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Abstract
This evidence report discusses an advanced	 artificial	 intelligence technology to detect cancer early, accurately 
and inexpensively. Initial type is breast cancer; however this technology is not limited and can be applied to other 
cancers.
This technology uses scans that are image files. Scans are from a patient who may have cancer. The image files 
are then provided to this technology for analysis. The technology automatically generates a report indicating the 
probability that the patient has cancer.
The report is intended to be reviewed by a medical specialist who may perform additional tests on the patient with a 
high probability of having cancer. If, on the other hand, the report indicated a low probability of having cancer, scarce 
resources may not need to be allocated as a high priority.
As an example, mammograms are required to use two independent radiologists to review the results. This technology 
could be utilized without mandatory radiologists at this stage. These radiologists could be more effectively utilized 
at a later stage to determine how far the cancer may have spread.
Sources of image files can be mammograms, finite needle aspirations, ultrasound scan as examples.
Artificial intelligence technology is first trained so it can recognize cancer reliably. Other artificial intelligence 
technologies typically require thousands for training. And, results are not comparably reliable. The advanced 
artificial intelligence technology discussed in this report trains with high reliable image files using bespoke pre-
training modules that are one of many factors to keep the training samples low and accurate. After training, this 
technology utilizes additional bespoke advanced modules for further accuracy refinements.
Training summary: 
•	 May be skipped entirely based on analysis of known scans. 
•	 This relies on existing training using NCBI vetted cancer samples. 
•	 Or, if training is required, very few training samples are needed. This is due to bespoke non AI modules.
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BACKGROUND
Strategy of this Paper
Some sections in this paper may seem arbitrary. We intend to 
introduce them in this section in order for them to make sense 
to the reader (Figure 1).

Our technology achieves high accuracy requiring minimal 

training samples using an innovative technology. The key 
driving us is that our technology works with less training 
samples, uses bespoke non-standard AI model processing 
resulting in considerable accuracy. There are many layers to our 
technology. One is to avoid training samples that are useless or 
even reduce accuracy. Therefore, we apply bespoke algorithms 
before training and, bespoke software, and also after testing, 
which significantly contributes to the accuracy results. We also 
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implement bespoke layers to account for medical images that 
are different from detecting say cats and dogs.

Figure 1: Automatically generated report indicating probability of cancer

An elegant explanation explaining the difference between 
algorithms and AI is presented by Cassie Kozyrkov is clear 
and succinct and therefore we included partially unchanged 
as a small section of this paper. Therefore, standard AI was a 
good place for our technology to start years ago and therefore 
we improved the standard AI training and prediction modes 
achieving considerable accuracy.

K-Folding is used in other technologies. It is advocated as a 
shortcut to large training. In the development of our approach, 
we have tried K-Folding and found it to weaken the training and 
result in less accuracy. We have purposely avoided it for reasons 
that are explained. We have avoided presenting massive data, 
proving that K-Folding should be avoided.

Transfer learning is a strategy that is advocated in other machine 
learning strategies. This might be considered a shortcut and 
theoretically make training easier. We disagree with this 
approach and believe it will weaken training and proceed to 
make errors affecting accuracy during testing. Transfer learning 

is further tested during the paper that presents five external AI 
models. It is proved in a multi model external paper approach 
and therefore we agree with the external authors that it is a 
strategy to be avoided. We include transfer learning is in detail 
in a section of this paper. This should explain to the reader 
what we are actually avoiding.

INTRODUCTION
We have developed a rapid AI based cancer screening system. 
This application of AI can be utilized to save money, use more 
economically accessible equipment with less clinician input, 
achieve reduction in treatment plans and achieve reduction in 
cancer recurrence rates through early diagnosis.

Breast cancer one of the fastest growing tumors, this means 
that the faster it can be diagnosed, the greater the reduction in 
morbidity and mortality.

