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Bearing MLL Translocation

Abstract 
Background: Chromosomal translocations of the mixed-lineage leukemia 
gene (MLL; tMLL) correlate with resistance to therapy and an extremely poor 
prognosis for individuals with Acute Myeloid Leukemia (AML). The underlying 
mechanisms are still unknown. This study aims to identify the key genes and the 
potential molecular mechanisms involved in MLL rearrangement in AML using a 
bioinformatics approach.

Methods: The gene expression profiles from 15 individuals with partial tandem 
duplication of the MLL gene (MLL-PTD)-AML and 10 tMLL-AML samples were 
downloaded from the Gene Expression Omnibus (GEO) database. The Differentially 
Expressed Genes (DEGs) were selected and functional enrichment analyses 
were performed. The Protein-Protein Interaction (PPI) network was established 
and visualized in Cytoscape. The hub genes were identified by CytoHubba and 
significant modules were screened out by Molecular Complex Detection (MCODE). 

Results: We categorized a total of 885 DEGs comprising 330 upregulated and 
555 downregulated genes. The majority of DEGs were significantly enriched for 
calcium ion transmembrane transport, embryonic skeletal system morphogenesis 
and cell proliferation processes. Several pathways were enriched, including those 
associated with PI3K-Akt signaling and insulin resistance. We identified 32 hub 
genes and screened out 2 modules. 

Conclusion: The genes we have identified in this study may represent potential 
biomarkers for MLL-rearranged AML and contribute to the development of novel 
therapeutic strategies.
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Abbreviations
ACTR2: Actin Related Protein 2 Homolog; AML: Acute Myeloid 
Leukemia; ARPC3: Actin Related Protein 2/3 Complex subunit 3; 
ARPC5: Actin Related Protein 2/3 Complex subunit 5; BCR: BCR 
activator of RhoGEF and GTPase ; BP: Biological Process; CC: Cell 
Component; CTTN: Cortactin; CXCR4: C-X-C motif chemokine 
Receptor 4; DAVID: Database for Annotation, Visualization and 
Integrated Discovery; DEGs: Differentially Expressed Genes; GEO: 
Gene Expression Omnibus; GO: Gene Ontology; HOXB: Homeobox 
B; ISN: Insulin Signaling Network; KEGG: Kyoto Encyclopedia of 

Genes and Genomes; MCODE: Molecular Complex Detection; 
MF: Molecular Function; MLL: Mixed-Lineage Leukemia gene; 
MRC2: Mannose Receptor C, type 2; mTOR: Mammalian Target 
protein Rapamycin; PM: Plasma Membrane; PPI: Protein-Protein 
Interaction; PTD: Partial Tandem Duplication; RUNX2: RUNX 
family transcription factor 2; STRING: Search Tool for the Retrieval 
of Interacting Genes/Proteins.

Introduction
Acute Myeloid Leukemia (AML) belongs to a class of highly 
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nlm.nih.gov/geo/). The gene expression profile was based on 
the GPL570 platform (Affymetrix Human Genome U133 Plus 
2.0 Array, Agilent Technologies, Santa Clara, CA, USA). The 
GSE15013 dataset contained a total of 25 samples, including 10 
taken from AML patients with tMLL, and 15 taken from AML 
patients with MLL-PTD. These samples were divided into two 
groups in order to select for DEGs using GEO2R online software.

Data processing
GEO2R (https://www.ncbi.nlm.nih.gov/geo/geo2r/) performs 
comparisons between original submitter-supplied processed 
data tables, using the GEO query and limma R packages from 
the Bioconductor project, to identify DEGs across experimental 
conditions. In this study, GEO2R was used to analyze the DEGs 
in the comparison between tMLL and MLL-PTD samples. 
P-value<0.01 and |logFC|≥1 were set as threshold conditions 
for DEG selection.

GO ontology and KEGG pathway enrichment 
analysis
The Database for Annotation, Visualization and Integrated 
Discovery (DAVID, Version 6.8, https://david.ncifcrf.gov/) is a 
public online tool for functional annotation and enrichment 
analysis, used to reveal biological functions of large lists of 
genes. In order to determine the function of the DEGs we had 
identified, Gene Ontology (GO) and the Kyoto Encyclopedia 
of Genes and Genomes (KEGG) pathway enrichment analysis 
features of the DAVID tool were used. P-values<0.05 were 
considered as statistically significant.

