiagwell’s equations through porous medium, govegritre flow

of couple-stress fluid in the presence of uniforentical magnetic field and rotation are (Sto[%S]; Joseph[9];
Chandrasekhiﬁ]) are given by
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1 a—q+1(aﬂja =-0 £—lfsz +é(1+@j—i[v—iﬂzja
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+—4’L7;e) (DxI:|)x|:|+§(E]Xflj, 1)

0.q =0, @)
ar -

EE‘F(qD)T:KDZT, 3)

0.H =0, @
i o

5?:(H O)g+end*H . 5)

Wherea = E + g_l q 0 stand for the convective derivatives. Here

_ PsCs
E=c+(@1-¢) , is a constant, whil®;, Ciand Op, C,, stands for the density and heat
0™v

capacity of the solid (porous matrix) material atite fluid, respectively, € is the medium porosity
andl (X, Y, 2).
The equation of state is

p:po[l_a(T_To)]' (6)

Where the suffix zero refer to the values at tieremce level z = 0. Herg(0,0,—g) is acceleration due to gravity

and @ is the coefficient of thermal expansion. In wifithe equation (1), we made use of the Boussinesq
approximation, which states that the density vemmst are ignored in all terms in the equation otiotoexcept the

external force term. The kinematic viscodtty, couple-stress viscosiff/ , magnetic permeability/, , thermal

diffusivity K, and electrical resistivity, and the coefficient of thermal expansidd are all assumed to be
constants.

The basic motionless solution is

q=(000), 0= p,A+aB2), p=p2), T ==P2+T,, (7)

Here we use the linearized stability theory and lbemal mode analysis method. Assume small pertioriz

around the basic solution, and &g, &, 6, E](U,V,W) and F]Z(hx,hy,hz) denote respectively the
perturbations in densitg , pressure p, temperature T, veIo«:}th,0,0) and the magnetic fiell = (0,0, H ) The

change in densit)o, caused mainly by the perturbatiéhin temperature, is given by

p+dp=pl-a(T+6-T,)]=p-ap,6.ie. dp=-ap,6. 8)
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Then the linearized perturbation equations of thepte-stress fluid reduces to

la_q:—igdg_émg_i(y—imzjfﬁi(ﬂxﬁijHg(aXQJ, 9)

£ at ,00 k]_ 0 47100 3

0.q=0, (10)
06

E— = fw+«[1°6 (11)
ot

0.h=0, (12)

5%:(I:I .Dja+ end? F\_ (13)

3. NORMAL MODE ANALYSIS
Analyzing the disturbances into two-dimensional esvand considering disturbances characterizedgaytacular
wave number, we assume that the Perturbation diesrire of the form

lw,8,h, ¢, &|=W(z),0(2), K(2), Z(2), X (2)] explik,x +ik,y +nt), (14)

1
WhereK, ,k, are the wave numbers along the x- and y-directi@spectively K = (kx2 + kyzﬁ, is the resultant

_0v_du

wave number, n is the growth rate which is, in gahea complex constant anoq - & a_y and

oh, oh,

— y _
E—E a_ydenote the z-component of vorticity and current siign respectively,

W(2),K(2),0(2),Z(z) andX(z) are the functions of z only.

Using (14), equations (9)-(13), within the framelwaf Boussinesq approximations, in the non-dimemeidorm
transform to

(p? —az{g(Dz —az)—(g +iﬂw = Ra’0+T,DZ -Q(D? -a?)DK . 5]

. e R
F(DZ—az)—(f+iﬂz=—DW—QDx, 116
| € R
(D?-a?-Epolo=-w, 17)
(D?-a? - p,o)k =-DW, (18)
and
(b?-a%- p,o)x =-DZ, (29)
Where we have introduced new coordina&x's, Y, Z') = (x/d, y/d, z/d) in new units of length d abd=d /dz'.
nd? %
For convenience, the dashes are dropped hereafserwe have substituted = kd,o = , P, =—, isthe
K
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vV k
thermal Prandtl numberjp, =—, is the magnetic Prandtl numbeP =—L is the dimensionless medium

d2
(ppd? apd’
permeability, F = M, is the dimensionless couple-stress viscosityrpatar; R = & is
Vv KV
L H?*d? 244
the thermal Rayleigh numbef) =—2——— is the Chandrasekhar number ard, = — . is the Taylor
4mp,vne vee
2
2Qd Hd
number. Also we have SubstittM4=W,, O= A O, Z=—""="2,, K=—K_,
ve &n