Focusing on the fastest increasing and most fatal forms of 
breast cancer supports this business’s advanced innovative 
artificial intelligence technology. Accurately identifying cancer 
screening promptly improves morbidity and mortality. In 
addition, this increases chances of survival and preventing the 
need for surgery and high-cost reconstruction. Data processed 
by this technology can be images including but not limited to 
medical sides.

This technology has demonstrated high accuracy (100%) 
in differentiating healthy from cancerous cells on digitized 
histopathology images. One reason is that the technology filters 
out poor samples before artificial intelligence methodology is 
applied.

This technology can be applied to detection of many cancers or, 
for that matter, other medical diagnosis.

Breast cancer is the most common form of cancer in the United 
Kingdom with 63,500 new cases diagnosed every year [1]. This 
is the leading cause of death from cancer in women under 
the age of 50 and in total is responsible for approximately 
11,500 deaths per year. Healthcare institutions globally have 
attempted to improve the speed and efficiency of cancer 
detection through various techniques such as screening and 
streamlined access to cancer diagnosis. However, despite this, 
morbidity and mortality continue to rise. There are multiple 
factors which affect the delay in diagnosis of breast cancer and 
early treatment [2]. Olsen et al describes one such variable 
as the patient interval [3]. This refers to patient factors and 
although controversial, more research has been undertaken to 
support the notion that behavioral and psychological factors 
play a significant role in the early diagnosis of breast cancer [4].

A further significant delay is tissue diagnosis. In 2018 the 
BBC reported that there is a national shortage of cellular 
pathologists with only 3% of centres reporting adequate 
staffing levels [5]. Elmore et al. identified that pathologists 
were able to accurately diagnose breast cancer from biopsy 
slides 75.3% of the time. Therefore, the access to pathologists 
and the reported accuracy is unsatisfactory to the patient with 
breast cancer.

In recent years, a branch of artificial intelligence known as 
machine learning has become an increasingly popular tool 
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for increasing the accuracy of cancer diagnosis [6]. Machine 
learning identifies categories such as tissues with cancer that 
the human brain is unlikely to find. Machine learning is already 
being used in the diagnosis of cancer by interpreting digital 
histopathology images obtained from tissue samples however 
it has several drawbacks.

One such limitation is the need for vast training data sets. 
Standard AI-ML models are data hungry during training. 
We acknowledge that you can throw vast amounts of data 
examples to traditional AI-ML models and eventually you will 
get impressive results. This is not practical in real world settings 
where access to this level of training data may not be possible. 
In the following paper we will demonstrate high classification 
accuracy without the requirement for large numbers of training 
images using our proprietary enhanced artificial intelligence 
(eAI) software [7].

Cancer screening enables early detection of disease and 
optimizes treatment outcome for the patient. Improving 
cancer screening is a valuable objective both altruistically but 
also financially for healthcare institutions. Improving the speed 
and accuracy of tissue diagnosis underpins any effort to impact 
on cancer screening today.

Aims
We have an efficient and accurate cancer diagnostic tool. We 
will demonstrate evidence of high accuracy using data from 
internationally approved sources. This evidence will also show 
how this level of accuracy can be achieved using much lower 
numbers of data samples.

This technology uses data that can represent images (The 
images can be medical slides. They do not need to be slides. 
The data can be images; this means that this technology can be 
applied to detection of many cancers or, for that matter, other 
medical diagnosis).

As highlighted previously, images presented to human experts 
can be difficult and unreliable to interpret accurately. Reading 
images as tissue samples. Using today’s artificial intelligence 
technology might result in somewhat higher than human 
accuracy after training but only to a point and inconsistently.

eAI technology as described in this evidence-based paper 
results in accuracy not less than 100% using minimal data for 
training of the AI system to interpret images. As well as reliably. 
This means that this technology can be applied to detection of 
many cancers or, for that matter, other medical diagnosis.

MATERIALS AND METHODS
 eAI trains with images as shown below. These can be biopsy 
slides or mammography or ultrasound. The images are 
determined to be usable and discarded if not. It is not about 
collecting as much as possible because poor quality images can 
corrupt the training or testing processes.

