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Abstract
Climate change has been a threat to food security
challenges. Climate change presents an additional stress on
food security challenges as it affects production of food in
many ways. Among various stresses, drought is a big
concern and rising at an alarming rate with climate change.
Scientific approaches are being tried to understand the
mechanisms of drought stress. The emergence of new
molecular biology approaches and new sequencing as well
as phenotyping platforms good research progress has been
made in regard to drought and drought resistance
mechanisms via identification of quantitative trait loci or
genes responsible for drought tolerance mechanisms
through Qtl mapping, Family based Qtl mapping, Linkage
disequilibrium, Structural and Functional genomics
approaches. Genome wide selection methods have been
used for the current world concern of drought which will
eventually lead to climate resilient crops and will solve the
problem of food insecurity in near future. Huge data are
being derived from genome wide selection (GWS) studies at
the transcriptomics, proteomics and metabolomics levels,
but how efficiently to explore and exploit these data to
extract the essential functional pathways or networks for
genetic improvement of drought resistance remains a
significant challenge.
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Abbreviation
GS: Genomic selection; GWS: Genome wide selection; QTL:

Quantitative Trait Loci; CGs: Candidate genes; AM: Association
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Introduction
One of the major challenges we are facing is to feed ten

billion people by 2050 while at the same time reduce the impact
of environment on global food production. Agriculture in itself

contributes to the anthropogenic 30% of the greenhouse gas
emissions [1-3]. Several mitigation measures should be made
available within agriculture for the reduced emission of
greenhouse gases. The major challenge of having to increase
food production in regard to nutrient deficiencies, increased
water scarcity, and uncertainty due to predicted climatic
changes. One of the serious consequences of climate change is
drought [4,5].

Various abiotic and biotic stresses arise due to climate change
in the climate pattern which might affect the productivity of
cereal. Abiotic stress is quite prominent today. C3 and C4 carbon
fixation are biochemical mechanisms in plants that fix CO2 to
make carbohydrates through photosynthesis. C4 plants will
respond less to increased CO2 levels) [6,7]. Drought is caused by
high temperatures, which effect photosynthetic rates, and
further reducing crop yields. Drought is becoming a serious
problem as a result of climate change. Drought tolerance is
found out to be a complex trait meaning that it is controlled by
many genes with small effect [8-10]. Genomics along with
functional biology are good approaches for genetic dissection of
drought tolerance. To understand the drought response
mechanisms by a plant, we need to understand the genetic basis
and physiology. Here, we will stress on the progress which has
been made for accurate phenotyping as well as genomic assisted
breeding. Studies involved in understanding the mutagenic
nature of complex traits like drought tolerance have also been
focused [11-14].

Climate is Changing Globally
The impact of this change will have serious effects, including

reduced crop yield but also change in vegetation in many areas
in the world. Agriculture also has a serious indirect effect on
climate change [15,16]. Climate change may have beneficial as
well as detrimental effects for agriculture. With the virtually
certain likelihood of warmer and more frequent hot days and
nights, there are projected to be increased insect outbreaks
impacting agriculture, forestry and ecosystems. Changes in
climate models and growing population is threatening food
security as well as agricultural productivity [16-19]. Climate
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change is one of the major reason for the worldwide occurrence
of most osmotic stresses and drought being one of them.

Conventional Breeding for Resistance to
Drought Stress

Greenhouse or field studies of plants are undertaken for the
selection of drought adaptive traits. Selection in field is possible
only in the environment having less rainfall i.e. less than 100 mm
which mainly depends on irrigation because less soil moisture in
the area [20-22]. Maintaining field stress at the flowering time is
the key for rapid improvement of breeding and selection
strategies which has been successful up to some extent; it
requires large investments in land, labor and capital for effective
screening of the progenies as well [23,24].

QTL Mapping Studies for Drought
Adaptive Traits

In various findings and other genetic studies it has been found
that tolerance to stresses like drought is controlled by a large
number of genes or Qtls with small effects. Genomics and
functional biology technologies are new tools for understanding
this complex nature of drought [25-27]. There are many
drawbacks of traditional QTL mapping like developing mapping
population, indentifying markers which are polymorphic,
genotyping, construction of genetic maps, Phenotyping as well
as merging of both phenotypes and genotypes. In order to avoid
such drawbacks "linkage disequilibrium mapping" or association
genetic studies has been suggested. It is one of the methods of
mapping Qtl which takes advantage of historic linkage
disequilibrium to form a link between phenotype and genotype.
The process involves: (1) Selecting a large number of individual
from natural diverse population, (2) Phenotyping, (3) Candidate
gene sequencing, (4) Framing population structure, kinship,
phenotypic and genotyping correlation for linkage
disequilibrium analysis [28-30].

