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Introduction
BRAT1 (BRCA1-associated ATM activator-1) gene was initially 
cloned by Aglipay et al. in 2006, which they called BAAT1 [1]. This 
ubiquitously expressed gene encodes a protein that interacts 
with the BRCA1 (breast cancer 1) and ATM (ataxia telangiectasia 
mutated) proteins. It is involved in DNA damage response, 
mitochondrial function, cell proliferation, and is necessary for 
protein stability of PIKKs.

As other oncogenes, the BRAT1 gene has been recently 
related to neuronal growth. Hartz mapped the BRAT1 gene 
to chromosome 7p22.3 in 2012 [2], and in the same year, the 
involvement of this gene in brain development was confirmed 
by exome sequencing in patients with lethal and progressive 
epileptic encephalopathy [3]. This syndrome is characterized by 
a progressive encephalopathy with intractable seizures, rigidity, 
progressive microcephaly, dysautonomia, and early lethality.

Next, we will describe the known BRAT1 functions, its role in 
brain development, the result of BRAT1 losses in childhood, and 
the advances supported by NGS in the knowledge of oncogene 
functions and neurodevelopmental disorders.

BRAT1 Functions
BRAT1 was initially isolated as a BRCA1 binding protein, interacting 
with the BRCT domain of BRCA1, a well-known oncogene related to 

tumorigenesis and DNA damage response (DDR) [1]. This BRAT1/
BRCA1 interaction is necessary for BRCA1´s functions. Other 
studies have shown that BRAT1 also interacts with ATM and DNA-
PKs, implicated in DNA repair and DDR in general [1,4,5]. BRAT1 is 
required for ATM Ser phosphorylation; indeed, phosphorylation 
of ATM, cardinal for activation of is catalytic function induced 
by DNA damage, is decreased in BRAT1 knockdown cells. The 
ATM protein is a member of PIKKs involved in DNA repair, cell 
growth, and neural stem cell differentiation. Numerous different 
mutations in the ATM gene have been identified in patients with 
immunodeficiency, leukemia, lymphoma or ataxia-telangiectasia 
[6,7].

BRAT1 is also involved in cell growth and apoptosis [1]. Apoptotic 
activity is increased BRAT1 knockdown mouse embryogenic 
fibroblasts and human osteosarcoma cells. BRAT1 is required for 
cellular proliferation; the loss of BRAT1 expression significantly 
reduces cell proliferation and migration in BRAT1 knockdown 
cancer cell lines. Akt/Erk activity regulates a wide variety of 
cellular processes like cell proliferation, differentiation, survival 
and cell transformation of tumor cells. Akt/Erk´s phosphorylation 
status and function are decreased in BRAT1 knockdown cancer 
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Abstract
BRAT1 (BRCA1-associated ATM activator-1) gene is involved in cell proliferation 
and migration, apoptosis, DNA repair, mitochondrial homeostasis, and mTOR 
signaling. This gene has been recently related to lethal neonatal rigidity and 
multifocal seizure syndrome (MIM# 614498). This syndrome is characterized by 
a progressive encephalopathy with refractory epilepsy, hypertonia, slow head 
growth, and dysautonomia. Brain MRIs and postmortem examinations have 
shown a severe and progressive cerebral and cerebellar atrophy secondary to 
a marked neuron depletion and gliosis in the white matter. The loss of BRAT1 
expression and function due to homozygous or compound heterozygous BRAT1 
mutations justifies this brain atrophy and its consequences. Further extended 
knowledge about BRAT1 functions might lead to new therapeutic options for this 
syndrome and perhaps for cancer treatment too.
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cell lines, suggesting the important function of BRAT1 in these 
cell processes.

In addition, BRAT1 plays an important role in cellular metabolism, 
particularly in regulating mitochondrial functions [8]. Glucose 
consumption, high levels of mitochondrial reactive oxygen 
species, worse mitochondrial membrane potential, reduced 
pyruvate dehydrogenase activity, and diminished production of 
ATP from mitochondria in BRAT1 knockdown cancer cells suggest 
it. These roles of BRAT1 in cell growth and metabolism could 
explain the clinical features of patients with homozygous or 
compound heterozygous BRAT1 mutations.