Figure shows an example of data as images. Some are known to 
have cancer. Some do not have cancer. Some are poor quality 
and should be ignored. Human experts classify some images 
incorrectly resulting in inaccurate diagnosis (Figure 2).

Figure 2: Digitized histopathology slides with a range of images some 
of which have cancer and some are healthy. Some are not usable due 
to high fat content

Dataset Sources
These were biopsy images scanned to 50 × 50 data files for eAI 
technology (this paper) as well as for 5 external A.I. studies. All 
of these were obtained from the National Center for Biological 
Information (NCBI).

The dataset consists of approximately 5000 50 × 50 pixel RGB 
digital images of H&E-stained breast histopathology samples 
that are labeled as either IDC or non-IDC. These NumPy arrays 
are small patches that were extracted from digital images of 
breast tissue samples. The breast tissue contains many cells 
but only some of them are cancerous.

Training and Testing
Two distinct processes: Training (one off) and Testing 
(unlimited).

Training
We use a source of data which comprises known samples 
labeled as cancer or non-cancer (may be referred to as 
healthy). However, prior to training, unusable samples are 
removed. Furthermore good samples are put aside for testing 
so we can use this separate sample set as trusted test data. 
This separation ensures that testing cannot be over-fitted. We 
point out that we also purposely avoid cross-validation. It can 
be argued that cross-validation can help training by using small 
sets to train and therefore speeds up the process. In addition, 
cross-validation can thoroughly mix the data samples. But, that 
training phase can use test data which can lead to over-fitting, 
meaning that the training is tuned to the test data which is 
should be avoided. Thus, the disadvantage of cross-validation 
is that pollution of training data sets can easily occur producing 
training weights guessing (predict) inaccurately during the 
testing phase. The technology will throw away poor data 
using a sophisticated process before training can take place. 
Therefore, using entirely separate data samples completely 
avoids this risk. Addressing the downside of avoiding cross-
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validation means we must train many times to be sure that we 
are training with adequately random samples and not samples 
that coincidently happen to produce predictions that serve to 
justify our claims.

In addition, we seek to minimise the amount of training data 
while simultaneously producing high accuracy. We chose to 
train with NCBI trusted worldwide data. A low quantity of 
training slides producing high accuracy results. We point out 
that we train with balanced cancer and non-cancer samples. 
In summary, it is best to train with as few samples as possible.

Strategy: We re-trained many times with different random 
(balanced) sets and ended up with close to the same quantity 
consistently. A different lab will find some number maybe a few 
hundred not necessarily 400 which is particular to our set.

K-Fold with Cross Validation: We also considered “K-Fold 
Cross Validation” which we show can pollute the training set. 
We sever a set to Test or Validate before any training has been 
done. This guarantees a separate set that could not pollute the 
training set.

Process: Sever a separate set, train, validate with 100% 
accuracy “rinse repeat etc.” If using another lab, same process, 
find a new minimal. Note that 400 is not special. The goal is 
simple-smallest that is 100% accurate only for this particular 
data set from this lab.

K-Fold Cross Validation-explanation and why it is not used 
(Figure 3).

Figure 3: K-Fold Cross Validation illustration for explanation

Testing
After one-off training, we can test unlimited times. We hope to 
get (predictions) that accurately tell us whether these unknown 
samples have cancer. A strategy shall be described in order to 
make the result meaningful.

Consider providing unknown data samples. The technology will 
throw away unsatisfactory data using a sophisticated process 
before further testing predictions estimation can take place.

The authors anticipate that due to the nature of obtaining 
biopsies, there will be occasions where the samples are 
inadequate and prediction cannot be accurate. The eAI will 
suggest obtaining new data (Mixed results can skew the 
predictions in a particular classification because the test 
samples come from one patient).

It is understood that a particular patient can have cancer in one 
place but not in another place. It is expected that the samples 
will come from a location that is suspected to have cancer. 
Therefore, random samples are not useful.