Identification of Genes Associated with
Drought Tolerance

With the success of genome sequencing technologies, several
genome sequence for various model plants and major crop
plants like rice, maize and wheat is now becoming available
which will facilitate the identification of genes involved in
drought tolerance [31,32]. Genome annotation task and
functional biology in major crop species help in recognizing the
CGs for drought tolerance. The genes involved in the drought
tolerance mechanism also called as candidate genes may involve
the regulation of certain transcription factors and protein
kinases during expression of tolerance towards drought. DREB,
bZIP, MYB are some of the main factors involved and are used in
certain molecular breeding platforms [33,34]. Before the
deployment of some candidate genes they need to be validated
which can be done through association analysis, proteomics
studies and other reverse genetic tools like Tilling and Eco-

Tilling. Certain approaches are further discussed by Varshney et
al. (Figure 1) [35].

Figure 1: Candidate gene identification associated with
drought tolerance.

Functional Studies and Transcriptomics
In order to understand the complex nature of drought

tolerance various functional biology studies as well as expression
profiling studies of genes are performed. Functional studies and
proteome analysis are used to study various molecular
responses to drought stress [36]. Expressed sequence tags are
currently being used in the candidate based selection. Scientists
are able to find various genes which responses to drought stress
and also at the same time aid marker development process.
Another approach for identification of drought responsive genes
is differential gene expression. Several genes and proteins that
were thought to be involved in drought resistance mechanism
and the genes with no described homolog were identified
through differential gene expression approach (Table 1) [37,38].

Table 1: Identification of drought responsive genes via functional
genomics and transcriptomics.

Gene Mechanism of tolerance

OSPFA-DSP1 (tyrosine
kinase ) Negatively regulates drought stress responses

Rice OsSDIR1 Enhancer for drought and salt tolerance

Tomato ethylene factor
(ERF) Protein TSRF1

Improved osmotic and drought tolerance in rice
seedling

Rice DREB2A gene TF/Regulatory control

OSNAC1 Regulatory control

ZMNF-YB2 Transcription factor

Os LEA-3-1 Osmoprotectant
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DREB (1A) Regulatory control

HVA (1) Protective Proteins

mTLd Mannitol as osmoprotectant

P5CS osmoprotectant

Sorghum SbDREB2 gene
with stress-induced
promoter CaMV35S or
rd29A

Over expression of OsDREB2A significantly
enhanced drought and salt tolerance of transgenic
rice

ZAT10 Zinc finger

TAPIMP1 Transcription factor

HVCBF4 Transcription factor

HARDY Transcription factor

TPSP Osmotic adjustment

CIPK Protein kinase

ZFP522 C2H2 Motif

NPK1 Map kinase

Marker Aided Selection for Genetic
Improvement of Drought Tolerance in
Crops

Once we have identified the genes responsible for drought
tolerance, the next step is their use/deployment in breeding
programmes for the development of stress tolerance lines/
varieties which nowadays is made possible by the use of
molecular markers whose function is to detect the location of
drought tolerant genes [39,40].

Marker-Assisted Backcrossing (MABC)
Method for Drought Tolerance

Marker-Assisted Backcrossing (MABC) is the most promising
approach which makes use of the markers for identifying and
selecting genes for drought tolerance. MABC is an efficient tool
by which using large population sizes (400 or more plants) for
the backcross F1 generations; it is possible to recover the
recurrent parent genotype using only two or three backcrosses
[41-43]. Many abiotic stresses like drought tolerant high yielding
varieties have been developed in the shortest time span. In
major crops like Wheat, Rice this strategy has been commonly
used. Near isogenic lines (NILs) were developed by introgression
of three root QTLs from CT9993, an upland japonica into IR20, a
lowland indica cultivar using this approach [44,45].

Marker-Assisted Recurrent Selection
(MARS)

In order to overcome some drawbacks of MABC especially
when many genes with minor effect are involved in a complexity
of a trait , the approach of recurrent selection is used which is
one of the population improvement method aiming at
increasing the frequency of desirable alleles is used [46,47].

Here the selection strategy involves F2 population and thus it
increases the frequency of F2 alleles i.e. maximum in
segregating generation, wherein marker selection is done in
every step followed by repeated rounds of intermating and thus
aid in selecting phenotypically outstanding lines [48-50]. Marker
assisted recurrent selection is being used in many crops like
maize and sorghum (Table 2).

Table 2: Examples of MAS Selection in crop plants.

Crop Trait improved No of genes /Qtl
transferred

Rice
Yield and quality Multiple Qtl

Leaf width and grain number 2Major Qtl

Wheat

Root penetration ability 13 Qtl

Grain yield under multi-
environment 1 Major Qtl

Maize
Yield and agronomic traits 14 Qtls

Root architecture traits 15 Qtls

Cotton DR related trait 7 Qtl

Common bean DR related trait Multiple Qtl

Pearl millet Terminal A Major Qtl

Soybean Seed yield 4 Major Qtls

Chickpea Root traits 71 Major Qtls

Pigeon pea Fertility Restoration and
Earliness 4 Major Qtls

Genome-Wide Selection (GWS)/Genomic
Selection

It is a type of marker aided selection which makes use of
genetic markers covering the whole markers (high density
markers) so that all genes/Qtls are in linkage disequilibrium with
at least one the marker [51,52]. It is a novel method of
improving quantitative traits like drought resistance. In this
genomic prediction is based on both genotypic as well as
phenotypic data for further increase in the prediction accuracies
of breeding and genotypic values. Genomic selection uses two
types of population: a training population and a validation/
breeding population [53,54]. The training set is where the
marker effects are estimated; marker effects are estimated
based on the training set using certain statistical methods to
incorporate this information; the genomic breeding value or
genetic values of new genotypes are predicted based only on
the marker effect. The validation set contains the selection
candidates (derived from the reference population) that have
been genotyped (but not phenotyped) and selected based on
marker effects estimated in the training set [55-57].
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Genetic Engineering of Crop Plants for
Drought Tolerance: Role of Transcription
Factors

