Available online at <u>www.pelagiaresearchlibrary.com</u>

Pelagia Research Library

Advances in Applied Science Research, 2012, 3 (1):555-562

Assessment of Physico-Chemical Quality of Groundwater in rural area nearby Sagar city, MP, India

Hemant Pathak¹* and S. N. Limaye²

¹Department of Chemistry, Indra Gandhi Govt. Engineering College, Sagar, (M.P.), India ²Dr. Hari singh Gour Central University, Sagar (M.P.), India

ABSTRACT

Ground water is one of the major resources of the drinking water in Sagar city (M.P.). In the present study groundwater quality of the selected 02 Villages nearby Sagar city were taken for under investigations by forty groundwater samples collected from entire villages and assessed for their suitability for human consumption. Physico-chemical parameters were carried out during different months of the pre monsoon, monsoon and post monsoon seasons in june2007– July 2010. The statistical analysis of the collected samples yielded the range of the variation, mean, standard deviation and co-efficient of variation. The multiple regression analysis and regression equation indicated that the degraded water quality of Gambhira and Baheria is caused by anthropogenic activities and inappropriate rural water management action plan.

Keywords: Groundwater, physico-chemical quality, Multiple regression analysis.

INTRODUCTION

Ground water is the major source of water for drinking, agricultural, and industrial desires. The availability of water determines the location and activities of humans in an area and our growing population is placing great demands upon natural fresh water resources [1].

The physico-chemical contaminants that adversely affected the quality of groundwater is likely to arise from a variety of sources, including land application of agricultural chemicals and organic wastes, infiltration of irrigation water, septic tanks, and infiltration of effluent from sewage treatment plants, pits, lagoons and ponds used for storage [2]. B. Rajappa *etal.*[3], Patil Shilpa G. *etal.* [4], Pramod N. Kamble *etal.* [5], Zamxaka m. *etal.* [7], is the groups of prominent chemist importantly contributed to assessed the quality of ground water.

In this study, physico-chemical assessment of ground water samples was determined by using standard analytical methods. The objective of the study is to analyze the 14 parameters of water along 15 locations of 02 villages nearby Sagar city for 3 season's pre monsoon, monsoon and post monsoon (during 2007 - 2010). The aim of this study was to determine the physico-chemical analysis of groundwater sources of Baheria and Gambhiria village area and to compare with levels obtained with the WHO [9] and IS:10500 [11] drinking water directive.

Study area and collection of water samples

Ground water samples were collected from in and around Baheria and Gambhiria village of Sagar city. Each water sample was taken every month during June 2007 to July 2010. The samples were collected in prewashed (with detergent, diluted HNO₃ and doubly de-ionized distilled water, respectively) clean polythene bottles without any air

bubbles and tightly sealed after collection and labeled in the field. The temperatures of the samples were measured in the field on the spot at the time of sample collection. The samples were immediately analysed in the chemistry lab to minimize physicochemical changes. The error due to time has been omitted for the present study [4].

MATERIALS AND METHODS

S.N.	Parameters	Unit	Test Methods
1	рН	-	pH meter
2	Dissolved Oxygen (DO)	mg/L	Winkler method
3	Biochemical Oxygen Demand (BOD)	mg/L	5 days incubation at 20° C and titration of initial and final DO.
4	Chemical Oxygen Demand	mg/L	Open Reflux Method
5	Conductivity	ms/cm	Conductivity meter
6	Alkalinity	mg/L	Titration
7	Total dissolved Solids	mg/L	Digital conductivity meter (LT-51)
8	Chloride	mg/L	Argentometric titration
9	Orthophosphate ($P0_4^{3-} - P$)	mg/L	Ammonium molybdate ascorbic acid reduction method
10	Nitrate -Nitrogen (NO ₃ — N)	mg/L	Spectrophotometric method
11	Ammonia-Nitrogen (NH ₃ -N)	mg/L	Spectrophotometric (Phenate method)
12	Total Hardness as CaCO ₃	mg/L	EDTA titration
13	Fluoride	mg/L	Colorimetric Method
14	Iron	mg/L	Colorimetric Method

Table 1- List of Chemical parameters and their test methods

 Table 2 - Multiple Regression Analysis for different Parameters in the ground water Samples of in and around Baheria village of Sagar city

Dependent variable is DO, 15 independent variables, 15 cases.