BRAT1 is required for protein stability of PIKKs, such as ATM, 
DNA-PK, mTOR, and mTOR-related proteins [9]. BRAT1 binds 
to mTORC1 complex and is required for protein stability and 
regulation of mTOR signaling. The mammalian target of the 
rapamycin (mTOR) pathway plays central roles in synaptic 
protein synthesis, and its dysregulation is linked to cancer, 
epilepsy, psychiatric disorders, and neurodevelopmental 
disorders [10,11]. The mTOR pathway is a central regulator of 
cell growth, proliferation, survival, and cap-dependent protein 
translation. In the brain, it plays a cardinal function in dendritic 
spine development and synaptogenesis [12]. mTOR complex 
regulates neuronal protein synthesis and actin cytoskeleton. It is 
involved in different cellular processes like cellular metabolism, 
oxidative stress, autophagy, cell proliferation, differentiation, and 
migration. In the brain, the dysfunction of the mTOR pathway is 
supposed to be associated with atypical neuronal morphology, 
dysfunctional autophagy, defective connectivity, cell death, 
mitochondrial stress, and abnormal metabolism. mTOR complex 
is regulated upstream by several proteins (TSC1, TSC2, PTEN…) 
and controls those processes through its downstream effectors 
(Rho GTPases, 4E-BPs, S6K1 and 2…).

Brain and BRAT1
Numerous cases of intellectual disability, autism and/or 
dysmorphic features, with deletions or duplications including 
BRAT1 gene, have been described in international databases. 
However, all these cases have wider genetic losses or gains 
encompassing other genes. This circumstance and the presence 
of different CNVs in BRATl in normal population suggest 
the low haploinsufficiency of this gene. Consequently, the 
direct and indirect functions of BRATl on cell growth, neural 
cell differentiation and migration, dendritic morphology, 
synaptogenesis, and mitochondrial metabolism could explain 
the important progressive characteristic of clinical features in 
patients with homozygous or compound heterozygous BRAT1 
mutations [3,13-18].

In the last years, homozygous or compound heterozygous 
BRAT1 mutations have been described as a new cause of severe 
progressive encephalopathy with neonatal onset and high 
patient fatality [3,13-18] (Table 1). The pathogenicity of BRAT1 
homozygous mutations has been related to the lethal neonatal 
rigidity and multifocal seizure syndrome (MIM# 614498).

Puffenberger et al. [3] described two unrelated Amish sibships 

with prenatal microcephaly, mild hypoplasia of the frontal 
lobes, multifocal seizures, hypertonia, apnea, and bradycardia 
[3]; postmortem examination revealed a marked neuronal loss 
and gliosis in frontal, occipital and temporal cortex, a reduced 
anterior hippocampus with neuronal loss and gliosis in CA-1 
zone, and scarcity of neurons and abundant Alzheimer Type 
2 astrocytes in the putamen. In the same year, Saunders et al. 
described a new case from Mexico with similar clinical features, 
including microcephaly at birth [16]; two MRI scans within the 
first three weeks of life were normal. This lethal neonatal rigidity 
and multifocal seizure syndrome was later described in Japanese 
siblings, born of unrelated parents, with compound heterozygous 
mutations in BRAT1; these authors described a postnatal 
microcephaly, secondary to cerebral and cerebellar atrophy in 
both cases [15]. The postmortem autopsy of one of them revealed 
a remarkable loss of neurons in the cortex and cerebellum, and 
moderate gliosis in the frontal lobe. Two years later, Srivastava 
et al. communicate another case with a compound heterozygous 
BRAT1 mutations in a patient with an intellectual disability that 
was alive at the age of 8 years; no more clinical features were 
included [19]. Straussberg et al. [17] described two siblings born 
to consanguineous Arab-Muslim parents who have mutations 
the BRAT1 gene, with hypertonia, seizures, progressive mild 
microcephaly, hypertonia, and dysautonomia [17]; however, 
although these two cases showed a postnatal microcephaly, 
brain MRI was normal in both of them. In the last months, five 
new cases have been reported. Mundy et al. described a patient 
with seizures, hypertonia, apneic episodes, and arrested head 
growth who remains alive at 6 years of age; brain MRI showed 
decreased myelination and thin corpus callosum at 3 months, 
and right temporal lobe encephalomalacia and cerebellar and 
vermis hypoplasia at 3 years [14]. Van de Pol et al. described three 
siblings, born to consanguineous parents, the lethal neonatal 
rigidity and multifocal seizure syndrome [18]; brain MRI was 
normal at the age of 2 months and showed severe generalized 
atrophy ten months later in one case; two MRI scans at the age 
of 2 and 3 months revealed mild hypoplasia of cerebellum and 
brainstem, and severe brain atrophy respectively in another 
one; postmortem examination demonstrated a moderate 
neuronal loss and strong reactive gliosis in frontal cortex, reactive 
astrocytes, numerous Alzheimer type 2 astrocytes in underlying 
white matter, and an intense loss of pyramidal neurons and gliosis 
in the CA1 area of the hippocampus. We identified a new case, 
without early lethality and seizures, but with hypertonia, severe 
psychomotor retardation, and postnatal microcephaly (Figure 
1); two timed/spaced out brain MRIs, which were performed at 
the ages of 19 and 48 months, showed moderate progressive 
cerebellar atrophy (Figures 2 and 3) [13]. 

