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ABSTRACT
The linearized gap equation is the basis for the microscopic derivation of the second order termsin
the Ginzburg-landau free energy expansion. However, close to the boundary these second order

terms do not have the same form, since the kernel is changed due to quasi-particle scattering.

INTRODUCTION

The linearized gap equation in the form is the $&si the microscopic derivation of the second
order terms in the Ginzburg-Landau free-energy [E¥cluding the gradient and fourth order term,
we find that the corresponding part of the Ginzhdarglau equation is

n(r) = %fkij (r,n) d*rn; ()

=Qij n; (1) 11

This is a local limit, assuming that the variatmim is slow compared to the rangeof the kernel
{&o << &(T)}. In the homogeneous region;; @ always diagonal and proportional to the unitrira
for one single representation. However, close ¢éolthundary these second order terms do not have
the same form, since the kernel is changed duaidsigparticle scattering. To add these boundary
corrections in their most general form to the GungbLandau functional, we shall again use a group
theoretical method. The boundary lowers locallygpatial symmetry of the system. The remaining
symmetry G’is a subgroup of the bulk symmetry gr@pwvhich we represent further simply by the
corresponding point groups G(G’). This means thatcan add further terms to the Ginzburg Landau
free energy which are invariant under this lowensyetry and are restricted to the boundary.

A convenient way to find the invariant terms isderive the coupling terms of the order

parameter to the normal vector n of the surfacettierstrain tensor [2]. Since the normal vector
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n(written in the crystal lattice basis) belongshe vector representationd)(I"s for Oy, I'; O I's for
D4n and By), we can derive these terms by the decomposifion o

D' ™Or* ar 1.2
whererl'is the representation of the order parameter. Becthe vector representation has negative
parity, the exponent m has to be an even integer.
In table 1. a list of these terms is given thestnietion to the surface is represented Byfanction
located there. The real extension is of the ordef,avhich is negligibly small compared to the
length scale, (T) in the Ginzbury-Landau regime close to Tc. Wwuld mention that invariant
terms of the form

D' ™Or* ar’ +c.c, 1.3
also exit, combining two different representati@rsl these can lead to admixtures of the order
representations. However, for simplicity, we negteem in further consideration without loss of the
main surface properties we want to describe. Toptelm the boundary conditions we have to
consider the variation of the Ginzbury-Landau tlyedt.x: in the external magnetic field, however,
we shall concentrate on the case of zero field)is Tdondition is obtained from varitational
minimization if we add the term 2/4)Jd® Hex — B to the free energy.
TABLE I: Surface terms of the Ginzburg-Landau the® in (a) Cubic symmetry, where n is the
surface normal vector and @re real constants describing the surface pr@ser{b) hexagonal

symmetry and (c) tetragonal symmetry.

Irreducible

representatiof B(n ;n)
(a)

Y anf’

" [0 + @{(n - n)(n° = nd)(n° = nd} Inf?

rs' a(inaf + naf) + l@n - né = n2(n2f - naf)

+3(n° - nA)(N1* N2 +N1n2¥)

Mos a(ns + haf + haf’)
+ gln(2Naf - N2l - e ) + nA(2INaf - nal - )
+ 12Nl - N - 2f*)]
+ glny N(N2* N3 +N2N3*) + Nz N(Ng* N1 +Nane* )
+ncny(N1* N2 +N1n2* )

+
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(b)
M [aa(né + 1) + @nnf?
ro* [aa(né + 1) + @n,” + g ny (0 - 3n%) Inf?
rs* [(n® + 1) + @n,” + g ny (0 - 3n%) Inf?
ra [u(n + n?) + @n,” + gy n (ny? - 3n) Y
56 [m(n + 1) + @n A1 Inaf + h2f) + gl - nA(Nnaf + hal)
+2n ny(N1* N2 + N1n2* )l
()
M [aa(né + 1) + @nnf?
r* [ + 1) + @n.” + ga(ne iy (0 - n) YInf?
rs* [ + 1) + @n” + ga(n’ - n,)7Inf
Mt [m(né + 1) + @n” + g nd - nAinf
rs* [0 + n?) + @I e + Naf) + g - n2)( Nl + Naf’)

+ Gk Ny(N1* N2 +N1n2* )]

THEORETICAL CONSIDERATION AND CALCULATION

The surface free energy has the form
Fsr={[g1(0¢ + 1% + @ 1( N1 + Naf) + & - 0 (I + N2l®) + 6 (k n)(N1* N2 +nanz* )}
o[n. (r — )], 1.4
where  is a point on the boundary. It is easy to seetti@thoice of coefficient;g gs= g:|2) 0 and
0= a’¢o> 0 reproduces the result for specular scatteringda the dimension of energy per unit
volume and is defined by the second order coeffici (T) =a’'(T/Tc — 1);¢, takes the spatial
extension of the kernel K into account],
For a surface perpendicular to n= (1, 0, 0) we find