X = (H—dI@]xD andD, =dD, and droppec(D) for convenience.
en N ev

We now consider the case where both the boundaresigid and perfectly conducting and are mairgdirat
constant temperature, then the perturbations inetimperature are zero at the boundaries. The apat®poundary
conditions with respect to which equations (15)}(18ust possess a solution are

W=DW=00=0,Z=0,K=0and DX=0,atz=0and z = 1. (20)

Equations (15)-(19), along with boundary conditid@28), pose an eigenvalue problem for and we wish to
characterizeZ; , whena, = 0.

We first note that sindd/, K and Z satisihW(0) =0=W (@), K(0) =0=K (@) andZ(0) =0=2Z(2), in
addition to satisfying to governing equations ardde we have from the Rayleigh-Ritz inequa[ﬂ@]

1 1 1 1 1 1
[loW[*dz= 772 [W|*dz, [|DK|*dz= 7 [|K|*dz and [|DZ|"dz > 77 [|Z[" dz, (21)
0 0 0 0 0

0

4. MATHEMATICAL ANALYSIS
We prove the following lemma:

Lemma1l: For any arbitrary oscillatory perturbation, nebtmaunstable
1 1

7T2

jﬂDKf + a2|K|2}jzs ———[|ow|"dz

: @7 -1

Proof: Multiplying equation (18) byKD (the complex conjugate oK ), integrating by parts each term of the

resulting equation on the left hand side for anrappate number of times and making use of boundanditions

on K namelyK (0) =0=K (1), it follows that

1 1 1

wDK|2 + a2|K|2}12+ o, p2j|K|2dz = Real part o{j KDDV\Idz} <
0 0

0

i K "DWdz
0

< ﬂKDDW\dz,
0

1 1
< [|K“|owidz s%jw +|DW|2)dz, (22)
Thi(; gives that i
t 1¢(, 2 2
J'|DK|2dzs—.[0K| +|DW| )dz, (23)
0 20

Inequality (23) on utilizing (21), gives
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1

[ ez ]

J' IDW|dz, (24)

Sinced, =2 0 andp,)0, hence inequality (22) on utilizing (24), give

h 2 211,12 T
jQDK| +a?K| )jz_(zﬂ2 1)j|DW| dz, (25)

0
Lemma 2: For any arbitrary oscillatory perturbation, nelitnaunstable

Proof: Multiplying equation (16) byZD (the complex conjugate of Z), integrating by paegtch term of the
resulting equation on the left hand side for anrappate number of times on utilizing equation (1#)d
appropriate boundary conditions (20), it followatth

—jﬂDz| +a’|Z] }iz+( . +—jj|z| dz+QjﬂDx| +a?X| }dz+sza j|x| dz
jDW*Zdz‘.

< [|pw"Zldz < j oW Zfoz,

1
=Real part of{]‘ DW*ZdZ} <

-

o

1
- [jow]zidz < Iz +owp e, @)
Thi?s gives that i

—j|Dz| dz < jQz| +|DW,| )d (27)

Inequality (26) on utilizing (21), gives

1
[lzdzs—
0

@F R} [z -

This completes the proof of lemma
Now we prove the following theorems:

Theorem 1 If R) 0, F)0, Q)0, T,)0, B)0, p,)0, p,)0, g, 20 and g; # 0 then the necessary

condition for the existence of non-trivial solutior(W,@, K,Z, X) of equations (15) — (19), together with
boundary conditions (20) is that

Qp, BT,
E( @r -1)j+ @rF-R)"