PPI network generation and module analysis
Protein-Protein Interaction (PPI) networks for the identified 
DEGs were generated using the Search Tool for the Retrieval 
of Interacting Genes/Proteins (STRING, http://string-db.org/). 
STRING is a biological database and web resource of known 
and predicted protein–protein interactions, which can help 
to systematically deconvolute cellular processes. Herein, an 
interaction score of >0.7 (high confidence) was considered as a 
cut-off standard. The PPI network was visualized using Cytoscape 
(Version 3.5.0, http://www.cytoscape.org/), an open source 
bioinformatics platform for visualizing molecular interaction 
networks, and using in combination with gene expression 
profiles and other type of data, and re-checked the nodes in 
PPI network by several algorithms on CytoHubba. Hub genes 
were ranked by twelve different algorithms on CytoHubba. We 
screened out the top 32 genes with a high degree of connectivity 
by MCC and labeled them hub genes. To analyze the potential 
module relationships within the PPI network, we mapped the 
PPI network onto Cytoscape and used Cytoscape’s Molecular 
Complex Detection (MCODE) application. The MCODE analysis 
was used to screen out modules from the PPI network with a 
degree cutoff=2, node score cutoff=0.2, k-score=2 and max. 
depth=100. GO ontology and KEGG pathway analyses were also 
made to inform module discoveries.

heterogeneous hematologic malignancies, involving the abnormal 
proliferation of protocells in peripheral blood and bone marrow. The 
majority of AML patients bear abnormal chromosomal karyotypes. 
Cytogenetic abnormalities such as chromosomal translocations 
involving the mixed-lineage leukemia gene (MLL) are associated 
with a poor prognosis for AML patients [1]. A small subset of AML 
patients develops treatment-induced secondary leukemias, in 
which the MLL gene may be rearranged to generate Partial Tandem 
Duplication (PTD), amplification, or fused to a partner gene 
through a chromosomal translocation (tMLL) [2]. MLL was shown 
to be involved in more than 100 repeated translocations, mainly 
implicating nine translocation partners (AF4, AF9, ENL, AF10, AF6, 
ELL, AF1P, AF17 and SEPT6), accounting for almost 90% of total 
MLL rearrangements. It was reported that 15%-20% of all pediatric 
AML cases were caused by chromosome 11q23 translocations [3]. 
Moreover, acute leukemias harboring MLL translocations accounted 
for 10% of all acute leukemias in humans [4]. The presence of an 
MLL rearrangement is predictive of early relapse and an extremely 
poor prognosis in relation to many other types of leukemia [5-8].

Armstrong SA and his colleagues demonstrated that MLL 
translocations are associated with a distinct gene expression profile, 
distinguishable from typical AML [9]. It was reported that the gene 
expression characteristics common to MLL rearranged in AML 
patients can identify abnormal genes related to MLL translocation 
specificity [10]. Based on gene expression profiling, tMLL was shown 
to be a distinct subtype of AML. It was demonstrated that MLL 
fusion genes were different in MLL-PTD that displayed molecular 
heterogeneity, and a clear expression signature was identified 
for cases with MLL chimeric fusion genes, irrespective of lineage. 
However, no significantly distinct clustering was determined for 
the MLL-PTD and tMLL subtypes of AML [11]. Given these findings, 
we performed bioinformatics analysis to explore whether there 
were any Differentially Expressed Genes (DEGs) between the two 
subsets of AML described, rather than defining separate expression 
signatures for tMLL and MLL-PTD.

With the development and the pervasive application of microarray 
technology, gene expression profiling analyses have become 
extremely valuable in biological research. Huge data sets can be 
generated, capable of providing abundant high-throughput data 
for gene mining. Bioinformatics analysis represents a powerful tool 
for the comprehensive analysis of cancer-associated genes. In this 
study, we aimed to identify DEGs by comparing MLL-PTD and tMLL 
data from the GEO database. Functional and pathway enrichment 
analyses were applied to explain the main characteristics. By 
analyzing the Protein-Protein Interaction (PPI) network, hub 
genes were identified and the underlying signaling pathways were 
explored. Our data could potentially contribute to the identification 
of novel prognostic factors and inform new treatment options for 
AML patients bearing MLL translocation.

Methods
Gene expression profile data
The gene expression profile dataset (GSE15013) was downloaded 
from the Gene Expression Omnibus database (https://www.ncbi.
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Results
Identification of DEGs
GEO2R analysis showed that a total of 885 DEGs were extracted 
from the GSE15013 dataset, comprising 330 upregulated and 555 
downregulated genes. The top ten most significantly upregulated 
DEGs were MECOM, SENP6, AK2, F12, KCTD15, XAGE1B///
XAGE1E, APOC4-APOC2///APOC4///APOC2, PYGM, LOC401068 
and ADGRG6, while the top ten most significantly downregulated 
DEGs were DST, KMT2A, NPR3, LCA5, LINC00982, FNBP1L, CDH4, 
NPR3, NFIX and TNFRSF21 (Table 1).