Fst= 2a1/N1/°3(x) 1.5
The component); is suppressed at the surface. To give an approgis@ution of the boundary
problem in the Ginzburg-Landau region we considsugerconductor with the homogeneous phase
AK) =gy k; (kx * i) No AT). The magnitude of, derived from the minimization of the
corresponding free energy is

noMF=-A(T)

4031 -B2) +Bs 1.6

with the free energy density
fo= A (T) o (MF 1.7
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Approximationn; by ijno| = constant, and varying the free energy with @esfo 1)1 (x)|, including

the gradient terms, we obtain the differential dqu

x| + 251 Hal(of - naf )= 0 1.8

With the surface terms we find the boundary condsi

[ - kedXINa| + 2gin1/(Nof? - al) = O, [KllrllIEX(Pl ZeAX]]— 1.9

We parameterized the order parameter |n1|exp(il]) and separated it into a real and an imaginary
part. The second equation corresponds to the hataralition well know from the conventional
Ginzburg-Landau theory that no supercurrent isnadlb to flow perpendicular to the surface for the
complete expression of the current. The first eéquawith equation (1.8) gives the analytic solution

()| = holtanh|

and

\/ZE
Xo="g5 \/2 smH[ \/2591] 1.10

with €2 (T) = 2B1|no(T)[/k1 as the coherence length in the x-direction. Téssilt is restricted to the
range 4> &.°. In this analysisn(0)| is finite and can be connected with an exteatzm length b
defined bydx|n1(o)|= h1(0)|/b, which leads to b=Rg = ki/2&,. The length b is of the ord&g and
therefore negligibly small compared wg(r). [5]

To calculate the surface energy F, per unit areansert equation (1.10) in the free energy. By a

partial integration and using equation (1.8) an@)lwe find

Fs =f(F — fo)dx =Bul (ol — Nal)dx =75 BoE N[’ 1.10
Gengrally, the surfat(:)e energy is proportionaht¢T)® — |T — Tcf? whereas the bulk energy has a
guadratic temperature dependence [T —3’9EcT,his different T dependence is due to the faat
the region of reduced condensation energy at tHacguis confined within a lengéh — ho|*, which
changes with temperature |T — T¢][4]

This solution does not take into account thatwworder parameter components are coupled
by the fourth order terms 82 - 4B, + B3)Insf In2f* for A= *Y,. Hence in general the component
also varies at the surface. Roughly we can sayithatodulus is lowered if (& - 43, + 33) <0 and
enhanced if (B: - 432+ B3) > 0. The analytic solution of the complete problenmiore complicated.
However, the given solution is a good approach utite condition [B; - 43, + B3] << 2B3; [note

that 231 < (231 — 432+ B3 < 2B; is required for the stability of the state in et (1.6).
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RESULTSAND DISCUSSION

Considering the direction n= (1, 1, @/ it is useful to diagonalize the bilinear form eéquation
(1.4) by

Ni1=1 Qi+tnzandn2=1 Qi-n2) 1.12
V2 V2

This yields the basis gap functions

B ayK) = iogk, (ke + K)V2
and 1.13

B oK) = ioyk, (ke - k)2,
which are the states classified by the parity dpa@rgp(n). The componemy,'is suppressed, anyl,
has similar properties to theserpfabove. Finally, in the case of n=(0, 0, 1), thdfere term treats
both components equally, reconfirming the earlesutt. These last two examples can be treated
similarly to the first case. However, one has tegken mind that in unconventional superconductors
the coherence lengf{n) is in general direction dependent.[3]
As we have seen, the group theoretical treatmerdpjgopriate for analyzing the problem of
specularly reflecting surfaces. It is, however, engeneral, since it is based only on the symmetry
properties of the surface. Hence this formulati@m de used for all surfaces with scattering
properties that do not further lower its symmetfis is the case if the scattering behaviour is
homogeneous parallel to the surface, considered lemgth scal€,. Therefore diffuse scattering
may also be included. The phenomenological parasmgtelepend on the quality of the surface and

describe the scattering of the Cooper pairs obthace.

CONCLUSION

In the A phase of superfluid. He the geometry ef ¢hnfining vessel has a significant influence on

the superfluid phase. At the wall the angular mawnenis aligned parallel to the surface normal

vector n. Since the direction of the angular momenis continuously degenerate, the bulk phase is
determined by the shape of the surface. A simffaceis not expected in anisotropic superconducts.
The degeneracy of the superconducting phases tiszne therefore a certain phase is fixed in the
bulk region. Thus no defect, and so no surface,hzaue a long-range influence except just at the
phase transition. Additionally, in the case of hefarmion superconductors, the range of the surface
influence is rather short, because the zero tertyreraoherence lengty is of the order of 10x the

lattice constant, so no essential effect on themagmducting phase is expected, except for very thi

54
Pelagia Research Library



Ekpekpo Arthur et al Adv. Appl. Sci. Res., 2010, 1 (3):50-55

films. On the other hand, the boundary conditioesveéd here can lead to magnetic effects if the
superconducting phase breaks time-reversal symmetry
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