Stress response may involve stress-responsive and stress-
tolerant genes. Functions like plant adaptation are played by
different TFs which are capable of regulating several
downstream genes essential for protection against drought
[58,59]. TFs are potential candidate genes for developing
drought tolerant plants and regulators of various genes that help
the plants to effectively sustain drought stress. Molecular tools
facilitate the identification of such important genes controlling
traits related to drought tolerance. Apart from the general
regulatory mechanisms, TFs are recorded to be regulated by
miRNAs and vice versa. This phenomenon of TFs and miRNAs
can possibly mediate drought tolerance without disturbing the
phenology modifications. Clear understanding of genetic
network between the miRNAs and its associated TFs could be a
valuable area to identify appropriate TF regulating drought
tolerance [60,61]. Thus detailed studies of differential
expression of miRNAs and their targets in TFs overexpressing
plant model under drought stress are ultimately necessary.
Different crops such as rice, wheat, soybean and maize were
engineered with this stress responsible TF to increase their
tolerance to drought. The transgenic approach using drought
stress associated TF could cover a wide range of genes and help
the growing population to meet food demands. TFs are potential
candidate genes for developing drought tolerant plants and
regulators of various genes that help the plants to effectively
sustain drought stress. Molecular tools facilitate the
identification of such important genes controlling traits related
to drought tolerance [62-65]. Apart from the general regulatory
mechanisms, TFs are recorded to be regulated by miRNAs and
vice versa. This phenomenon of TFs and miRNAs can possibly
mediate drought tolerance without disturbing the phenology
modifications. Clear understanding of genetic network between
the miRNAs and its associated TFs could be a valuable area to
identify appropriate TF regulating drought tolerance. Thus
detailed studies of differential expression of miRNAs and their
targets in TFs overexpressing plant model under drought stress
are ultimately necessary [66,67]. Different crops such as rice,
wheat, soybean, and maize were engineered with this stress
responsible TF to increase their tolerance to drought. The
transgenic approach using drought stress associated TF could
cover a wide range of genes and help the growing population to
meet food demands [68,69].

The gene encoding cold shock protein B (CspB) from Bacillus
subtilis – a soil bacterium–was used for genetic engineering
MON 87460 maize. CspB allows the transgenic maize plant to
react more quickly to drought, slowing its growth and
conserving water, thereby making water available for key plant
functions after the onset of drought stress [70,71]. Based on this
transgenic event, the DroughtGard™ hybrid maize was bred and
released for farming in the USA in 2013.13 Prior to the release,
the company facilitated 250 large-scale on-farm trials (on about
4000 ha) of DroughtGard™ in the western half of the US Great
Plains [72]. Under stress, a DroughtGard™ hybrid used 261 mm

of water from the soil while the control used 338 mm of water
from the soil; i.e., their WUE rates (or the amount of water for
producing 1 bushel or 25.4 kg of maize grains) were 0.59 and
0.44, respectively. At harvest, DroughtGard™ had more grain
yield than non-transgenic maize hybrids with enhanced WUE (up
to 0.4 t ha-1 greater in some locations of the western Great
Plains) [73,74]. In theory, DroughtGard™ can save about 2.5 mm
of water inputs per hectare; i.e., 5 trillion liters of water, which
translates to providing, water to the US city of Denver (Colorado)
for one month.

Conclusion and Future Thrust
With increasing temperature and greenhouse gases the soil

moisture as well as due to less water status in the soil is proving
fatal to crop productivity. We have to look for an integrated
approach i.e. both conventional and molecular approach which
will play an important role in understanding the mechanism of
drought resistance. Approaches like marker aided backcrossing is
not yet proven that strong but when it comes to pyramiding
multiple Qtl/genes into a single cultivar for complex abiotic
stresses like heat stress, drought MARS and GS have been very
effective. Functional genomics made it possible conduct high-
throughput sequencing, genotyping and resequencing, which
aid in identifying the genes that show response to drought stress
tolerance. Most genetic and molecular studies of DR have
focused on the aboveground parts of plants; the underground
parts have received much less attention because of difficult
phenotyping and huge data sets from genome-wide studies and
also the data sets to extract the essential functional pathways or
networks for genetic improvement of drought resistance
remains a significant challenge. Most important challenge is how
to efficiently explore the large data sets derived from genomics,
Expression profiling, proteomics and metabolomics. Integration
of physiology, genomics and breeding is carried out orphan
crops for security of food in many developing countries.
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