GO function and KEGG pathway enrichment 
analysis
The GO Biological Process (BP) function of the DAVID tool 
revealed that the upregulated DEGs were significantly enriched 
in calcium ion transmembrane transport, cilium assembly 
and osteoblast differentiation processes. The downregulated 
DEGs were mainly involved in hematopoiesis, cell proliferation, 
apoptosis, angiogenesis, phosphorylation of adhesion proteins, 
signal transduction, bone formation and gene expression 
regulation processes. For the GO Cell Component (CC) analysis, 

ID Gene Symbol Log FC P-Value

Upregulated

226420_at MECOM 5.904 1.51E-07
214790_at SENP6 1.7 1.81E-06
212173_at AK2 1.277 8.17E-06
205774_at F12 1.632 1.11E-05
222664_at KCTD15 2.786 1.28E-05
220057_at XAGE1B///XAGE1E 4.801 2.04E-05

204561_x_at APOC4-APOC2///APOC4///APOC2 4.647 2.69E-05
205577_at PYGM 2.162 2.81E-05

1557754_at LOC401068 2.49 2.95E-05
233887_at ADGRG6 3.679 3.52E-05

Downregulated

204455_at DST -2.884 3.80E-07
226981_at KMT2A -1.405 4.86E-07
219789_at NPR3 -4.09 5.11E-07

229953_x_at LCA5 -3.696 5.42E-07
236360_at LINC00982 -2.594 6.08E-07

215017_s_at FNBP1L -2.828 7.41E-07
206866_at CDH4 -3.064 1.14E-06
219054_at NPR3 -3.49 2.04E-06
227400_at NFIX -2.655 2.60E-06
218856_at TNFRSF21 -2.732 3.33E-06

Abbreviations: DEGs: Differentially Expressed Genes; AML: Acute Myeloid Leukemia; tMLL: Mixed-Lineage Leukemia gene with translocation; MLL-
PTD: Mixed-Lineage Leukemia gene with a Partial Tandem Duplication; FC: Fold Change; MECOM: MDS1 and EVI1 complex locus; SENP6: SUMO 
specific peptidase 6; AK2: Adenylate Kinase 2; F12: coagulation factor XII; KCTD15: Potassium Channel Tetramerization Domain containing 15; 
XAGE1B///XAGE1E: X antigen family member 1B///X antigen family member 1E; APOC4-APOC2///APOC4///APOC2: APOC4-APOC2 readthrough 
(NMD candidate) ///apolipoprotein C4/// apolipoprotein C2; PYGM: Glycogen Phosphorylase, muscle associated; LOC401068: uncharacterized 
LOC401068; ADGRG6: Adhesion G protein-coupled receptor G6; DST: Dystonin; KMT2A: lysine methyltransferase 2A; NPR3: Natriuretic Peptide 
Receptor 3; LCA5: LCA5, lebercilin; LINC00982: Long Intergenic Non-protein Coding RNA 982; FNBP1L: Formin Binding Protein 1 like; CDH4: Cadherin 
4; NPR3: Natriuretic Peptide Receptor 3; NFIX: Nuclear Factor IX; TNFRSF21: TNF Receptor Superfamily member 21.

Table 1: The most significantly upregulated and downregulated DEGs in tMLL-bearing AML samples (top ten are shown for each type of DEGs, tMLL 
versus MLL-PTD, p-value<0.01).

Category Term Count p-Value

BP

GO:0070588~calcium ion 
transmembrane transport 8 0.000702436

GO:0042384~cilium assembly 6 0.019114071
GO:0001649~osteoblast 

differentiation 5 0.040364225

CC
GO:0002102~podosome 4 0.002693786

GO:0005905~clathrin-coated pit 5 0.003948801
GO:0030478~actin cap 2 0.046153863

MF

GO:0005262~calcium channel 
activity 5 0.01125974

GO:0005509~calcium ion 
binding 16 0.034628231

GO:0030246~carbohydrate 
binding 7 0.036097492

GO:0004522~ribonuclease A 
activity 2 0.048843496

Abbreviations: GO: Gene Ontology; DEGs: Differentially Expressed 
Genes; BP: Biological Process; CC: Cell Component; MF: Molecular 
Function.

Table 2: GO functional enrichment analysis of upregulated DEGs 
(p-value<0.05).
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the upregulated DEGs were significantly enriched in cytoskeleton 
components, while the downregulated DEGs were distributed 
throughout the cell. The analysis of Molecular Function (MF) 
revealed that, the upregulated DEGs were significantly enriched 
in genes with roles in cell energy, metabolism maintenance, and 
calcium ion binding, while the downregulated DEGs were involved 
in collagen binding, calcium ion binding, metal ion binding and 
transcriptional activity. Data from GO functional enrichment 
analyses of upregulated and downregulated DEGs are shown in 
(Tables 2 and 3), respectively.

