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ABSTRACT

All forces throughout the different branches of physics are ultimately derived from the Principle
of Conservation of Energy, from the equation F=dE/dI, or force=rate of change of energy over
distance. Different disciplines derive equations from this to simplify their calculations. In
electrostatics, however, the derivation of electrostatic forces from the energy conservation
principles is rarely seen, and consequently the classical Lorentz force equation F=q (E + vxB)
can be erroneously applied in circumstances where its application violates this principle. This
discussion paper analyses the Lorentz force equation by a rigorous analysis of the Principle of
Conservation of Energy, and identifies situations where the Lorentz equation violates that
Principle. It identifies the limits over which the Lorentz force equation is valid, and discusses
how the exceptions need to be handled.
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INTRODUCTION

The Lorentz force equation [1] deals with the foore a charged particle when subjected to
electric and magnetic fields. It is generally givam..

F=q E + vxB)

...wherekE is the electric field vectoB is the magnetic field vectov,is the particle velocity, x is
the vector cross-product operator, q is the chaagd,F is the vector force generated on the
particle. At the same time, for energy to be covesgtrwe must obey the equation...

F=dU/dL
This describes the fordeexperienced when potential energy U changes astante dl.

This paper analyses the Lorentz force equation hygarous analysis of the Principle of
Conservation of Energy, and shows that there silosivhere the equation cannot apply, since it
violates that principle. The electrostatic forcesated within a system of charged particles are
not caused directly by the effect on point chargesn electric field, but indirectly through
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changes in the energy densities of electric fielden charges are brought together. This creates
forces from the classic equatiéi=dU/dL whereF is force, U is the potential energy ahds
length.

MATERIALSAND METHODS

Consider the first part of the Lorentz force equatithe electrostatic part) [1] - there are three
conditions to consider.

1. Where the equation applies.
2. Where it does not apply, in that it claims theraasforce where energy conservation expects
a force.

3. Where it does not apply, in that it claims thera i®orce when energy conservation expects
no force.

1. WheretheLorentz force equation applies

Consider a pair of distributed electric chargesd g whose electric fields extend to infinity,
as happens with electrons and protons. Separatelifiea distance L and chose the co-ordinates
so that one charge is at [-L/2,0] and the othékL/&t0].

/0,0

q, 9,
[-L/2,0] [L/2,0]

Figurel

/
=

Since each charge’s field extends to infinity thieelds interact over all space. At any one
specific point in space each charge will provide @wn vector electric fielde; and E;
respectively. Each charge wouldisolation have an associated energy density at this poitd in
field given by:-

du/dv =¢.|E1[/2
dU/dv =¢.|E,f/2

(Here ¢ is the permittivity, U is the potential energy, and dU/dv is the energy associated with

that volume of space.) The individual fields will add vectorialy at thpoint to give a resultant
electric fieldEg with associated energy densityEr[/2. Now if the resultant energy density is
less than the sum of the individual “in isolaticriergy densities, bringing the charges together
in this arrangement has reduced the energy atpthiat, and this is associated with attractive
forces at that point in space; if the resultantrgpelensity is more, it takes work to move the
charges into this arrangement and so this is assocwith repulsive forces.
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We can take the first's electric field strengtraatistancesrfrom the centre of it asyérer,® and

the second’s field at a distance from it as @/4ner,?, with o and @ being the respective
strengths of the charges. From this we can lodioat the energy density changes from the “in
isolation” value at this point. By subtracting the isolation” energy density from all values we
get the potential energy; this is zero at infirseparation and positive or negative when the
charges are brought together. The potential engeggity at a point in space for a separation
is then...

du/dv =eo([ErF — Eaff — E2)/2

To find the total potential energy at a separafignintegrate over all space. Because of its
symmetry we can simply multiply by a half-rotatimund the gq, axis, and then integrate over
the other two axes...

U=(reo/2) [l (|Eax + Eag* + |Eay + Eay)f — Eaf — E2of)y. dy.dx
=(ouG/16me0) If ( (0P LEA+y)y | (X L2+ Y16+ 2y?2+2Xy*+y*)*? ) dx.dy
:qqu/4 TCSQL

Differentiating this gives the force at any separal :-
F=dU/dL = -quQp/4nel

Since the electric field at a distance L from oharge is g/4ncL > we can re-imagine this as one
point charge lying in the distributed electric fiedf the other, at a radiusfrom it, so replacing
separationL with radiusr, and switching from interacting charges to a “painarge-in-an-
external-field” concept where the force is positi@aligned with the external field Hhence
changing the sign of the force)...

F = -quOp/4nel 2= -0y (0p/4ne L?)
= (Qofdne r?) = E,

While this is a very useful and effort-saving teicfue, it must always be born in mind that it
works only because the potential energy in this arrangemeniygy/4ncl.. This will not
necessarily be the case if the integration limns ehanged so that less than all of space is
included, or if either or both of the electric @isldo not obey the inverse-square law. Further, in
any valid model of the universe all charges musehae same structure - the concept that one
charge can be a point charge and the other aldit#d field is no more than a mathematical
convenience. This becomes quite surreal in a sysfamany charges where the concept that any
one of them — and just one — can be a “test poiatge” in the distributed fields of the others is
clearly only a computational convenience, and not@ expression of the electrostatic model.

