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ABSTRACT 
 
All forces throughout the different branches of physics are ultimately derived from the Principle 
of Conservation of Energy, from the equation F=dE/dl, or force=rate of change of energy over 
distance. Different disciplines derive equations from this to simplify their calculations. In 
electrostatics, however, the derivation of electrostatic forces from the energy conservation 
principles is rarely seen, and consequently the classical Lorentz force equation F=q (E + vxB) 
can be erroneously applied in circumstances where its application violates this principle. This 
discussion paper analyses the Lorentz force equation by a rigorous analysis of the Principle of 
Conservation of Energy, and identifies situations where the Lorentz equation violates that 
Principle. It identifies the limits over which the Lorentz force equation is valid, and discusses 
how the exceptions need to be handled. 
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INTRODUCTION 
 

The Lorentz force equation [1] deals with the force on a charged particle when subjected to 
electric and magnetic fields. It is generally given as... 
 
F=q (E + vxB) 
 
...where E is the electric field vector, B is the magnetic field vector, v is the particle velocity, x is 
the vector cross-product operator, q is the charge, and F is the vector force generated on the 
particle. At the same time, for energy to be conserved, we must obey the equation... 
 
F=dU/dL 
 
This describes the force F experienced when potential energy U changes over distance dL. 
 
This paper analyses the Lorentz force equation by a rigorous analysis of the Principle of 
Conservation of Energy, and shows that there situations where the equation cannot apply, since it 
violates that principle. The electrostatic forces created within a system of charged particles are 
not caused directly by the effect on point charges of an electric field, but indirectly through 
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changes in the energy densities of electric fields when charges are brought together. This creates 
forces from the classic equation F=dU/dL where F is force, U is the potential energy and L is 
length.  
 

MATERIALS AND METHODS 
 

Consider the first part of the Lorentz force equation (the electrostatic part) [1] - there are three 
conditions to consider. 
1. Where the equation applies. 
2. Where it does not apply, in that it claims there is no force where energy conservation expects 

a force. 
3. Where it does not apply, in that it claims there is a force when energy conservation expects 

no force. 
 
1. Where the Lorentz force equation applies 
Consider a pair of distributed electric charges q1 and q2 whose electric fields extend to infinity, 
as happens with electrons and protons. Separate them by a distance L and chose the co-ordinates 
so that one charge is at [-L/2,0] and the other at [L/2,0]. 
 

 
 

Figure 1 
 
Since each charge’s field extends to infinity their fields interact over all space. At any one 
specific point in space each charge will provide its own vector electric field E1 and E2 
respectively. Each charge would in isolation have an associated energy density at this point in its 
field given by:- 
 
dU/dv = ε.|E1|

2/2 
dU/dv = ε.|E2|

2/2 
 
(Here ε is the permittivity, U is the potential energy, and dU/dv is the energy associated with 
that volume of space.) The individual fields will add vectorialy at this point to give a resultant 
electric field ER with associated energy density ε.|ER|2/2. Now if the resultant energy density is 
less than the sum of the individual “in isolation” energy densities, bringing the charges together 
in this arrangement has reduced the energy at that point, and this is associated with attractive 
forces at that point in space; if the resultant energy density is more, it takes work to move the 
charges into this arrangement and so this is associated with repulsive forces.  
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We can take the first’s electric field strength at a distance r1 from the centre of it as q1/4πεr1

2 and 
the second’s field at a distance r2 from it as q2/4πεr2

2, with q1 and q2 being the respective 
strengths of the charges. From this we can look at how the energy density changes from the “in 
isolation” value at this point. By subtracting the “in isolation” energy density from all values we 
get the potential energy; this is zero at infinite separation and positive or negative when the 
charges are brought together. The potential energy density at a point in space for a separation L 
is then... 
 
dU/dv = ε0(|ER|2 – |E1|

2 – |E2|
2)/2 

 
To find the total potential energy at a separation L, integrate over all space. Because of its 
symmetry we can simply multiply by a half-rotation round the q1-q2 axis, and then integrate over 
the other two axes... 
 