Additionally, KEGG pathway enrichment analysis showed 
that the upregulated DEGs were mainly associated with the 
insulin signaling pathway. The down regulated DEGs however, 

were enriched in twelve pathways, such as those involved in 
hematopoietic cell lineage development and PI3K-Akt signaling 
(Table 4).

PPI network generation and Hub gene 
identification
Using STRING analysis, a total of 520 PPI relationships between 
identified DEG products were obtained (Figure 1). A threshold 
degree >15 for the default filter was set to identify key genes. 
Using Cytoscape to visualize the PPI network analysis, 32 hub 
genes were selected, including ACTR2, ARPC3, ARPC5, CTTN, 
FNBP1L and APP (Figure 2).

Category Term Count p-value

BP

GO:0048704~embryonic skeletal system morphogenesis 8 0.000010698

GO:0008283~cell proliferation 20 0.000153053

GO:0030198~extracellular matrix organization 14 0.000165077

GO:0045944~positive regulation of transcription from RNA polymerase II promoter 36 0.000659188

GO:0001525~angiogenesis 13 0.001835319

CC

GO:0005887~integral component of plasma membrane 56 0.000020763

GO:0005886~plasma membrane 116 0.00002489

GO:0009986~cell surface 27 0.000030858

GO:0045211~postsynaptic membrane 12 0.003224684

GO:0070062~extracellular exosome 74 0.007621354

MF

GO:0005518~collagen binding 6 0.007546994

GO:0005509~calcium ion binding 25 0.012526355

GO:0046872~metal ion binding 57 0.016719123

GO:0003700~transcription factor activity, sequence-specific DNA binding 30 0.023490364
GO:0001077~transcriptional activator activity, RNA polymerase II core promoter proximal region sequence-specific 
binding 11 0.023632956

Abbreviations: GO: Gene Ontology; DEGs: Differentially Expressed Genes; BP: Biological Process; CC: Cell Component; MF: Molecular Function.

Table 3: GO functional enrichment analysis of downregulated DEGs (top five are shown for each category, p-value<0.05).

Category Term Description Count p-Value
Upregulated hsa04910 Insulin signaling pathway 5 0.049250182

Downregulated

hsa04640 Hematopoietic cell lineage 9 0.000780907
hsa05200 Pathways in cancer 18 0.007980125
hsa04512 ECM-receptor interaction 7 0.01420232
hsa04974 Protein digestion and absorption 7 0.014962551
hsa04810 Regulation of actin cytoskeleton 11 0.021577969
hsa04151 PI3K-Akt signaling pathway 15 0.025592846
hsa05100 Bacterial invasion of epithelial cells 6 0.032323678
hsa05205 Proteoglycans in cancer 10 0.039012569
hsa04666 Fc gamma R-mediated phagocytosis 6 0.042460154
hsa04727 GABAergic synapse 6 0.04431619
hsa04510 Focal adhesion 10 0.045668072
hsa04144 Endocytosis 11 0.048546008

Abbreviations: KEGG: Kyoto Encyclopedia of Genes and Genomes; DEGs: Differentially Expressed Genes.

Table 4: KEGG pathways enrichment analysis of DEGs (p-value<0.05).
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Module analysis
In order to detect significant modules in the PPI network, we 
used the MCODE plug-in. The top two significant modules in 
MCODE with a score of ≥ 10 and nodes ≥ 10 were selected from 
the PPI network, including Module A (MCODE score=13.00 with 
13 nodes) and Module B (MCODE score=12.11 with 19 nodes) 
(Figure 3). Biological process enrichment analysis performed 
using DAVID software revealed that Module A was involved mainly 
in endocytosis, the ephrin receptor signaling pathway, positive 
regulation of actin filament polymerization and, the cell projection 
morphogenesis process. Meanwhile, Module B was largely 
associated with signal transduction, cellular communication, and 
cellular response to stimuli, inflammatory responses, platelet 
activation and the coagulation process (Figure 4). KEGG pathway 
enrichment analysis showed that these two modules were for the 
most part connected with bacterial invasion of epithelial cells, 

 
The visualization analysis of 885 DEGs in the PPI 
network generated by Cytoscape.
Note: 520 PPI relationships were obtained between 
the 885 DEGs identified. The blue circles represent 
the DEGs in the PPI network, while the lines show 
the interactions between the DEGs. The red squares 
showed more significant genes, according degree more 
than 15 by default filter set as threshold.
Abbreviations: DEGs: Differentially Expressed Genes; 
PPI: Protein-Protein Interaction.