Variable C	Coefficient	Variable	Coefficient
Intercept	-480.0469	RESI.CHLOR	INE -489.9956
TEMPRATURE	25.559196	PHOSPHATE	285.83398
COLOUR	-2.545898	NITRATE	-106.4254
рН	-44.6618	AMMONIA	729.48962
TURBIDITY	55.098022	тн	-2.517097
BOD	37.580643	TEMP. HARD.	-3.575142
COD	16.006485	PERM. HARD.	-7.088448
CONDUCTIVITY	-1377.068	Ca HARDNES	5 7.3745384
ALKALINITY	005208	Mg HARDNES:	3 1.1140099
TS	.8262539	FLUORIDE	-334.363
TSS	.5674095	IRON	-350.0865
TDS	.7915101	Ca CONTENT	13.485321
CHLORIDE	-7.556957	Mg CONTENT	-40.9631

Cohen's f-square = 0.0, a small effect size.

Source	Sum of Sqs	df Mean Sq	F	p-value
Regression	-2084.177	25 -83.36709		N.A.
Error	2104.8163	-11 .		
Total	20.639135	14		

Analysis of Variance to Test Regression Relation

Note: - A low p-value suggests that the dependent variable DO may be linearly related to independent variable(s).

Table 3 - Multiple Regression Analysis for different Parameters in the ground water Samples of in andaround Gambhiria village of Sagar cityDependent variable is DO,15 independent variables, 15 cases.

	Coefficient		Variable (
Intercept	246.94531		RESI.CHLORINE	734.47852
TEMPRATURE	-8.549072		PHOSPHATE	-91.43481
COLOUR	-16.77954		NITRATE	40.910156
рн	-62.30225		AMMONIA	51.489258
TURBIDITY	5.8253174		ТН	-2.757828
BOD	53.675537		TEMP. HARD.	2.0670378
COD	-9.108154		PERM. HARD.	2.2953949
CONDUCTIVITY	-167.8047		Ca HARDNESS	5.8817291
ALKALINITY	.8608627		Mg HARDNESS	3.055191
TS	.0375519		FLUORIDE	124.60889
TSS	2.8694611		IRON	128.08887
TDS	.4320412		Ca CONTENT	-5.951263
CHLORIDE			Mg CONTENT	-6.862015
R-Square = 0	.0		R-Square = 2.3	2727
Cohen's f-so	uare = 0.0, a	small effect	t size.	

All the chemicals used were of AR grade. Analysis was carried out for various water quality parameters were measured by using Standard APHA methods [10].

Baheria and Gambhiria, village area nearby Sagar city was chosen as study area. 15 locations of 2 villages were selected based on domestic, agricultural and industrial activities. Water samples were collected from 15 stations by using standard methods (APHA) [10]. Various water samples were collected in clean and dry polyethylene bottles from bore wells after running them for 5 minutes. All the collection of samples are immediately preserved in dark

boxes and processed for the different analysis within 6 hours after collection. All water samples were collected in sterile bottles (5 liter).

Analysis of Variance to Test Regression Relation

Source	Sum of Sqs	df	Mean Sq	F	p-value
Regression	6056.0025	25	242.2401		N.A.
Error	-6050.039	-11			
Total	5.964	14			

Note:-A low p-value suggests that the dependent variable DO may be linearly related to independent variable(s).

Table 4: Statistical evaluation for different Parameters in the Ground water Samples of Baheria village in Sagar City