2. Where the Lorentz equation expects no force and the energy computation expects a
force

What if the potential energy is notieg/4nel ? In 1932 James Chadwick discovered the neutron
[2]. This was an oddity in that it was found to Baw long-range force, attracted other neutrons
at very short range, and at even shorter rangdledgbem. This attractive-repulsive short-range
force is extremely difficult to model using the otz force equation, and attempts to do so
have often led to complexity in the electric fisluctures used to model the inter-neutron force
electrostatically. It has been shown that when @ggred from the Principle of Conservation of

251
Pelagia Research Library



Michael Singer Adv. Appl. Sci. Res., 2011, 2 (5):249-256

Energy rather than the Lorentz force equation gonmnverse-square-law electrostatic field
which is truncated sharply at a fixed radius exkilihe same attraction/repulsion character as a
neutron [3]. The Lorentz equation fails to work éndvecause the interaction between two
neutrons is not over all space, as required idaetsvation. It is beyond the scope of this paper to
repeat such a detailed analysis here, but to sursenpstwhy the Lorentz equation fails to
demonstrate this behaviour consider Figure 2, wklobws two such neutron models at three
different separations, one drawn in blue and thHeeroin black. The centre and the field
periphery of each is drawn.

D oL

Figure2

Figure 2a shows the electric fields overlappindwtite centre of each inside the electric field of
the other. In Figure 2b it shows them still ovepig, but separated so that the centre of each is
outside the electric field of the other. In 1chbws them completely separated with no overlap
of the electric fields. The different scenarios @escribed below:-

a. In Figure 2a the centre of each is inside the fefldhe other, and one expects from the
Lorentz equation that the forces will be repulsiVéis is in fact confirmed from energy
computations, but the Lorentz force computatiorurreta higher force than the energy
computation because the field overlap does notnexte infinity, which is an implicit
assumption in the Lorentz equation.

b. In Figure 2b the centre of each is outside thelfadlthe other, so the Lorentz computation,
treating the centre of one as being a point chbiigg in the distributed field of the other,
returns zero force. However, there is still an tagrand the energy computation returns a
force because there of the interaction betweeffighus.

c. In Figure 2c the centre of each is outside thelfadl the other so the Lorentz computation
returns zero. Equally, there is no overlap of ibll$ so the energy computation also returns
zero.

Lorentz force computations are modelled on thereenf a charged entity lying within the
electric field of another, while energy computatiolook at the total field interactions to
determine the energy changes in them. In geometikes this we can therefore expect
disagreement between the methods.

3. WheretheLorentz force expects a force and the energy computation expects no force
Consider a homogeneous electric field. The normay wf creating this is with two plate
electrodes facing each other, one positively ctaa(tiee anode) and the other negatively charged
(the cathode), as shown in Figure 3a.
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Figure3

As can be seen, although the region between theeaand the cathode may be homogeneous,
the anode must by necessity be surrounded by dveoslectric field and the Cathode by a
negative one. The field around the anode is geseray a surplus of protons (equivalent to a
dearth of electrons) and the cathode by a surgleteatrons. However, the homogeneous field
between the anode and the cathode is no more lieasuper-position of a massive number of
polar charge distributions, and Figure 3b shows tienfields of a proton from the anode (in red
to represent positive charge) and of an electrorblfie) from the cathode both interact with a
test electron in the gap, their interaction covgrat of space. The force felt by the test electron
is the sum of all the repulsive forces betweemd aach individual electron on the cathode, plus
the sum of all the attractive forces between it @ach individual proton on the cathode. Since all
these fields are inverse-square-law and extendfinity, the Lorentz equation appliedNdte
that while the surface of each electrode is a Faraday cage, thisisjust a balancing mechanism to
minimise the energy in the charge distribution on the electrode; it cannot block external fields
penetrating the electrode or matter itself would fall apart.)

Homogeneous field
e- <
*—>
YV | <
Figure4
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But what if a perfect homogeneous field could beated? In this mind experiment, construct a
volume of space where there is a homogeneousieléetd surrounded by a zero field as shown
in Figure 4. Consider a beam of electrons entehedield at its positive edge.