Figure 1

 
The 32 hub genes in the PPI network with high 
confidence.
Note: Hub genes were screened out in the PPI 
network using CytoHubba and visualized in STRING. 
Each circle represents a different hub gene, and 
the interconnecting lines represent the interaction 
between these hub genes.
Abbreviations: PPI: Protein-Protein Interaction; 
STRING: Search Tool for the Retrieval of Interacting 
Genes/Proteins.

Figure 2

 
The significant modules were screened out from the 
PPI network.
Note: (A) Module A was selected out the following 
parameters (MCODE score=13.00 and nodes=13). (B) 
Modules B was selected out the following parameters 
(MCODE score=12.11 and nodes=19). The circles 
represented the different genes present in the two 
modules, and the interconnecting lines show the 
interactions between these genes.
Abbreviations: MCODE: Molecular Complex Detection; 
PPI: Protein-Protein Interaction.

Figure 3
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endocytosis, and calcium and chemokine signaling pathways 
(Figure 5).

Discussion
In recent years, there has been an increased emphasis on 
individualized and targeted therapy for Acute Myeloid Leukemia 
(AML) patients. However, the potential for chromosoma 
mutation and recombination processes (such as demonstrated 

by 11q23, t (6;9), and other genetic abnormalities) has meant 
that, the prognosis for AML patients remains poor and existing 
treatments still lack efficacy [12]. Even with the arrival of 
improved treatment options such as allogeneic hematopoietic 
stem cell transplantation, the translocation of the mixed-lineage 
leukemia (tMLL) gene presents a huge challenge in the treatment 
of leukemia. AML patients harboring tMLL typically receive 
a relatively poor prognosis and are at an elevated risk of early 

Figure 4 The GO biological process enrichment analysis of modules A and B.
Note: (A) The GO biological process enrichment analysis of Module A. (B) The GO biological process enrichment analysis of Module 
B. The vertical axis represents the different biological process revealed by GO analysis of the two modules, and the horizontal axis 
shows the gene counts for the corresponding biological processes. P-value<0.05.
Abbreviation: GO: Gene Ontology.
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relapse. It is therefore important to explore the mechanisms of 
tMLL in AML for the development of novel therapeutic strategies. 
Recently, gene expression profiling analysis has been widely used 
to reveal abnormal gene expression patterns related to AML, with 
the aim of identifying novel diagnostic and therapeutic targets.

In this study, 15 MLL-PTD and 10 tMLL-AML patient samples 
were selected from the GEO dataset of GSE15013. As a result, 
885 DEG genes were identified, including 330 upregulated and 
550 downregulated genes. To further understand the characters 
of these DEGs, we conducted GO functional and KEGG pathway 
analyses. 

The functional enrichment analysis showed that the upregulated 
and downregulated DEGs were enriched in different roles 
in cell life processes. Among the genes in upregulated DEGs 
functional enrichment, mannose receptor C, type 2 (MRC2) 
is related to collagen turnover and cancer prognosis, and have 
been confirmed it played a vital role in Foxp3+ regulatory T 
cells in local dysfunctional immune environment [13]. Kuo 
YH and his colleagues discovered back in 2009 that RUNX2 
could be induced acute myeloid leukemia in cooperation with 
Cbfβ-SMMHC in mice [14]. Subsequently, Schnerch et al. [15] 
reported RUNX2 was upregulated during leukemogenesis in an 
AML patient with an inherent RUNX2 haploinsufficiency and 
cleidocranial dysplasia. These insightful research findings along 
with microarray data point to an important role for RUNX2 in the 
development and progression of AML. Nevertheless, among the 
genes in downregulated DEGs functional enrichment, HOXB gene 
seemed to play an important role in biological processes. HOX 
homeobox genes play a role in both the early stem cell function 
as well as in later stages of hematopoietic differentiation, and 
that perturbations of HOX genes expression can be leukemogenic 
[16,17]. It has been presented those four HOXB genes (HOXB2, 
B3, B5 and B6) expression values were significantly differ between 
MLL-PTD and tMLL cases [2]. It is reasonable to believe that HOXB 
genes play a crucial biological role in AML and may be a potential 
biomarker for prognosis and therapeutic target.