Although other genes different to BRAT1 could contribute to 
the pathogenesis of the lethal neonatal rigidity and multifocal 
seizure syndrome, the presence of this syndrome in three pairs 
of siblings with confirmed homozygous BRAT1 mutations, and the 
rapid description of new cases with compound heterozygous or 
homozygous mutations in the last years support its causality. All 
patients suffered from seizures, hypertonia, dysautonomia and/
or psychomotor retardation. Despite to the presence of severe 



ARCHIVOS DE MEDICINA
ISSN 1698-9465

2016
Vol. 1 No. 1: 9

3© Under License of Creative Commons Attribution 3.0 License 

Neuro-Oncology: Open Access
ISSN 2572-0376

Pu
ff

en
be

rg
 e

t 
al

.
N

=2
Sa

un
de

rs
 e

t 
al

.
N

=1
Sa

it
su

 e
t 

al
.

N
=2

Sr
iv

as
ta

va
 e

t 
al

.
N

=1
 

St
ra

us
sb

er
g 

et
 a

l.
N

=2

M
un

dy
 e

t 
al

.
N

=1
Va

n 
de

 P
ol

 e
t 

al
.

N
=3

Fe
rn

án
de

z-
Ja

én
 

et
 a

l.
N

=1
Cl

in
ic

al
 F

ea
tu

re
s

D
ys

m
or

ph
ic

 
fe

at
ur

es
-

+
+

-
+

+
-

M
ic

ro
ce

ph
al

y
+ 
(a
t b

ir
th
)

+ 
(a
t b

ir
th
)

+ 
(p
os
tn
at
al
)

+ 
(p
os
tn
at
al
)

+
+ 
(p
os
tn
at
al
)

+ 
(p
os
tn
at
al
)

Ri
gi
di
ty
/

H
yp

er
to

ni
a

+
+

+
+

+
+

+

Se
iz

ur
es

+
+

+
+

+
+

-
D

ys
au

to
no

m
ia

 
(a
pn

ea
, 

br
ad

yc
ar
di
a)

+
+

-
+

+
+

-

Br
ai
n 
M
RI

Ce
re

br
al

 a
tr

op
hy

+ 
(m

ild
 h
yp

op
la
si
a 

of
 fr
on

ta
l l
ob

es
)

-
+

-
+

+ 
(2
 c
as
es
)

-

Ce
re

be
lla

r 
at

ro
ph

y
-

-
+

-
+

+ 
(2
 c
as
es
)

+

D
ie

d
Be

fo
re
 a
ge
 4
 

m
on

th
s

A
ge

 5
 m

on
th

s
A

ge
s 

1 
ye

ar
 a

nd
 9

 
m
on

th
s 
(1

st
 c
as
e)
 a
nd

 
3 
m
on

th
s 
(2

nd
 c
as
e)

A
liv

e 
at

 8
 y

ea
rs

Be
fo
re
 a
ge
 6
 

m
on

th
s

A
liv

e 
at

 6
 

ye
ar

s
A

liv
e 

at
 5

2 
m

on
th

s

BR
AT

1 
m
ut
ati

on
H

om
oz

yg
ou

s
c.