U=(πε0/2) ∫∫ (|(E1x + E2x)|

2 + |(E1y + E2y)|
2 – |E1|

2 – |E2|
2)y  dy.dx 

=(q1q2/16πε0) ∫∫ ( (x
2- L2/4+y2)y / (x4- L2x2/2+L4/16+L2y2/2+2x2y2+y4)3/2 ) dx.dy 

=q1q2/4 πε0L 
 
Differentiating this gives the force at any separation L:- 
 
F=dU/dL = -q1q2/4πεL

2 
 
Since the electric field at a distance L from one charge is q2/4πεL

2 we can re-imagine this as one 
point charge lying in the distributed electric field of the other, at a radius r from it, so replacing 
separation L with radius r, and switching from interacting charges to a “point-charge-in-an-
external-field” concept where the force is positive if aligned with the external field E2 (hence 
changing the sign of the force)... 
 
F = -q1q2/4πεL

2 = -q1 (q2/4πε L
2)  

≡  q1 (q2/4πε r
2) = q1E2 

 
While this is a very useful and effort-saving technique, it must always be born in mind that it 
works only because the potential energy in this arrangement is -q1q2/4πεL. This will not 
necessarily be the case if the integration limits are changed so that less than all of space is 
included, or if either or both of the electric fields do not obey the inverse-square law. Further, in 
any valid model of the universe all charges must have the same structure - the concept that one 
charge can be a point charge and the other a distributed field is no more than a mathematical 
convenience. This becomes quite surreal in a system of many charges where the concept that any 
one of them – and just one – can be a “test point charge” in the distributed fields of the others is 
clearly only a computational convenience, and not a true expression of the electrostatic model. 
 
2. Where the Lorentz equation expects no force and the energy computation expects a 

force 
What if the potential energy is not -q1q2/4πεL? In 1932 James Chadwick discovered the neutron 
[2]. This was an oddity in that it was found to have no long-range force, attracted other neutrons 
at very short range, and at even shorter range repelled them. This attractive-repulsive short-range 
force is extremely difficult to model using the Lorentz force equation, and attempts to do so 
have often led to complexity in the electric field structures used to model the inter-neutron force 
electrostatically. It has been shown that when approached from the Principle of Conservation of 
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Energy rather than the Lorentz force equation a simple inverse-square-law electrostatic field 
which is truncated sharply at a fixed radius exhibits the same attraction/repulsion character as a 
neutron [3]. The Lorentz equation fails to work here because the interaction between two 
neutrons is not over all space, as required in its derivation. It is beyond the scope of this paper to 
repeat such a detailed analysis here, but to summarise just why the Lorentz equation fails to 
demonstrate this behaviour consider Figure 2, which shows two such neutron models at three 
different separations, one drawn in blue and the other in black. The centre and the field 
periphery of each is drawn. 
 

 
 

Figure 2 
 

Figure 2a shows the electric fields overlapping with the centre of each inside the electric field of 
the other. In Figure 2b it shows them still overlapping, but separated so that the centre of each is 
outside the electric field of the other. In 1c it shows them completely separated with no overlap 
of the electric fields. The different scenarios are described below:- 
 
a. In Figure 2a the centre of each is inside the field of the other, and one expects from the 

Lorentz equation that the forces will be repulsive. This is in fact confirmed from energy 
computations, but the Lorentz force computation return a higher force than the energy 
computation because the field overlap does not extend to infinity, which is an implicit 
assumption in the Lorentz equation. 

b. In Figure 2b the centre of each is outside the field of the other, so the Lorentz computation, 
treating the centre of one as being a point charge lying in the distributed field of the other, 
returns zero force. However, there is still an overlap, and the energy computation returns a 
force because there of the interaction between the fields. 

c. In Figure 2c the centre of each is outside the field of the other so the Lorentz computation 
returns zero. Equally, there is no overlap of the fields so the energy computation also returns 
zero. 