Our analyses revealed that the majority of the key genes were 
down-regulated. Actin related protein 2 homolog (ACTR2), actin 
related protein 2/3 complex subunit 3 (ARPC3) and actin related 
protein 2/3 complex subunit 5 (ARPC5) are known to be the 
major constituents of the ARP2/3 complex, which is located at 
the cell surface and is essential for the regulation of cell shape 
and motility through lamellipodial actin assembly and protrusion 
[18]. The ARP2/3 complex is important for cell migration both 
in normal and malignant tumor cells [19-20]. In addition, 
alternatively spliced transcript variants of ARPC3 have been 
identified. It was reported that ARPC3 is linked to adipogenesis 
and lipid accumulation when bound to the ARPC3 promoter-
associated CpG site [21]. ARPC5 has been shown to be involved 
in cell migration and invasion in head and neck squamous cell 
carcinoma [22]. Furthermore, ARPC5 may affect the proliferation 
of myeloma cells via the mammalian target protein rapamycin 
(mTOR) C1 signaling pathway [23]. Numerous studies have shown 
that another hub gene, cortactin (CTTN), may regulate the actin 

cytoskeleton and thus participat in cellular movement, adhesion, 
polarization, contraction and other related processes [24-26]. 
CTTN is overexpressed in breast cancer [27], hepatocellular 
carcinoma [28], gastric carcinoma [29] and head and neck 
squamous cell carcinomas [30]. The aberrant regulation of this 
gene also contributes to tumor cell invasion and metastasis and 
may serve as a prognostic factor and potential therapeutic target. 
In addition, a CTTN polymorphism may significantly increase 
cancer susceptibility. Some studies have indicated that the CTTN 
g.-9101C>T polymorphism may influence lymph node-positive 
colorectal and gastric cancer [31-32]. In Chronic Lymphocytic 
Leukemia (CLL) cells, CTTN is a checkpoint molecule at the 
intersection of BCR activator of RhoGEF and GTPase (BCR) and 
C-X-C motif chemokine receptor 4 (CXCR4) signaling pathways, 
thereby regulating malignant cell migration and the progression 
of leukemia [33]. Considering that the aforementioned genes 
may impact on the migration, invasion or proliferation of tumor 
cells, we hypothesize that these genes may also be involved 
in the tumorigenesis and metabolism of AML bearing MLL 
translocations. Further experiments will be necessary to explore 
this relationship in more detail.

Another important gene APP, which encodes the amyloid 
precursor protein, was identified among the hub genes. APP is 
located on 21q21.3 and is involved the pathogenesis of Alzheimer's 
disease and Down’s syndrome [34]. APP is mainly expressed in 
the brain but can also be expressed in non-neuronal tissues. An 
increasing number of studies have reported that APP may be 
involved in the growth of various cell types under physiological 
and pathological conditions. It has been demonstrated that APP 
overexpression in oral squamous cell carcinoma [35], pancreatic 
cancer [36], thyroid cancers [37], prostate cancer [38], and AML 
harboring complex karyotypes or t (8;21) [39,40], promoted 
cancer cells to proliferate and metastasize, negatively effecting 
disease prognosis. Furthermore, APP may cooperate with c-KIT 
mutation/overexpression in the regulation of cell apoptosis in 
AML1-ETO-positive leukemia via the PI3K/Akt signaling pathway, 
implying that APP could be considered as a new biomarker for 
targeted therapy [41]. Although APP is closely related to the 
tumorigenesis of leukemia, its specific function and mechanism 
of action have not yet been completely determined in tMLL-
bearing AML, and further experiments will need to be performed.

Pathway analysis may provide more accurate information about 
genetic biological functions relationship than GO analysis. Here, 
we found that the KEGG pathway of upregulated DEGs was 
enriched in genes belonging to the insulin signaling pathway, and 
the downregulated DEGs were concentrated in 12 pathways, one 
of which was the PI3K/Akt signaling pathway. Recent studies have 
demonstrated that the PI3K/Akt signaling pathway is frequently 
activated in AML patients and plays an important role in the 
proliferation, survival and drug resistance of human AML cell 
lines [42]. In addition, metabolic targeting of the PI3K/Akt/mTOR 
signaling pathway has been extensively studied as an anticancer 
strategy [43]. Clinical studies of metabolic intervention in AML 
patients with isocitrate dehydrogenase mutations have shown 
promising results [44]. The insulin signaling pathway is involved 
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in a series of diseases, including cancer. The well-characterized 
Insulin Signaling Network (ISN) [45] comprises proteins with 
crucial roles in cell proliferation and death, linked with a cell 
population model and applied to data of a cell line of AML treated 
with a mammalian target of rapamycin inhibitor with antitumor 
activity [46]. Currently, it is unclear whether the PI3K/Akt and 
insulin signaling pathways are involved in AML patients bearing 
tMLL. Further studies are needed to explore the roles of the DEGs 
associated with these signaling pathways.