According to the Lorentz equation each electron &adtelerate continuously across this volume
till it exits from the other side with added kiretnergy, simply because of the electric field.
However, one has to ask from where the energy coiesmatter how many electrons are
accelerated through the volume, the electric fialid the energy in its volume remain
unchanged. Clearly no energy comes from this solNoe does it come from the electrons, for
once they have exited the field they take all tledgctric field energy, plus their new kinetic
energy. In the previous scenario where the homagengeeld is created by an anode of excess
protons and a cathode of excess electrons, thgyeteaccelerate an electron placed in the field
comes from the interaction between their fields #mel reduction in potential energy as the
electron changes its position with respect to pretand other electrons; here there is no such
energy source. We can see this by assuming a migaite volume and moving a test electron
around inside it, keeping it far enough away frdma édges of the volume so that no significant
part the test electron’s electric field energydadutside the volume to complicate the energy
analysis. Wherever we place the electron inside ¥bilume the interaction between it and the
homogeneous field is virtually identical; therens change in the energy wherever the electron is
placed. Hence, without an energy differential, ¢hisrno motive force to accelerate the electron.
Hence there is a marked difference between the ntoréorce equation and the energy
conservation analysis.

It is also interesting to examine the negative a@agitive ends of the field using energy
computations, as there is an energy differentiatahbetween the field and the surrounding
space. The Lorentz equation is silent on these sdgerely reporting that the electron starts
accelerating when its centre passes into the fasdd, continuously accelerates until its centre
passes out of the field. However, energy analyisissga very different picture. Consider Figure
5, which shows the electric field vector interaotizetween an electron and the positive edge of
the homogeneous field, with the black vertical getime boundary of the homogeneous field, and
the homogeneous field’s electric field flux lindgwn in red; the electron’s flux lines are show
in blue. The field interactions at several points ahown by the circle cut-aways, with the
electron’s electric field vector in blue, the horeogous field vector in red, and the resultant
vector in black.
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As the electron approaches the positive edge ofi¢ie from the right in Figure 5a it sees an

attractive force because as the leading partseokléctron’s field enter the homogeneous field
they partially cancel its electric field to reduitee energy densities, providing attractive forces
that attract the electron into the homogeneousd foel the left. In Figure 5b, after the electron’s

centre has passed through the edge into the freldiee trailing parts of the electron’s field enter

the homogeneous field they reinforce the electietdf increasing the energy densities and
creating repulsive forces. This attractive/repidsbehaviour is similar to the neutron behaviour
modelled in [3] and is a common feature of the gnemalysis of bounded electric fields, and

here it it causes the electron to oscillate actbhespositive edge of the field. The situation is

reversed on the negative edge of the field, wheeeetectron is repelled by the edge no-matter
which side of that edge it is on, whether insidewatside the perfect homogeneous field.

Theinduction component of the L orentz for ce equation

The induction component of the Lorentz force equmats F=q(vxB), conceptually based on the
motion-induced electric field at a point being giviey E=(vxB), equivalent to the force on the
moving charge beingky Consider an electron moving through a fixed mégrield, as shown
in Figure 6; the signs in circles at the top repneévector tails, representing the magnetic fiald a
pointing down into the page.

Figure6

The electron is seen to follow a circular path #md is explained as follows. The electric field
induced in the reference frame of the moving chdrgéts motion through the fixed magnetic
field is at right angles to the direction of motidrhis accelerates the charge transversely to its
direction, and this change of direction changes ditection of the induced field so that it
remains at right angles to the direction of motibhis causes the charge to follow a circular path
as shown rather than be accelerated away to theaid-igure 5. The consequence of this is that
no energy is expended in accelerating the chardleeas is no change in kinetic energy. On the
face of it this explanation seems reasonable.

However, for the sideways force to be present thaust be a potential energy source, such that
if the direction of the induction field didot change with the charge’s change in direction this
energy would be consumed in accelerating the eleaway to the right of Figure 4. Where is
this energy source? If the field is created by dbposing poles of a large magnet the induced
electric field in the region between the polesimilar to the “perfect homogeneous electric
field” described previously, with well-defined edgéo the electric field at the edge of the
magnet. There is a fringing field, but this merslyftens the edge of the field. Moving the
moving charge anywhere inside the magnet — so &snig is kept clear of the edges — produces
no change in the energy densities around the chaogm this explanation there is no potential
energy to provide the force. The explanation tlmet tharge experiences a force dependent
purely on the transverse electric field, althougpaently reasonable, is fundamentally flawed.
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There is however one potential source of energhiaft been suggested that a charged particle
entering a transverse electric field will be madedtate by the entry forces [4]. Although the
exact mechanism is unclear it may be that if theation of the induction field didot change
with the charge’s change in direction this rotagilo@nergy would be consumed in providing the
sideways acceleration.

CONCLUSION

The Lorentz force equation is a very useful toosimplifying the calculation of forces between

charges, where those charges have an inverse-dguangolar distribution and extend to

infinity. It is possible it can be used elsewherevided the experimenter is aware of these
limitations and can satisfy himself that the equutis still effective. However, in the most

general case it may be necessary to return to gniatiples and integrate the energy density
functions to find the total potential energy antfestentiate that over distance to obtain forces.
Such an approach has a firm foundation in the Rl@mof Conservation of Energy, and leads to
results that match experiment better for configaret like the strong nuclear force. However,
the complexity of the limits applied to the inteiag space for bounded electric fields means
that the technique will normally have to be intdigma by finite element analysis rather than the
Calculus.
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