

Biomedical Contributions of Animal Biotechnology to Disease Research and Therapy

Sneha Iyer*

Department of Animal Biotechnology, Northfield University, Vermont, United States

DESCRIPTION

Animal biotechnology has played an important role in advancing biomedical research by providing biological systems that closely reflect human physiology. Animals have long been used to study disease processes, but biotechnological methods have expanded their value by allowing precise genetic, cellular and physiological modifications. These approaches support the study of complex disorders, improve drug development and contribute to the production of therapeutic agents. Through controlled modification and observation, animal biotechnology continues to support medical science in ways that cannot be achieved through cell culture or computational models alone. One of the primary contributions of animal biotechnology to biomedical research is the development of disease models. Animals modified to express specific genetic traits or pathological features enable researchers to study disease progression under controlled conditions. These models are especially useful for investigating neurological disorders, metabolic diseases, immune dysfunction and cardiovascular conditions. By observing how diseases develop and affect different organ systems, researchers gain insights into biological mechanisms that influence diagnosis and treatment strategies.

Genetically modified animals allow researchers to analyse the role of individual genes in health and disease. By disabling or altering specific genes, scientists can observe resulting physiological changes and identify genetic factors that contribute to disease susceptibility. These studies help clarify how genetic variation influences immune responses, tissue development and cellular communication. Such knowledge supports the identification of molecular targets for therapeutic intervention and helps improve the accuracy of

drug development programs. Animal biotechnology has also supported the evaluation of new therapeutic compounds. Before clinical use in humans, drugs must be tested for safety, dosage and biological effects. Animal models provide a whole-system environment where interactions among organs, immune responses and metabolic processes can be observed. This step is essential for identifying potential side effects and understanding how compounds are processed in living organisms. The use of biotechnologically developed animal models improves the relevance of preclinical studies and reduces uncertainty in later clinical stages.

Another significant biomedical application involves the production of therapeutic proteins. Certain animals are modified to express human-compatible proteins in their milk, blood or other biological fluids. These proteins can be harvested and purified for use in treating medical conditions such as immune deficiencies, hormonal disorders and blood clotting abnormalities. Producing complex proteins in animal systems allows proper biological activity and structural stability, which can be difficult to achieve using synthetic or microbial systems alone. Animal biotechnology has contributed to vaccine development by enabling the study of immune responses in living organisms. Modified animals allow researchers to observe how immune systems react to antigens, supporting the design of effective vaccines. These studies provide information on antibody production, immune memory and safety profiles. Such research has supported progress in preventing infectious diseases affecting both humans and animals.

Tissue engineering and regenerative medicine also benefit from animal biotechnology. Animal models are used to study tissue repair or organ regeneration and stem cell behavior. These studies help identify conditions that support tissue

Received: 17-February-2025; Manuscript No: IPJASLP-25-23245; **Editor assigned:** 20-February-2025; PreQC No: IPJASLP-25-23245 (PQ); **Reviewed:** 06-March-2025; QC No: IPJASLP-25-23245; **Revised:** 13-March-2025; Manuscript No: IPJASLP-25-23245 (R); **Published:** 20-March-2025; DOI: 10.36648/2577-0594.9.1.42

Corresponding author: Sneha Iyer, Department of Animal Biotechnology, Northfield University, Vermont, United States; E-mail: sneha.iyer@northfield.edu

Citation: Iyer S (2025) Biomedical Contributions of Animal Biotechnology to Disease Research and Therapy. J Animal Sci.9:42.

Copyright: © 2025 Iyer S. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

growth and functional recovery. Understanding these biological processes supports the development of treatments for injuries, degenerative conditions and organ failure. Animal systems provide essential insights into how complex tissues interact and respond to regenerative therapies. Ethical responsibility remains a central aspect of biomedical research involving animals. Ensuring humane treatment, minimizing discomfort and maintaining proper living conditions are essential requirements in all research activities. Institutional oversight committees and regulatory frameworks guide ethical practices and ensure compliance with welfare standards. These measures promote responsible scientific progress while respecting animal well-being. Animal biotechnology also supports personalized medicine research by enabling the study of genetic variability and treatment response. By modelling different genetic backgrounds, researchers can explore how individuals respond differently to therapies. This information supports the development of more precise treatment approaches and improves understanding of variability in therapeutic outcomes.

Education and interdisciplinary collaboration are vital for advancing biomedical applications of animal biotechnology. Researchers trained in genetics, veterinary science, molecular biology and ethics work together to ensure accurate interpretation and responsible application of findings. Continued investment in training and research infrastructure supports innovation while maintaining ethical standards.

CONCLUSION

Animal Biotechnology has made significant contributions to biomedical research and therapy by enabling disease modelling, drug evaluation, therapeutic protein production and immune system analysis. These applications support medical progress by improving understanding of disease mechanisms and treatment responses. Through responsible use and ethical oversight, animal biotechnology continues to provide valuable insights that enhance human and animal health while advancing scientific knowledge.