Proof: Multiplying equation (15) byWD (the complex conjugate of W) throughout and ira¢igg the resulting
equation over the vertical range of z, we get
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F iw(p? _az)wdz_[z +iﬁw* (0 - a? )z

R e Ry

- RaszD@dz +TAjWDDZdz - Qi w’D(D? - a2 )Kdz, (29)
0 0 0

Taking complex conjugate on both sides of equatlan, we get

(D? -a? - Ep,c”)@” = -W", (30)
Therefore, using (30), we get

1 1

[wredz=~| o(p? -a? - Ep,0”)0"z, (31)
0 0
Also taking complex conjugate on both sides of €gng16), we get

F 1.

(D7 -a?)z"-| L+ = |z =-DW?, (32)
R € R

Therefore, using (32), we get

1 1 F 1 0_* 1 1 1

[weDzdz = -[DW zdz = [25(D? - 8% )zdz-| T+ = |[ 2" Zdz+ Q[ ZDX "z, (33)
0 0 I:)I 0 3 I:)l 0 0

Integrating by parts the third term on left handesand using equation (19), and appropriate boynctamdition
(20), we get

h Ft o 1)t,. h .

[weDzdz = [2°(D? -a?)zdz-| 7+ = |[ 2" zdz+ Q[ X(D? - a? - p,0)X "¢z, (34)
0 I:)l 0 2 I:)I 0 0

Also taking complex conjugate on both sides of ¢#qQug18), we get

D% -a% - p,o"|K = -DW", (35)
Therefore, equation (35), using appropriate boundandition (20), we get

1

O 2.2 - _1 of~2 _ o2 - p 2 _2\R2 _ .2 o) O
[wD(D? -a?)kdz = -[ DW*(D? - a* Jdz = [ K (D? - a* D2 - 2% - p,0)K “dz, (36)
0 0

0

Substituting (31), (34) and (36), in the right hande of equation (29), we get

(g +ijj‘WD(Dz —aZ)NdZ—EjWD(DZ —aZ)ZWdz= Razj‘@(Dz —a%- Ep,o’ )G)*dz
e R P 0

1 * 1 1
—TAPF [z(D? —aZ)ZDdz+TA{U—+%JJZ*Zdz—QIK(D2 ~a?|D? -a’p,0’ K dz, 37)
| 0 & /o 0

Integrating the terms on both sides of equation) (87 an appropriate number of times and making afsthe
appropriate boundary conditions (20), we get
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F 1ﬂDz\2+a2\z\2}jz—T AV j\z\zdz—T QHDX\2+a2\x\2)dz
e Rk "

0

1 1
Ejﬂ DW|” +2a%DW|* +a*W| }12+ 5+i NDW\ +a?W|° Jiz= RaszDe\2+a2\@\2)dz
Ry P 0

+Ra’Ep,0” ﬂ@\z
0

¢ 2 h 2 2 2 *1 2 2

~T.Qp,0[|X| dz—QmDZK\ +2a?|DK|” +a‘|K| )dz—sza jQDK\ +a?[K| )dz, (38)
0 0 0

Now equating imaginary parts on both sides of équdB8), and cancelling; (#0), we get

17 2 2 fg2 T, tio2 ¢ 2 2 L

gjﬂDW +a?\W| }dz:—RazEplﬂe\ dz+?Aj\z\ dz+Qp2jﬂDK\ +a?[K| )dz—TAszj\x\ dz. (39)

0 0 0 0 0
Now R ) 0,6)0 and T,) 0, utilizing the inequalities (26) and (29), theguation (39) gives,

1 1- BT, —g szn-2
e|” lF-r) (@7 -

j IDW[*dz+1,(0 (40)

1 1 1
Wherel | a?j|\lv|2dz+ Ra’Ep, [|6[°dz+T,Qp, [|X| dz,
0 0 0

is positive definite and therefore , we must have

Qp2772 BTa
5((2772 -1)j+ @PF -p)" @
Hence, if
Qp2772 BT,
o, 20 ando; ¢O,then¢{(2n2 —1)j+(2772|:—|:1)>1 (42)

And this completes the proof of the theorem.