In order to further our understanding of DEG function in tMLL-
bearing AML, two modules were determined by MCODE. 
Through functional enrichment, these modules were shown to 
be largely involved in the bacterial invasion of epithelial cells, 
endocytosis and calcium as well as chemokine signaling pathways. 
Endocytosis is defined as the process of macromolecule uptake 
across the Plasma Membrane (PM) and is involved in both the 
terminations of receptor signal transduction [47] and initiation 
of certain signaling cascades [48]. The interplay between signal 
transduction and endocytosis affects cancer progression, as 
the changes in survival, proliferation, and migration signals 
are critical for metastasis. Numerous publications document 
relationship between "defective" endocytosis and cancer-
associated mutations, translocations, or altered expression levels 
of genes implicated in cancer-linked endocytosis mechanism 
[49]. Moreover, changes in the nature of both the calcium and 
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Conclusion
In summary, our study showcases preliminary research into the 
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of 885 DEGs and 32 hub genes were selected by bioinformatics 
analysis. Of these, the key genes, ACTR2, ARPC3, ARPC5, CTTN 
and APP may be implicated in tumor progression and could 
potentially represent promising prognostic biomarkers and 
therapeutic targets for tMLL-AML patients. However, further 
experimental evidence is required to build on our promising data.

Acknowledgement
This study was support by the National Natural Science Foundation 
of China (No. 81371879).

Author Contributions
Yongjin Tang and Donghong Lin raise the conception and design 
the program. Yongjin Tang and Jinyuan Zheng download and 
proceed the data, while Xiaomeng Fu and Yang Chen visualize the 
data. Yongjin Tang write the original draft and all authors revises 
the article.



2019
Vol.5 No.2:1

9© Under License of Creative Commons Attribution 3.0 License         

Biomarkers Journal
ISSN 2472-1646                                                                                    

complex and formins. Annu Rev Biophys Biomol Struct 36: 451-477.

19. Suraneni P, Rubinstein B, Unruh JR, Durnin M, Hanein D, et al. (2012) 
The Arp2/3 complex is required for lamellipodia extension and 
directional fibroblast cell migration. J Cell Biol 197: 239-251.

20. Rauhala HE, Teppo S, Niemelä S, Kallioniemi A (2013) Silencing of 
the ARP2/3 complex disturbs pancreatic cancer cell migration. 
Anticancer Res 33: 45-52.

21. de Toro-Martín J, Guénard F, Tchernof A, Deshaies Y, Pérusse L, et 
al. (2016) A CpG-SNP located within the ARPC3 gene promoter is 
associated with hypertriglyceridemia in severely obese patients. Ann 
Nutr Metab 68: 203-212.

22. Kinoshita T, Nohata N, Watanabe-Takano H, Yoshino H, Hidaka H, 
et al. (2012) Actin-related protein 2/3 complex subunit 5 (ARPC5) 
contributes to cell migration and invasion and is directly regulated by 
tumor-suppressive microRNA-133a in head and neck squamous cell 
carcinoma. Int J Oncol 40: 1770-1778.

23. Xiong T, Luo Z (2018) The expression of actin-related protein 2/3 
complex subunit 5 (ARPC5) expression in multiple myeloma and its 
prognostic significance. Med Sci Monit 24: 6340-6348.

24. Bougnères L, Girardin SE, Weed SA, Karginov AV, Olivo-Marin JC, et 
al. (2004) Cortactin and crk cooperate to trigger actin polymerization 
during shigella invasion of epithelial cells. J Cell Biol 166: 225-235.

25. Daly RJ (2004) Cortactin signalling and dynamic actin networks. 
Biochem J 382: 13-25.

26. Van Rossum AG, Moolenaar WH, Schuuring E (2006) Cortactin affects 
cell migration by regulating intercellular adhesion and cell spreading. 
Exp Cell Res 312: 1658-1670.

27. Dedes KJ, Lopez-Garcia MA, Geyer FC, Lambros MB, Savage K, et al. 
(2010) Cortactin gene amplification and expression in breast cancer: 
a chromogenic in situ hybridisation and immunohistochemical study. 
Breast Cancer Res Treat 124: 653-666.

28. Zhao G, Huang ZM, Kong YL, Wen DQ, Li Y, et al. (2013) Cortactin 
is a sensitive biomarker relative to the poor prognosis of human 
hepatocellular carcinoma. World J Surg Oncol 11: 74.

29. Xie HL, Li ZY, Gan RL, Li XJ, Zhang QL, et al. (2010) Differential gene 
and protein expression in primary gastric carcinomas and their 
lymph node metastases as revealed by combined cDNA microarray 
and tissue microarray analysis. J Dig Dis 11: 167-175.

30. Fantozzi I, Grall D, Cagnol S, Stanchi F, Sudaka A, et al. (2008) 
Overexpression of cortactin in head and neck squamous cell 
carcinomas can be uncoupled from augmented EGF receptor 
expression. Acta Oncol 47: 1502-1512.