	Range	Minimum	Maximum	Sum	Me	an	Std.	/ariance	Skew	ness	Kurt	osis
					Statistic	Std. Erroi	Statistic	Statistic			Statistic	βtd. Erro
TEMPRATUR	6.30	22.30	28.60	506.50	5.3250	.3269	.46211	2.138	.091	.512	.409	.992
COLOUR	14.00	10.00	24.00	298.00	4.9000	.7674	.43205	11.779	1.179	.512	1.295	.992
рН	1.86	6.51	8.37	148.47	7.4235	.1203	.53783	.289	256	.512	784	.992
TURBIDITY	10.00	8.00	18.00	219.00	0.9500	.5452	.43818	5.945	1.347	.512	2.638	.992
DO	4.60	3.25	7.85	118.28	5.9140	.2563	.14626	1.314	898	.512	.888	.992
BOD	7.29	3.02	10.31	104.19	5.2095	.3146	.40701	1.980	2.424	.512	9.618	.992
COD	17.10	8.25	25.35	221.32	1.0660	.8357	.73726	13.967	3.222	.512	12.033	.992
CONDUCTIV	.33	.45	.78	11.82	.5911	.0186	.08302	.007	.858	.512	.464	.992
ALKALINITY	174.00	104.00	278.00	900.00	5.0000	0.3115	.11427	26.526	.420	.512	381	.992
тз	227.24	281.47	508.71	597.52	9.8760	2.8426	.43397	98.660	.662	.512	009	.992
TSS	61.87	3.36	65.23	378.92	8.9460	3.2345	.46497	09.235	1.756	.512	4.579	.992
TDS	201.31	274.95	476.26	218.60	0.9300	1.3274	.65748	66.180	.863	.512	.470	.992
CHLORIDE	108.75	28.64	137.39	136.87	6.8435	5.6457	.24846	37.485	1.916	.512	4.587	.992
RESICHLOF	.26	.05	.31	2.95	.1475	.0156	.06995	.005	.703	.512	.032	.992
PHOSPHATI	3.13	1.51	4.64	48.50	2.4250	.1366	.61102	.373	2.536	.512	9.416	.992
NITRATE	5.63	1.06	6.69	39.61	1.9805	.2930	.31018	1.717	2.768	.512	8.778	.992
AMMONIA	.34	.11	.45	4.06	.2030	.0187	.08367	.007	1.309	.512	2.595	.992
ТН	117.87	150.19	268.06	130.55	6.5275	5.9582	.64606	10.013	.366	.512	.743	.992
TEMP. HARD	116.09	96.60	212.69	158.14	7.9070	6.4247	.73225	25.542	304	.512	.072	.992
PERM. HARI	76.33	14.36	90.69	972.41	8.6205	4.2379	.95236	59.192	.060	.512	.177	.992
Ca HARDNE	94.69	114.36	209.05	204.22	0.2110	6.3270	.29535	00.627	101	.512	-1.203	.992
Mg HARDNE	56.50	18.77	75.27	926.33	6.3165	3.6065	.12864	60.133	093	.512	967	.992
FLUORIDE	1.35	.21	1.56	17.15	.8575	.0944	.42206	.178	034	.512	-1.296	.992
IRON	1.94	.04	1.98	8.78	.4390	.0879	.39322	.155	3.370	.512	13.666	.992
Ca CONTEN	37.95	45.83	83.78	284.17	4.2085	2.5359	.34095	28.617	101	.512	-1.203	.992
Mg CONTEN	13.73	4.56	18.29	224.99	1.2495	.8764	.91952	15.363	092	.512	966	.992

Descriptive Statistics

Table 5: Statistical evaluation for different Parameters in the Ground water Samples of Gambhiria village in Sagar City

Descriptive Statistics												
	Range	Minimum	Maximum	Sum	Me	an	Std.	Variance	Skev	Iness	Kur	tosis
[Statistic	Statistic	Statistic	Statistic	Statistic	Std. Error	Statistic	Statistic	Statistic	Std. Error	Statistic	Std. Error
TEMPRATURE	4.40	23.20	27.60	513.00	25.6500	.2618	1.17092	1.371	534	.512	115	.992
COLOUR	9.00	12.00	21.00	315.00	15.7500	.6604	2.95359	8.724	.653	.512	889	.992
рН	1.21	7.44	8.65	162.06	8.1030	.0868	.38814	.151	417	.512	876	.992
TURBIDITY	15.00	10.00	25.00	263.00	13.1500	.7789	3.48342	12.134	2.127	.512	6.486	.992
DO	3.77	4.05	7.82	129.18	6.4590	.2455	1.09805	1.206	973	.512	098	.992
BOD	7.55	2.74	10.29	116.42	5.8210	.3733	1.66933	2.787	.392	.512	2.009	.992
COD	11.79	7.85	19.64	220.72	11.0360	.5636	2.52062	6.354	2.195	.512	6.689	.992
CONDUCTIVIT	.29	.40	.68	10.07	.5034	.0144	.06449	.004	1.100	.512	2.245	.992
ALKALINITY	220.00	105.00	325.00	4224.00	11.2000	13.2642	9.31947	518.800	.039	.512	773	.992
TS	157.63	278.54	436.17	6597.16	29.8580	9.1703	1.01093	681.896	1.368	.512	1.383	.992
TSS	35.81	5.64	41.45	450.70	22.5350	2.3725	0.61000	112.572	.166	.512	783	.992
TDS	175.23	242.02	417.25	6146.46	07.3230	8.7806	9.26811	541.985	1.097	.512	2.233	.992
CHLORIDE	115.00	38.97	153.97	1373.07	68.6535	6.5343	9.22219	853.937	1.819	.512	3.485	.992
RESICHLORIN	.43	.01	.44	2.98	.1490	.0189	.08441	.007	2.040	.512	7.418	.992
PHOSPHATE	3.26	1.04	4.30	36.29	1.8145	.1490	.66643	.444	2.877	.512	10.681	.992
NITRATE	7.86	.93	8.79	44.19	2.2095	.3926	1.75579	3.083	3.127	.512	10.972	.992
AMMONIA	.28	.11	.39	4.20	.2100	.0140	.06274	.004	1.074	.512	2.281	.992
ТН	142.22	153.34	295.56	4008.06	00.4030	8.1028	6.23695	313.116	1.838	.512	3.038	.992
TEMP. HARD.	40.33	118.64	158.97	2791.38	39.5690	2.4731	1.06015	122.327	312	.512	552	.992
PERM. HARD.	141.80	17.82	159.62	1216.68	60.8340	8.6359	8.62106	491.586	1.666	.512	2.270	.992
Ca HARDNESS	113.29	113.16	226.45	3068.52	53.4260	7.7382	4.60647	197.607	1.144	.512	.387	.992
Mg HARDNES	58.71	16.48	75.19	939.54	46.9770	3.3730	5.08453	227.543	.106	.512	356	.992
FLUORIDE	1.15	.21	1.36	18.41	.9205	.0893	.39930	.159	473	.512	-1.203	.992
IRON	3.95	.02	3.97	24.05	1.2025	.3330	1.48903	2.217	1.081	.512	696	.992
Ca CONTENT	45.41	45.35	90.76	1229.78	61.4890	3.1016	3.87062	192.394	1.144	.512	.387	.992
Mg CONTENT	14.27	4.00	18.27	228.22	11.4110	.8198	3.66617	13.441	.106	.512	356	.992