We suggest several options to avoid this problem. Scans from 
areas pointed at by ultrasound. Mammograms scans can 
show suspicious images. Swelling can be evident to a doctor. 
Therefore, non-biopsy procedure can be used if needed. 
Conversely, minimal biopsy FNA procedure can produce 
images. Several samples are presented to the technology for 
analysis and classification as to having cancer or not.

Understanding the above can yield a strategy of multi-passes. 
However, realistically single pass will often provide high 
accuracy diagnostic (100%). The technology will report on the 
confidence and therefore suggest the next steps.

RESULTS AND DISCUSSION
The results as evidence are described. This includes training 
and testing using several technologies. A forest plot shows 
the comparative results with a clear data point. This is high 
accuracy and low training samples as shown. There are five 
external studies and one internal study described in this paper. 
Sections show confusion matrices [7,8]. In addition, sections 
describe external AI technology and advanced AI technology 
contributing to the significant result differentiation.

Forest Plot
A Forest Plot is used to present data efficiently for comparison. 
This is extracted from several Confusion Matrices shown later 
(Figure 4).

Figure 4: Forest Plot illustration. (Study-1,2,3,4,5 from external source 
[9]; Best source [10] )

Training should be executed with minimal slides that produce 
high accuracy. This is realistic because attaining sides from 
patients is uncomfortable and takes time. We arbitrarily chose 
to train with NCBI trusted worldwide data. 400 as the smallest 
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quantity of training slides producing 100% correct predictions. 
Must train with balanced cancer and non-cancer samples. Best 
to train with as few slides as possible.

Consider that we could have biopsy slides. These slides are 
from someone who may have cancer or not. Consider that a 
software tool is used to guess whether these slides are from 
someone who has cancer or does not have cancer. If the guess 
is not always correct, then it does not matter how accurate the 
tool is less than 100%. A patient does not want to be told that 
they might have cancer, but not sure. Being sure of a diagnosis 
is essential.

For the software to function, the AI technology needs to be 
trained. Training is accomplished with slides that are known to 
come from people who have cancer and from people who do 
not have cancer. Training with many slides, we might expect 
high accuracy predictions.

The situation above is to be avoided as summarized:

•	 Training with many known slides is unrealistic.

•	 Guessing resulting in any inaccuracy is unacceptable.

The forest plot studies would normally show horizontal lines 
meant to indicate 95% confidence intervals. These are not 
reliable in this document because the data is unavailable and, as 
discussed, data with accuracy less than 100% is unacceptable.

Regarding studies labeled study, training data is from many 
slides as shown to the left of the red line. To the left indicates 
too many training slides and is unrealistic. As shown, the study 
labeled Best uses an acceptable 400 slides to train. Each study 
is shown next.

The red vertical line is the smallest quantity of slides producing 
100% accurate predictions.

Forest Plot Conclusion
For comparison, the study labeled Best uses the technology 
described in this document (Figures 5-11).

Confusion Matrices below are Consolidated to 
a Single Forest Plot

Figure 5: Study Best; Confusion matrix of advanced technology is 
described in this paper. Trained with somewhat arbitrary 400 slides. With 
a proven accuracy of 100% as indicated with “0”, no FALSE predictions

Figure 6: Study-1; External data-set. Ridgenet using AlexNet, 
GoogLeNet, ResNet-50, VGG-19 using transfer learning, 1,000 features

Figure 7: Study-2; External data-set. Ridgenet using AlexNet, 
GoogLeNet, ResNet-50, VGG-19 using transfer learning, 2,000 features

Figure 8: Study-3; External dataset. Ridgenet using AlexNet, 
GoogLeNet, ResNet-50, VGG-19 using transfer learning, 3,000 features
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Figure 9: Study-4; External dataset. Ridgenet using AlexNet, 
GoogLeNet, ResNet-50, VGG-19 using transfer learning, 4,000 features

Figure 10: Study-5; External dataset. Ridgenet using AlexNet, 

GoogLeNet, ResNet-50, VGG-19 using transfer learning, 5,000 features

How to Understand the Data above using an 
Example that is not the Technology of this Paper 

Figure 11: Example showing that how to reading the numbers

How to Read the Numbers
Correct Predictions: The samples 15,266 and 39,455 are for 
correct predictions using a large number of samples needed 

to achieve correct predictions. This is unachievable and 
unrealistic.