31. Lee SY, Kang DB, Park WC, Lee JK, Chae SC (2012) Association of CTTN 
polymorphisms with the risk of colorectal cancer. J Korean Surg Soc 
82: 156-164.

32. Kim DY, Lee JH, Kim KY, Kang DB, Park WC, et al. (2015) Association 
between genetic polymorphisms in cortactin and susceptibility to 
gastric cancer. Ann Surg Treat Res 89: 74-80.

33. Martini V, Gattazzo C, Frezzato F, Trimarco V, Pizzi M, et al. (2017) 
Cortactin, a lyn substrate, is a checkpoint molecule at the intersection 
of BCR and CXCR4 signaling pathway in chronic lymphocytic 
leukaemia cells. Br J Haematol 178: 81-93.

34. Yoshikai S, Sasaki H, Doh-ura K, Furuya H, Sakaki Y (1990) Genomic 
organization of the human amyloid beta-protein precursor gene. 
Gene 87: 257-263.

35. Ko SY, Lin SC, Chang KW, Wong YK, Liu CJ, et al. (2004) Increased 
expression of amyloid precursor protein in oral squamous cell 
carcinoma. Int J Cancer 111: 727-732.

36. Hansel DE, Rahman A, Wehner S, Herzog V, Yeo CJ, et al. (2003) 
Increased expression and processing of the alzheimer amyloid 
precursor protein in pancreatic cancer may influence cellular 
proliferation. Cancer Res 63: 7032-7037.

37. Krause K, Karger S, Sheu SY, Aigner T, Kursawe R, et al. (2008) Evidence 
for a role of the amyloid precursor protein in thyroid carcinogenesis. 
J Endocrinol 198: 291-299.

38. Takayama K, Tsutsumi S, Suzuki T, Horie-Inoue K, Ikeda K, et al. (2009) 
Amyloid precursor protein is a primary androgen target gene that 
promotes prostate cancer growth. Cancer Res 69: 137-142.

39. Baldus CD, Liyanarachchi S, Mrózek K, Auer H, Tanner SM, et al. 
(2004) Acute myeloid leukemia with complex karyotypes and 
abnormal chromosome 21: amplification discloses overexpression of 
APP, ETS2, and ERG genes. Proc Natl Acad Sci USA 101: 3915-3920.

40. Yu G, Yin C, Jiang L, Xu D, Zheng Z, et al. (2018) Amyloid precursor 
protein has clinical and prognostic significance in AML1-ETO-positive 
acute myeloid leukemia. Oncol Lett 15: 917-925.

41. Yu G, Yin C, Jiang L, Zheng Z, Wang Z, et al. (2016) Amyloid precursor 
protein cooperates with c-kit mutation/overexpression to regulate 
cell apoptosis in AML1-ETO-positive leukemia via the PI3K/AKT 
signaling pathway. Oncol Rep 36: 1626-1632.

42. Martelli AM, Nyåkern M, Tabellini G, Bortul R, Tazzari PL, et al. 
(2006) Phosphoinositide 3-kinase/Akt signaling pathway and its 
therapeutical implications for human acute myeloid leukemia. 
Leukemia 20:911-928.

43. Hauge M, Bruserud O, Hatfield KJ (2016) Targeting of cell metabolism 
in human acute myeloid leukemia--more than targeting of isocitrate 
dehydrogenase mutations and PI3K/AKT/mTOR signaling. Eur J 
Haematol 96: 211-221.

44. Ward PS, Patel J, Wise DR, Abdel-Wahab O, Bennett BD, et al. 
(2010) The common feature of leukemia-associated IDH1 and 
IDH2 mutations is a neomorphic enzyme activity converting alpha-
ketoglutarate to 2-hydroxyglutarate. Cancer Cell 17: 225-234.

45. Thong FS, Dugani CB, Klip A (2005) Turning signals on and off: GLUT4 
traffic in the insulin-signaling highway. Physiology (Bethesda) 20: 
271-284.

46. Bertuzzi A, Conte F, Mingrone G, Papa F, Salinari S, et al. (2016) 
Insulin signaling in insulin resistance states and cancer: a modeling 
analysis. PLoS One 11: e0154415.

47. Grandal MV, Madshus IH (2008) Epidermal growth factor receptor 
and cancer: control of oncogenic signaling by endocytosis. J Cell Mol 
Med 12: 1527-1534.

48. Platta HW, Stenmark H (2011) Endocytosis and signaling. Curr Opin 
Cell Biol 23: 393-403.

49. Schmid SL (2017) Reciprocal regulation of signaling and endocytosis: 
implications for the evolving cancer cell. J Cell Biol 216: 2623-2632.