Table 6. Regression Analysis of chemical Parameters in Ground water Samples of in and around Sagar city (Monsoon 2007 to Pre Monsoon 2010)

	Dependent Variable	Independent Variable	Regression equation	Slope	R ²
٠	DO mean	BOD mean	DO = 0.213 + 0.665 * BOD	0.665	0.410
٠	DO mean	COD mean	DO = 0.858 * COD + 4.309	0.858	0.327
•	DO mean	BOD _{mean,} COD _{mean}	DO = 2.72493 + .3759247 * BOD + .2181811 * COD		0.387
٠	DO mean	pH _{mean}	$DO_{mean} = 0.272 * pH + 6.036$	0.272	0.437
٠	DO mean	Alkalinity mean	DO = - 61.45 + 38.54 * alkalinity	38.54	0.483
٠	DO mean	TDS mean	DO =267.3 - 5.936 * TDS	- 5.94	0.038
٠	DO mean	Chloride mean	DO = 62.79 - 2.446 * Chloride	-2.446	0.015
٠	DO mean	Residual Chlorine mean	DO = 0.103 + 0.005 * Residual Chlorine	0.005	0.008
٠	DO mean	o-Phosphate mean	DO = 0.868 + 0.066 * o-Phosphate	0.066	0.100
٠	DO mean	Nitrate mean	DO= 2.249 - 0.075 * Nitrate	-0.075	0.011
٠	DO mean	Ammonia mean	DO = 0.243 - 0.008 * Ammonia	-0.008	0.054
•	DO mean	Chloride _{mean} , Residual Chlorine _{mean}	DO = 5.9765169 + .0047626 * Chloride + 3.590613 * Residual Chlorine		0.053t
•	DO mean	Chloride _{mean} , Residual Chlorine _{mean} o-Phosphate _{mean}	DO = 2.26244030008274 * Chloride+ 6.6164193 * Residual Chlorine+ 2.7109191 * o-Phosphate		0.347
•	DO mean	Chloride _{mean} , Residual Chlorine _{mean} o-Phosphate _{mean} Nitrate _{mean}	DO = 1.69431420070552 * Chloride + 6.5763704 * Residual Chlorine + 2.6775632 * o- Phosphate + .519642 * Nitrate		0.555
•	DO _{mean}	Chloride _{mean} , Residual Chlorine _{mean} o-Phosphate _{mean} Nitrate _{mean}	DO = 2.93875620077354 * Chloride+ 6.6220172 * Residual Chlorine + 2.8740215 * o-Phosphate + .7809133 * Nitrate-10.17392 * Ammonia		0.562