 
Lorentz force computations are modelled on the centre of a charged entity lying within the 
electric field of another, while energy computations look at the total field interactions to 
determine the energy changes in them. In geometries like this we can therefore expect 
disagreement between the methods. 
 
3. Where the Lorentz force expects a force and the energy computation expects no force 
Consider a homogeneous electric field. The normal way of creating this is with two plate 
electrodes facing each other, one positively charged (the anode) and the other negatively charged 
(the cathode), as shown in Figure 3a. 
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Figure 3 
 
As can be seen, although the region between the anode and the cathode may be homogeneous, 
the anode must by necessity be surrounded by a positive electric field and the Cathode by a 
negative one. The field around the anode is generated by a surplus of protons (equivalent to a 
dearth of electrons) and the cathode by a surplus of electrons. However, the homogeneous field 
between the anode and the cathode is no more than the super-position of a massive number of 
polar charge distributions, and Figure 3b shows how the fields of a proton from the anode (in red 
to represent positive charge) and of an electron (in blue) from the cathode both interact with a 
test electron in the gap, their interaction covering all of space. The force felt by the test electron 
is the sum of all the repulsive forces between it and each individual electron on the cathode, plus 
the sum of all the attractive forces between it and each individual proton on the cathode. Since all 
these fields are inverse-square-law and extend to infinity, the Lorentz equation applies. (Note 
that while the surface of each electrode is a Faraday cage, this is just a balancing mechanism to 
minimise the energy in the charge distribution on the electrode; it cannot block external fields 
penetrating the electrode or matter itself would fall apart.) 
 

 
 

Figure 4 
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But what if a perfect homogeneous field could be created? In this mind experiment, construct a 
volume of space where there is a homogeneous electric field surrounded by a zero field as shown 
in Figure 4. Consider a beam of electrons entering the field at its positive edge. 
 
According to the Lorentz equation each electron will accelerate continuously across this volume 
till it exits from the other side with added kinetic energy, simply because of the electric field. 
However, one has to ask from where the energy comes. No matter how many electrons are 
accelerated through the volume, the electric field and the energy in its volume remain 
unchanged. Clearly no energy comes from this source. Nor does it come from the electrons, for 
once they have exited the field they take all their electric field energy, plus their new kinetic 
energy. In the previous scenario where the homogeneous field is created by an anode of excess 
protons and a cathode of excess electrons, the energy to accelerate an electron placed in the field 
comes from the interaction between their fields and the reduction in potential energy as the 
electron changes its position with respect to protons and other electrons; here there is no such 
energy source. We can see this by assuming a near-infinite volume and moving a test electron 
around inside it, keeping it far enough away from the edges of the volume so that no significant 
part the test electron’s electric field energy falls outside the volume to complicate the energy 
analysis. Wherever we place the electron inside this volume the interaction between it and the 
homogeneous field is virtually identical; there is no change in the energy wherever the electron is 
placed. Hence, without an energy differential, there is no motive force to accelerate the electron. 
Hence there is a marked difference between the Lorentz force equation and the energy 
conservation analysis. 
 
It is also interesting to examine the negative and positive ends of the field using energy 
computations, as there is an energy differential there between the field and the surrounding 
space. The Lorentz equation is silent on these edges, merely reporting that the electron starts 
accelerating when its centre passes into the field, and continuously accelerates until its centre 
passes out of the field. However, energy analysis gives a very different picture. Consider Figure 
5, which shows the electric field vector interaction between an electron and the positive edge of 
the homogeneous field, with the black vertical being the boundary of the homogeneous field, and 
the homogeneous field’s electric field flux lines shown in red; the electron’s flux lines are show 
in blue. The field interactions at several points are shown by the circle cut-aways, with the 
electron’s electric field vector in blue, the homogeneous field vector in red, and the resultant 
vector in black.   