63
8_

63
9i

ns
A

H
om

oz
yg

ou
s

c.
45

3_
45

4i
ns

AT
CT

TC
TC

Co
m

po
un

d 
he

te
ro

zy
go

us
c.

17
6T

>C
 a

nd
 

c.
96

2_
96

3d
el

Co
m

po
un

d 
he

te
ro

zy
go

us
c.

63
8_

63
9i

ns
A

 
an

d 
c.

80
3+

1G
>C

H
om

oz
yg

ou
s

c.
11

73
de

lG

Co
m

po
un

d 
he

te
ro

zy
go

us
c.

29
4d

up
A

 
an

d 
c.

19
25

C>
A

H
om

oz
yg

ou
s

c.
63

8d
up

Co
m

po
un

d 
he

te
ro

zy
go

us
c.

15
64

G
>A

 a
nd

 
c.

63
8d

up

Po
st

m
or

te
m

 
ex
am

in
ati

on
N

eu
ro

na
l l

os
s 

an
d 

gl
io

si
s

1 
ca

se
:

ne
ur
on

 d
ep

le
tio

n 
an

d 
gl

io
si

s 
in

 th
e 

w
hi
te
 m

att
er

1 
ca

se
:

ne
ur

on
 lo

ss
 a

nd
 

at
ro

ph
y 

of
 th

e 
w
hi
te
 m

att
er

Ta
bl

e 
1 
Cl
in
ic
al
 fe

at
ur
es
, b

ra
in
 M

RI
 fi
nd

in
gs
 a
nd

 B
RA

T1
 m

ut
ati

on
s.



ARCHIVOS DE MEDICINA
ISSN 1698-9465

2016
Vol. 1 No. 1:9

4 This article is available in: http://j-neurooncology.imedpub.com/archive.php

Neuro-Oncology: Open Access
ISSN 2572-0376

clinical features, cerebral MRIs only demonstrated partial or total 
atrophy in 8 of 12 cases, as in other progressive encephalopathies; 
in contrast, postmortem examination revealed marked neuron 
depletion and gliosis in the white matter in the 3 cases in which 
the autopsy was performed.

As we previously described, BRAT1 has important roles in cell 
proliferation processes, including cellular growth, differentiation, 
and tumorigenicity, and required for mitochondrial functions [8]. 
The BRAT1 suppression secondary to homozygous or compound 
heterozygous BRAT1 mutations may deteriorate cell growth and 
migration, influence mitochondrial homeostasis [8], and induce 
neuronal atrophy [3,16,18]. The presence of mild to severe 
arrested head growth in all cases with the neonatal rigidity and 
multifocal seizure syndrome and the presence of cerebral and/or 
cerebellar atrophy in brain MRI studies in 9 of 11 patients suggest 
the BRAT1 impact in cellular proliferation. The neuronal loss and 
gliosis of the cortex and white matter, the sparing of basal ganglia 
and the cells depletion of the cerebellum observed in the three 
cases with necropsia, confirm this hypothesis.

These features and the normal results of routine laboratory 
screening and extensive neurometabolic tests in the previously 
reported cases insinuate a more relevant role of BRAT1 in cellular 
proliferation and apoptosis compared with mitochondrial function. 
The clinical features of the lethal neonatal rigidity and multifocal 
seizure syndrome are shared with mitochondrial diseases [20]. 
Central nervous system, skeletal muscle, and heart are some of 
the most reliant on mitochondrial energy production and are the 
most symptomatic to mitochondrial defects. Intractable seizures, 
hypertonia, progressive encephalopathy, and dysautonomia may 
be observed in children with mitochondrial diseases. Besides, 
energetic ictal and electrical epileptogenic activity during brain 

development are believed to participate in the progressive 
cognitive deterioration or regression [21]. This suggests that the 
role of BRAT1 in mitochondrial function may also be important in 
the pathogenesis of this encephalopathic syndrome [8].