However, the technology discussed in this paper uses far fewer 
samples to achieve correct predictions. Fewer samples are 
more realistic and achievable. This makes training easier.

Incorrect Predictions: 491 false positives and 292 false negatives 
showing poor accuracy. 

However, the technology discussed in this paper has 0 incorrect 
predictions. This proves the claim of “100%”.

Important: Goal is to achieve no negatives rather than try to 
achieve maximum correct.

Transfer Learning
Analysis of External Artificial Intelligence Accuracy (not eAI).

Studies 1,2,3,4,5 have claimed to show accuracy that appears 
high.

Transfer learning is necessary using Ridgenet using AlexNet, 
GoogLeNet, ResNet-50, VGG-19.

Comments: There are large and unrealistic quantity of samples 
used to train as opposed to eAI. The accuracy may seem high, 
but is still below eAI performance, and finally to following 
regarding their reliance of transfer learning which is not usable 
as discussed.

Summary
Transfer learning is rigorously studied.

This requires a manual process that needs “Fine-Tuning” 
for each and every Training session. This is unrealistic and is 
unusable. Our eAI cancer technology is entirely automated and 
not requiring fine-tuning. This makes it easier for a medically 
trained specialist and makes the tool safer for the patient.

The following is directly quoted for readers desiring details.

With the recent advances in deep convolutional neural networks 
(CNNs), there is a growing interest in applying this technology 
to medical image analysis. Specifically, in the field of cardiac 
Magnetic Resonance Imaging (MRI), deep CNNs are applied 
to the left ventricle (LV), right ventricle (RV), and myocardial 
segmentation for automatic quantification of ejection fraction 
and myocardial mass.

The segmentation step is typically preceded by the 
identification of a short axis slice range, which may require a 
manual procedure, as a stack of short axis cardiac MR images 
tends to include slices out of the LV coverage.

Results
Model training and validation: Figure 3 compares the training 
history of 5-fold cross-validation (CV) for each network in the 
fixed feature extraction setting. We plotted the history for the 
fixed learning rate of 10-4 to compare the convergence of 
each model. The VGG16 model showed an exceptionally fast 
convergence speed, followed by MobileNetV1.

InceptionResNetV2 and Xception showed noticeably slow 
convergence patterns. The Inception and ResNet models as 
well as MobileNetV2 showed a high degree of overfitting. We 
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observed a high variance of loss and accuracy metrics across 
different folds. Among the 3 baseline models trained from 
scratch, CBR-LargeT achieved a very low loss on the training set, 
likely due to a relatively larger number of trainable parameters. 
The two smaller baseline models (i.e., CBR-Small and CBR-Tiny) 
did not exhibit patterns of a high degree of overfitting in the 
validation loss, although the loss curves showed a large degree 
of fluctuation with respect to epochs.

Dataset: In the present study, we used publicly available 
data from the left ventricular (LV) cardiac MRI segmentation 
challenge. The data consisted of cardiac cine image series of 
short axis and long axis orientations from 200 subjects, where 
there were 20-30 dynamic frames per slice and 10-16 slices per 
subject. Out of 20-30 dynamic frames, we only considered two 
frames: One end-systolic frame and one end-diastolic frame. 
The stacks of short axis slices from one group of 100 subjects 
were considered for training/validation, and the stacks of 
short axis slices from the other group of 100 subjects were 
considered for testing.