Descriptive Statistics

Adv. Appl. Sci. Res., 2012, 3(1):555-562

		Ammonia mean			
•	DO mean	Temporary hardness $_{mean}$	DO = 6.18454830033188 * Temporary hardness	003	.0042
٠	DO mean	Permanent hardness mean	DO = 7.58296730188653 * Permanent hardness	018	.1346
•	DO mean	Calcium hardness $_{mean}$	DO = 256.3 - 15.56 * Calcium hardness	- 15.56	0.530
•	DO mean	Magnesium hardness	SS DO = 72.29 - 3.844 * Magnesium hardness -		0.111
•	DO mean	Temporary hardness mean Permanent hardness mean	DO = 7.1144908 + .0030887 * Temporary hardness0188273 * Permanent hardness		.1382
•	DO mean	Calcium hardness mean Magnesium hardness mean	DO = 7.8835417 +.0045428 * Calcium hardness0405569 * Magnesium hardness		.1978
٠	DO mean	Fluoride mean	DO = - 1.155 + 0.299 * Fluoride	0.299	0.217
٠	DO mean	Iron mean	DO = 0.010 + 0.048 * Iron	0.048	0.233
•	DO mean	Fluoride mean Iron mean	DO = 4.4334597 + .666462 * Fluoride + 5.0073845 * Iron		.6086

Table 7. Regression Analysis of chemical Parameters in Municipal water Samples of in and around Sagar city (Monsoon 2007 to Pre Monsoon 2010)

Dependent	Independent	Regression equation	Slope	\mathbf{R}^2
Variable	Variable			
DO mean	BOD mean	DO = -23.17 + 4.320 * BOD	4.320	0.871
DO mean	COD mean	DO = 0.175 * COD + 8.356	0.327	0.013
DO mean	BOD _{mean,}	DO = 10.310156 + .253079 * BOD5406958 * COD		0.995
	COD mean			
DO mean	Alkalinity mean	DO = 29.46 + 21.34 * alkalinity	21.34	0.993
DO mean	pH _{mean}	DO = 0.174 * pH + 6.629	0.174	0.022
DO mean	TDS mean	DO = - 351.6 + 93.55 * TDS	93.55	0.828
DO mean	Chloride mean	DO= - 165.5 + 33.61 * Chloride	33.61	0.689
DO mean	Residual Chlorine mean	DO = -0.519 + 0.1 * Residual Chlorine	0.1	0.343
DO mean	o-Phosphate mean	DO = -0.659 + 0.311 * o-Phosphate	0.311	0.882
DO mean	Nitrate mean	DO= 2.327 - 0.153 * Nitrate	153	0.253
DO mean	Ammonia mean	DO = 0.649 - 0.070 * Ammonia	070	0.598
DO mean	Chloride _{mean} , Residual Chlorine _{mean}	DO = 5.2898461 + .0014619 * Chloride + 7.3416583 * Residual Chlorine		0.995
DO mean	Chloride _{mean} , Residual Chlorine _{mean} o-Phosphate _{mean}	DO = 4.90309290002217 * Chloride + 7.3140616 * Residual Chlorine+ .3584516 * o-Phosphate		0.0
DO mean	Chloride _{mean} , Residual Chlorine _{mean} o-Phosphate _{mean} Nitrate _{mean}	DO = 11.367188 + .0188141 * Chloride - 2.865234 * Residual Chlorine - 1.897461* o- Phosphate + 1.9199219 * Nitrate		0.0
DO mean	Chloride _{mean} , Residual Chlorine _{mean} o-Phosphate _{mean} Nitrate _{mean} Ammonia _{mean}	DO = 3.93359380105438 * Chloride -2.738281 * Residual Chlorine + 2.193573* o-Phosphate + 3.0136719 * Nitrate - 11.80859 * Ammonia		0.592
DO mean	Temporary hardness mean	DO = 7.349073 - 0.005019988 * Temporary hardness	005	0.009
DO mean	Permanent hardness mean	DO = 7.62806140218256 * Permanent hardness	022	0.180
DO mean	Calcium hardness mean	DO = 428.2 - 41.19 * Calcium hardness	- 41.19	0.949
DO mean	Magnesium hardness mean	DO = 72.49 - 4.656 * Magnesium hardness	- 4.656	0.177
DO mean	Temporary hardness mean Permanent hardness mean	DO = 10.0370290161477 * Temporary hardness0253295 * Permanent hardness		0.187
DO mean	Calcium hardness mean Magnesium hardness mean	DO = 11.80345401078 * Calcium hardness0887259 * Magnesium hardness		0.11
DO mean	Fluoride mean	DO = -1.539 + 0.35 * Fluoride	0.35	0.217
DO mean	Iron mean	DO = 0.535 - 0.030 * Iron	-0.030	0.018
DO mean	Fluoride mean	DO = 5.120312 + 2.2574179 * Fluoride - 1.356825 * Iron	0.020	0.564
			1	0.001