 
 

Figure 5 
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As the electron approaches the positive edge of the field from the right in Figure 5a it sees an 
attractive force because as the leading parts of the electron’s field enter the homogeneous field 
they partially cancel its electric field to reduce the energy densities, providing attractive forces 
that attract the electron into the homogeneous field on the left. In Figure 5b, after the electron’s 
centre has passed through the edge into the field and the trailing parts of the electron’s field enter 
the homogeneous field they reinforce the electric field, increasing the energy densities and 
creating repulsive forces. This attractive/repulsive behaviour is similar to the neutron behaviour 
modelled in [3] and is a common feature of the energy analysis of bounded electric fields, and 
here it it causes the electron to oscillate across the positive edge of the field. The situation is 
reversed on the negative edge of the field, where the electron is repelled by the edge no-matter 
which side of that edge it is on, whether inside or outside the perfect homogeneous field. 
 
The induction component of the Lorentz force equation 
The induction component of the Lorentz force equation is F=q(vxB), conceptually based on the 
motion-induced electric field at a point being given by E=(vxB), equivalent to the force on the 
moving charge being qE. Consider an electron moving through a fixed magnetic field, as shown 
in Figure 6; the signs in circles at the top represent vector tails, representing the magnetic field as 
pointing down into the page. 
 

 
 

Figure 6 
 
The electron is seen to follow a circular path and this is explained as follows. The electric field 
induced in the reference frame of the moving charge by its motion through the fixed magnetic 
field is at right angles to the direction of motion. This accelerates the charge transversely to its 
direction, and this change of direction changes the direction of the induced field so that it 
remains at right angles to the direction of motion. This causes the charge to follow a circular path 
as shown rather than be accelerated away to the right of Figure 5. The consequence of this is that 
no energy is expended in accelerating the charge as there is no change in kinetic energy. On the 
face of it this explanation seems reasonable. 
 
However, for the sideways force to be present there must be a potential energy source, such that 
if the direction of the induction field did not change with the charge’s change in direction this 
energy would be consumed in accelerating the electron away to the right of Figure 4. Where is 
this energy source? If the field is created by the opposing poles of a large magnet the induced 
electric field in the region between the poles is similar to the “perfect homogeneous electric 
field” described previously, with well-defined edges to the electric field at the edge of the 
magnet. There is a fringing field, but this merely softens the edge of the field. Moving the 
moving charge anywhere inside the magnet – so long as it is kept clear of the edges – produces 
no change in the energy densities around the charge, so in this explanation there is no potential 
energy to provide the force. The explanation that the charge experiences a force dependent 
purely on the transverse electric field, although apparently reasonable, is fundamentally flawed. 
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There is however one potential source of energy. It has been suggested that a charged particle 
entering a transverse electric field will be made to rotate by the entry forces [4]. Although the 
exact mechanism is unclear it may be that if the direction of the induction field did not change 
with the charge’s change in direction this rotational energy would be consumed in providing the 
sideways acceleration. 
 

CONCLUSION 
 

The Lorentz force equation is a very useful tool in simplifying the calculation of forces between 
charges, where those charges have an inverse-square-law polar distribution and extend to 
infinity. It is possible it can be used elsewhere provided the experimenter is aware of these 
limitations and can satisfy himself that the equation is still effective. However, in the most 
general case it may be necessary to return to first principles and integrate the energy density 
functions to find the total potential energy and differentiate that over distance to obtain forces. 
Such an approach has a firm foundation in the Principle of Conservation of Energy, and leads to 
results that match experiment better for configurations like the strong nuclear force. However, 
the complexity of the limits applied to the interacting space for bounded electric fields means 
that the technique will normally have to be integration by finite element analysis rather than the 
Calculus. 
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