Data labeling: To label the images, we developed a custom 
user interface, implemented using the Matplotlib42 library 
for Python, for image slice labeling in a diastolic and a systolic 
frame for all subjects. The interface loads all the cardiac short 
axis image location information along with corresponding 
patient identification numbers. For labeling, the user interacts 
with the layout to classify each short axis slice into one of the 
following three categories: 

•	 Out-of-apical (OAP)

•	 Apical-to-basal (IN)

•	 Out-of-basal (OBS)

OAP was defined as the slice that shows no appearance of 
the LV blood pool. IN was defined as the slice that shows 
clear appearances of the myocardium and LV blood pool. OBS 
was defined as the slice above the most basal slice, which is 
characterized by a small crescent of basal lateral myocardium 
and no discernible LV blood pool. The labeling results are 
saved upon closing the interface. They are saved in an internal 
metadata file, which is reloaded when the user resumes the 
manual labeling task.

Image preprocessing and augmentation: The sample size of 
the IN class is significantly larger than the OAP and OBS classes. 
To overcome the class imbalance issue, we oversampled the 
slices corresponding to the OAP and OBS classes by a factor 
of 6. We used a simple augmentation scheme, which applied 
random rotations between −45° and 45° for each image [9]. The 
classification task involves the examination of the myocardium, 
which is positioned around the center of the images. To reduce 
unwanted features in the image data, we cropped the outer 
40% of both the vertical and horizontal axes of each image. The 
image cropping retained the myocardial region of interest in 
all of the images. To prevent data leakage, the augmentation 
was applied after the data split for the cross-validation. For the 
evaluation, we applied the same procedure of cropping to the 
input images.

Model training and validation: We considered nine well-
established CNN architectures for transfer learning. The 

networks considered in our study, including their capacities, the 
number of penultimate features, and the ImageNet accuracy 
scores. We applied transfer learning to cardiac MR images in the 
fixed feature extraction and fine-tuning settings. For the fixed 
feature extraction setting, we used the penultimate features 
from the convolutional base of the nine CNN models as an input 
to a custom deep neural network (DNN) classifier. For the fine-
tuning setting, we considered only a subset of convolutional 
layers, following the suggestion of a layer-wise fine-tuning 
scheme proposed in Tajbakhsh et al. We also trained three 
baseline models from scratch for comparison. We adopted 
models from the CBR (convolution, batch-normalization, ReLU 
activation) family of CNN architectures introduced in Raghu et 
al. which follows conventional design of CNN architectures. We 
considered the CBR-LargeT, CBR-Small, and CBR-Tiny models, 
which are small in network, size (approximately 1/3 to 1/60 of 
the size of standard deep CNN architectures used for ImageNet 
classification).

All pre-trained CNN models take natural images, with three 
color channels, as input, but our study deals with grayscale MRI 
images. For compatibility, we simply duplicated the grayscale 
channel to synthesize RGB images. This has the same effect as 
averaging out the color channels of the convolutional kernels 
in the first convolutional layer of each network. In the fixed 
feature extraction setting, we appended our custom DNN 
classifier to the existing base networks and froze the base 
convolutional layers during training. We removed the existing 
fully connected classifier layers and replaced them with a DNN 
classifier. The DNN classifier consisted of a dense layer with 256 
nodes and ReLU activation, a dropout layer with a dropout rate 
of 0.5, and a dense layer with 3 nodes and Softmax activation. 
The final layer has three output nodes that correspond to the 
three classes in our classification task: OAP, IN, OBS. We used 
pre-trained weights provided by the Keras Applications library.

We used a similar approach for the fine-tuning setting, where 
we unfroze only those layers considered for further training. 
We applied fine-tuning to all nine base architectures, using 
the final models obtained from the fixed feature extraction 
stage. We selected the layers for fine-tuning based on the 
individual designs of the base architectures. All architectures 
are comprised of a series of unique convolutional blocks. We 
considered the last convolutional block of each network for 
fine-tuning. The diagrams of the last convolutional blocks for 
the nine neural networks are shown in the Supplementary 
Material.