NGS, Oncogenes and Brain
NGS, including large gene panels, whole-exome sequencing (WES) 
and whole-genome sequencing (WGS), is rapidly advancing the 
precision of medical practice in diagnosis, medical management, 
systemic investigation and prognosis [22]. Whole exome 
sequencing was recently included in clinical practice and provides 
coverage of more than 95% of exons which contain approximately 
85% of disease-causing or disease-predisposing mutations. 
Although NGS cannot replace a careful clinical evaluation, it is 
clearly changing the diagnostic algorithms.

Targeted NGS panels have been shown to increase the diagnostic 
yield in epilepsy, a suspected inherited ataxia, hereditary 
neuropathies, and myopathies [23-26]. However, in some 
patients, the neurological phenotype may mislead the clinician 
to select the wrong multi-gene panel. WES provides a potential 
solution to these problems. In neurodevelopmental disorders, 
particularly in intellectual disability and pervasive developmental 
disorders, diagnostic rates with WES have varied in part due to 
differences in the types of patients from one study to another, 
with rates of up to 50% [27-29].

In addition, WES has enabled the identification of previously 
undiagnosed diseases, novel presentations of known diseases, 
and specifically the discovery of new syndromes. NGS in health 
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care has been directly involved in a rapid increase in the number 
of new monogenic diseases reported to OMIM. Indeed, in the last 
years, hundreds of new de novo and familial risk genes have been 
recently identified in neurodevelopmental disorders because 
of NGS. Dixon-Salazar et al. demonstrated the presence of 
twenty-two probably causative genes not previously associated 
with disease in the study of 118 probands with a diagnosis of 
a pediatric-onset neurodevelopmental disease in which most 
known causes had been excluded [30]. The diagnostic rate of WES 
in epileptic encephalopathies (EE) is also important. Veeramah 
et al. described the presence of de novo mutations in genes of 
known or plausible clinical causality in seven of ten children with 
refractory epilepsy and other neurological problems (autism, 
intellectual disability, EE) [31]; as in other neurological diseases, 
WES has allowed the knowledge of other causative genes in EE. 
Although the diagnostic yields of NGS in progressive neonatal-
onset encephalopathies have not been established yet, some 
authors have suggested that NGS will replace the current 

biochemical method of newborn screening or recommended the 
use of WGS in neonatal intensive care units, for the diagnostic 
approach of complex cases [16].

NGS has also been successfully applied to evaluate susceptibility, 
diagnosis, treatment, and prognosis of cancer [32-34]. Targeted 
gene panels have been more commonly used in clinical practice. 
Indeed, different guidelines (American Society of Clinical 
Oncology, National Institute for Health and Care Excellence) have 
recommended the use of different panels or genetic studies 
according to the type of cancer and the presence of family 
history [35]. Although the diagnostic rates of these panels range 
from 20 to 50%, comparable to that of WES or WGS according to 
some authors, WES has allowed defining previously undescribed 
mutations in cancer as in neurological disorders [36-38].

The advances in the knowledge of the genetic architecture that 
underlies neurologic and oncologic problems have shown the 
extensive overlap between risk genes for autism and cancer 
[39,40]. Chromatin remodeling and DNA repair factors (CHD family, 
ARID1B…), proteins involved in histone methylation (EHMT1, 
EHTM2, KMT2C…) or ubiquitination (UBE3A, CUL3, TBL1XR1…) 
have been related to cancer, neurodevelopmental disorders and 
even known syndromes (ARID1B in Coffin-Siris syndrome, EHMT1 
in Kleefstra syndrome, UBE3A in Angelman syndrome, TBL1XR1 in 
Pierpont syndrome…) [41-43]. Transcription factors (FOXP family, 
ADNP…) are also involved in both cancer, neuronal development, 
autism and intellectual disability (ADNP is related with 
Helsmoortel-Van Der AA syndrome) [44]. Other genes involved in 
signal transduction pathways regulating nuclear changes (PTEN, 
mTOR, RAS oncogene family, AKT…) are implicated in cancer, 
brain development, and autism; they are the cause of known 
syndromes too (PTEN in Bannayan-Riley-Ruvalcaba syndrome, 
HRAS in Costello syndrome, AKT1 in Proteus syndrome...) [45-47].