Presented otherwise from the point of view of eeise of instability as stationary convection, thewe theorem
can be put in the form as follow:-

Theorem 2: The sufficient condition for the onset of instétilas a non-oscillatory motions of non-growing
amplitude in a couple-stress fluid in a porous mediheated from below, in the presence of uniforntica

Qp2772 j+ RTa

<1, whereT, is the Taylor number, Q is the

(mr*-1)) (2m°F-PR)
Chandrasekhar numbet,is the porosity,B is the medium permeability and F is the couplesstigarameter, when
both the boundaries are perfectly conducting agid.ri

magnetic field and rotation is tha&{

or

The onset of instability in a couple-stress fluidai porous medium heated from below, in the preseficiniform
vertical magnetic field and rotation, cannot mastifieself as oscillatory motions of growing ampditif the Taylor

number T,, the Chandrasekhar number Q, the poraitthe medium permeabilif) and the couple-stress

Qo7 |, RT,
(2m*-1)) (2m°F-PR)

parameter F, satisfy the inequalia{ <1, when both the bounding surfaces are

perfectly conducting and rigid.
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The sufficient condition for the validity of theES’ can be expressed in the form:

Theorem 3: If (W,G),K,Z,X,O‘), o =0, +io,, g, 20 is asolution of equations (15) - (19), with B
and,

< Qp, 7’ + RTa <1,
(@m-1)) (rF-PR)
Theno; =0.

In particular, the sufficient condition for the idity of the ‘exchange principle’ ie.0, =0= 0, =0

[ Qp, RT,
'fg((znz —1)]+ @7F -R) =1

In the context of existence of instability in ‘oéaiory modes’ and that of ‘overstability’ in thergsent
configuration, we can state the above theorem|bsvo

Theorem 4: The necessary condition for the existence of inlityain ‘oscillatory modes’ and that of ‘overstdity’
in a couple-stress fluid in a porous medium heétech below, in the presence of uniform vertical metic field

and rotation is that the Taylor numbgy, the Chandrasekhar number Q, the pora@itshe couple-stress parameter

Qp, 7’ + RTa
(277'2 -1) (277'2F -R)

of the fluid F and the medium permeabilify , must satisfy the inequalis,{ ),

when both the bounding surfaces are perfectly cotirnyand rigid

Special Cases. It follows from theorem 1 that an arbitrary neutoalunstable mode is non-oscillatory in character
and ‘PES’ is valid for:

(). Thermal convection in couple-stress fluid lesbfrom below i. e. when Q = 0I5, Sharma and Thak[RB].

(ii). Magneto-thermal convection in couple-stréagl heated from below [, =0), if

Qp, T
5[ (2 —1)j =1

(iii). Rotatory-thermal convection in couple-strdéissd heated from below (Q = 0), if
LAV
(277'2 F-R)

CONCLUSION

This theorem mathematically established that theebof instability in a couple-stress fluid in theesence of
uniform vertical rotation, cannot manifest itse#f ascillatory motions of growing amplitude if thayfor number

T,, the Chandrasekhar number Q, the poraitythe couple-stress parameter of the fluid F ared rtredium

Qp, 7’ + BT,
(mr*-1)) (@2m°F-PR)

permeability P, satisfy the inequalit.y( <1, when both the bounding surfaces are

perfectly conducting and rigid.

The essential content of the theorem, from thetpafiview of linear stability theory is that forgtconfiguration of
couple-stress fluid of infinite horizontal extensibeated form below, having rigid boundaries atttipeand bottom
of the fluid, in the presence of uniform verticahgmetic field and rotation, parallel to the foregdd of gravity, an
arbitrary neutral or unstable modes of the systeme alefinitely non-oscillatory in character

i ‘{ Qp, T’ j+ BT,
(mr*-1)) (2m°F-PR)

<1, and in particular PES is valid.
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