Model development was performed on a single GPU (NVIDIA 
Quadro P5000, 16 GB memory). To train the network, we used 
mini-batch gradient descent optimization with a batch size 
of 32, a decay of 10-6, and Nesterov momentum of 0.9. For 
hyperparameter optimization, we considered three learning 
rates. Learning rates were 10-2, 10-3, and 10-4 for the fixed 
feature extraction setting, while they were 10-3, 10-4, and 10-5 
for the fine-tuning setting. For our baseline CBR models, we 
considered learning rates of 10-2, 10-3, and 10-4.

For a given learning rate, we performed a 5-fold cross-validation 
and divided the training/validation set into 5 distinct subsets, 
each containing image slices from 20 patients. For each fold, 
one subset was used for validation and the remaining four were 
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used for training. Hence, a total of 5 models were trained and 
validated to evaluate the performance of a single parameter 
choice. We trained each model for 50 epochs and selected 
an appropriate epoch number based on manual inspection of 
the average validation accuracy curve. After setting the epoch 
number and learning rate, we trained a final model on the 
entire training/validation set. We used this process in both the 
fixed feature extraction and fine-tuning settings for the deep 
CNN models, as well as in the training of the baseline CBR 
models.

Evaluation: A total of 21 final models were evaluated: 9 
models obtained by training a custom DNN classifier on top of 
base CNNs used for the fixed feature extraction setting, and 
9 models obtained through the fine-tuning, and 3 baseline 
models trained from scratch. Performance was evaluated 
against a test dataset of 100 patients that was held out during 
the model development. The total number of test images per 
class. To evaluate multi-class classification performance, we 
used the following metrics: F1 score, accuracy, micro-averaged 
AUC score, and soft accuracy. We defined soft accuracy as 
an alternative measure of accuracy, where each prediction is 
considered correct if it matches the class of the current slice 
or either of the adjacent slices. We introduced this metric to 
account for the inherent inter-observer variability in slice-
range classification. Given a continuous set of short axis MRI 
slices, the task of determining N slice ranges is equivalent to 
determining N-1 boundaries. During the slice classification, we 
noticed that misidentifying these boundaries by one slice often 
yields acceptable results. Manual inspection of incorrect model 
predictions revealed that most errors fell into the boundary 
cases.

Standard Artificial Intelligence Solution
Images on the left of the diagram are cleansed before training. 
Omitting unusable images that would reduce accuracy of 
trained data (Figure 12).

Figure 12: Neural network. The input nodes are images. The output, 
shown as selection indicating “cancer” or “not cancer” (sometimes 
referred to as healthy)

This reduces training size to instead of arbitrarily increasing 
samples for no apparent reason.

The AI-ML model is defined in the algorithm-nominally using 
any: Python (preferable by authors), R, Rust, Julia, or PyTorch.

During one-time training, this neural model utilizes 
backpropagation. The well-known recursive calculation is a 
standard method to determine weights.

The weights are used after one-off training which is 
classifications. Then, “prediction” is used to provide the 
outputs “cancer” or “not cancer” (which is sometimes referred 
to as “healthy” where the understanding is that the patient 
may have other health related issues). Unlimited predictions 
can be performed.

The training phase uses back propagation in general as follows.

Minimize to a local zero  
 

loss
weights
∂

∂

For the training phase, the neural model is given known inputs 
as images in order to adjust the weights accordingly.

The calculations are simplified as follows. Note confidentiality 
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(AI) ML Model
The model drives the core AI-ML engine. The model defines 
various parameters: Loss, optimiser, metrics, activation, 
convolution, pooling, cross entropy (Table 1).

(AI) ML Training Goal
When the back propagation has backed to the input nodes or 
the data from scanned images then the weights are adjusted 
to a local zero.

Rights to left, backward, as shown in the illustration output to 
input.

The process is repeated for all nodes where the iterations are 
termed epochs.