These genetic mutations associated with cellular proliferation 
could affect prenatal and postnatal brain development, resulting 
in progressive encephalopathies, intellectual disabilities, 
pervasive developmental disorders or brain malformations. 
These aberrations could contribute to a greater susceptibility to 
tumors during adult life [40]. However, although some studies 
have demonstrated a higher tumor risk in patients with autism, 
other studies have paradoxically shown a decreased cancer rate 
in these cases [48-50].

Conclusions
NGS studies are supporting the advances in knowledge of 
underlying causes of tumorigenesis, normal brain development, 
and neurodevelopmental disorders. It is particularly interesting 
how some oncogenes are simultaneously involved in those 
processes. Genetic mutations of oncogenes linked to cell growth 
could modify prenatal and postnatal cerebral development, 
causing autism, psychomotor retardation, progressive 
encephalopathies or cortical dysplasias.

BRAT1 is directly or indirectly involved in cell growth, apoptosis, 
DNA repair, mitochondrial metabolism, and regulation of 

Figures 2 On the upper side, MRI study performed on a 
19-month-old boy (2a-2b). 2a: Midsagittal T1-weighted image 
exhibits a severe vermian diffuse atrophy (arrow) with fourth 
ventricle enlargement. The corpus callosum is normal, and the 
brainstem has a normal size. 2b: Axial T2-weighted image shows 
enlarged interfolia spaces (arrow) and moderately reduced volume 
of both cerebellar hemispheres. 

On the upper side, MRI study performed on a 
19-month-old boy (2a-2b). 2a: Midsagittal T1-
weighted image exhibits a severe vermian diffuse 
atrophy (arrow) with fourth ventricle enlargement. 
The corpus callosum is normal, and the brainstem 
has a normal size. 2b: Axial T2-weighted image shows 
enlarged interfolia spaces (arrow) and moderately 
reduced volume of both cerebellar hemispheres. 

Figure 2

Figures 3 On the down side, MRI study performed at 48 months 
old (3a-3b). 3a: Midsagittal T1-weighted image evidences a more 
severe vermian diffuse atrophy (arrow) with enlargement of the 
supravermian cistern and a wide fourth ventricle. The corpus 
callosum and the brainstem remain normal. 3b: Axial T2-weight-
ed image shows severe symmetric atrophy of the cerebellar 
hemispheres (arrow).

On the down side, MRI study performed at 48 months 
old (3a-3b). 3a: Midsagittal T1-weighted image 
evidences a more severe vermian diffuse atrophy 
(arrow) with enlargement of the supravermian 
cistern and a wide fourth ventricle. The corpus 
callosum and the brainstem remain normal. 3b: Axial 
T2-weighted image shows severe symmetric atrophy 
of the cerebellar hemispheres (arrow).

Figure 3
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Figure 4 BRAT1 interactions, BRAT1 direct and indirect functions, and the consequences of 
the loss of these functions.

BRAT1 interactions

BRCA1

Cellular Growth/ Differentiation

Progessive  encephalopathy

Refractory epilepsy

Hypertonia

Arrested head growth

Dysautonomia

Brain atrophy

Neuronal loss

Gliosis

Death

Mitochondrial  metabolism

Apoptosis

DNA repair

Apoptosis

Cellular Migration

Neuron morphology

DNA-PKs

Akt/ErkATM

BRAT1

mTORC1

BRAT1 functions BRAT1 loss

BRAT1 interactions, BRAT1 direct and indirect functions, and the consequences of the loss of these functions.Figure 4

mTOR signaling (Figure 4). BRAT1 mutations are the cause of a 
severe progressive encephalopathy characterized by intractable 
epilepsy, hypertonia, arrested head growth, dysautonomia, 
and death. The loss of BRAT1 expression due to homozygous or 
compound heterozygous BRAT1 mutations leads to a deficient 
neuronal growth and migration, mitochondrial dysfunction, and 
cause neuronal atrophy. Defects in cell growth and differentiation 

might influence both brain development and neoplasm; some 
drugs targeting oncogenic pathways might also contribute to the 
treatment of these problems.
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