Upon completion, of this one-time training phase the model 
can be used to “predict” the selection based on the data from 
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image slides without the model knowing the correct selection.
Table 1: (AI) ML Model

Convolution

Dimensions (1D, 2D, 3D)
Kernel Matrix (3 × 3 or 5 × 5 typically)

Stride

Loss
Probabilistic losses

BinaryCrossentropy class
CategoricalCrossentropy class

SparseCategoricalCrossentropy class
Poisson class

binary_crossentropy function
categorical_crossentropy function

sparse_categorical_crossentropy function
poisson function

KLDivergence class
kl_divergence function

Regression losses
MeanSquaredError class

MeanAbsoluteError class
MeanAbsolutePercentageError class
MeanSquaredLogarithmicError class

CosineSimilarity class
mean_squared_error function
mean_absolute_error function

mean_absolute_percentage_error function
mean_squared_logarithmic_error function

cosine_similarity function
Huber class

huber function
LogCosh class

log_cosh function

Hinge losses for “maximum-margin” classification
Hinge class

SquaredHinge class
CategoricalHinge class

hinge function
squared_hinge function

categorical_hinge function

Activation 
ReLU layer

Softmax layer
LeakyReLU layer

PReLU layer
ELU layer

ThresholdedReLU layer

Enhanced Artificial Intelligence-eAI
The enhancements topologically are shown in the context of 

the standard A.I. model. The well-known, standard model is 
not critical. Hidden layers utilize convolution neural networks 
(CNN) (Figure 13).

Figure 13: Neural network with advanced artificial intelligence enhancements indicated by patterned box representing proprietary internal software

As described, training is by severing these sample sets. This 
enables the training phase. This eliminates the risk of over-
fitting. The severed samples are known outputs only for these 
training phases. After training, the prediction-test phase uses 
the adjusted weights. Advanced AI enhancements include 
processing for the high accuracy prediction phase. Prediction 
results are measured by using the severed samples.

The severed fully unknown samples show 100% accuracy. 
Many retests agree by using randomized samples with different 

slices. The severed samples are recalculated. Varying sizes are 
used to test for repeatability.

The testing phase includes standard well-known standard 
training and prediction topologies (Appendix). The prior charts 
indicate the measurements of less than 100% compared to 
genuinely 100% accurate utilizing the advanced enhancements. 
Compared to standard topology results are in the range of 78% 
to 84% accuracies (Figure 14).
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Figure 14: Neural model illustration with details

CONCLUSION
Cancer screening enables early detection of disease and 
optimizes treatment outcome for the patient. In addition to 
humanitarian altruism bias, there are significant business 
incentives in using AI technology for screening. Early treatments 
save money, use cheaper equipment, fewer specialist doctors, 
shorter treatment periods and reduced recurrence rates. 
This translates to significant savings for both the NHS and the 
taxpayer. Breast cancer one of the fastest growing tumors, 
this means that the faster it can be diagnosed, the greater the 
reduction in morbidity and mortality.

Addressing the fastest growing and most lethal forms of breast 
cancer is the need justifying this business’s advanced innovative 
artificial intelligence technology. Accurately diagnosing cancer 
screening as early as improves morbidity and mortality 
possibly enables early treatment enabling increase in chances 
of survival and avoiding the need for surgery and high-cost 
reconstruction.

This technology directly reflects the intentional laid out scan 
differentiate the NHS Five Year Plan and Long-Term Plan by 
addressing the delays in cancer diagnosis (reference to 5-year 
plan) huge lists of patients and define those who conclusively 

Neural Model Components
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have cancer.

Data processed by this technology can represent images 
including but not limited to medical sides.

This technology has demonstrated high accuracy in 
differentiating healthy from cancerous cells on digitized 
histopathology images. This level of accuracy has not been 
matched. In addition, our solution is fast and inexpensive. This 
technology can be applied to detection of many cancers or, for 
that matter, other medical diagnosis.

Potential user can test the technology without relying on 
this evidence paper. We invite potential users to test this 
technology. A potential user submits several image files. Under 
some conditions, no retraining is required.

Some images would be labeled for our feedback. Some would 
only be known by the potential user and not us. We send 
back to the potential user the best prediction of the unknown 
images for them to inspect. This method is easy to implement, 
and the potential user can clearly judge that the technology 
works. It is controlled by the potential user. It relies on their 
potential user’s own data.
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