Taking DO as dependent variable for all the 26 water sampling points of water sources at critical and logical analysis of given regression equations reveal important facts regarding correlation studies (see annexure F) among various physicochemical parameters.

To study the correlation between various water quality parameters, the regression analysis was Carried out using computer software SPSS, version–11. Regression coefficient measures the degree of association exists between two variables, DO taken as dependent variable. The greater the value of regression coefficient, the better is the fit and more useful the regression variables.

The following regression models have been obtained from the results of analysis of water samples. Considering a mean DO (dependent variables) and important chemical parameters taken as independent variables, regression equations can be obtained for the entire study area for all season.

RESULTS

Table 4 and table 5 represented statistical evaluation for different parameters in the ground water samples of Baheria village and Gambhiria villages of Sagar city. It can be concluded from ground water quality of Baheria and Gambhiria village of Sagar city, variables viz. TDS, TH are slightly higher and Alkalinity, Cl are lower in the post monsoon period than in the PreMonsoon. On the other hand parameters – BOD, COD, Ammonia and Nitrate are clearly higher in all the season showed a clear cut temporal effect. BOD is out of the highest desirable limit or maximum permissible limit set by WHO except TH, Alkalinity and conductivity which recorded high values. It was reported that groundwater was contaminated from nitrate fertilizers and manures used in agriculture. Furthermore, nitrate is used by microorganisms as food resources. In addition, high nitrate levels are often accompanied by bacterial and pesticide contamination. Hence, these sample water can be absolutely fit for drinking after disinfectants treatment. A total of 30 samples had slightly more pH levels as per Indian standards. Possible sources of this contamination may be intensive agriculture and urbanization in Gambhiria and Baheria village. In rural areas, drinking water generally supplied groundwater through individual or community wells.

CONCLUSION

30 groundwater samples collected for physico-chemical analysis of water samples of Gambhiria and Baheria villages of sagar city. Physico-chemical parameters are out of the highest desirable limit or maximum permissible limit set by IS: 10500 [14]. Hence, these sample water cannot be absolutely fit for directly drinking. Some essential treatment needed to convert in drinkable water. In conclusion, from the results of the present study it may be said that the people in these rural areas are therefore at higher potential risk of contacting water-borne and/or sanitation-related diseases. Both villages water is not absolutely fit for directly drinking purpose need treatments to minimize the contamination. It is recommended that water analysis should be carried out from time to time to monitor the rate and kind of contamination.

It is need of human to expand awareness among the people to maintain the cleanness of water at their highest quality and purity levels to achieve a healthy life.

REFERENCES

[1]. Oladipo M.O.A., Njinga R. L., Baba A and Mohammed I, *Advances in Applied Science Research*, **2011**, 2 (6):123-130

[2]. H. Pathak, Doctoral thesis (submitted), Dr. H. S. Gour central university, Sagar, M.P., India, 2011.

[3]. B. Rajappa, S. Manjappa E. T. Puttaiah, D. P. Nagarajappa, *Advances in Applied Science Research*, **2011**, 2 (5): 143-150

[4]. Patil Shilpa G., Chonde Sonal Goroba, Jadhav Aasawari Suhas, Prakash D. Raut, **2011**, *Advances in Applied Science Research*, 2 (6):505-519

[5]. Pramod N. Kamble, Viswas B. Gaikwad and Shashikant R. Kuchekar, *Der Chemica Sinica*, 2011, 2 (4):229-234
[6] H. Pathak and S. N. Limaye, Seasonal study with interpretation of the chemical characteristics of water pond in reference to quality assessment: A case study, Analele UniversităNii din Oradea – Seria Geografie, vol. 2/2011 (Dec.).

[7]. Zamxaka m., Pironcheva g., muyima N. Y. O. Water SA, 2004, vol. 30, 333.

[8]. H. Pathak and S. N. Limaye, A mathematical modeling with respect to DO for environmentally contaminated drinking water sources of Sagar city (M.P.), India: A case study, Ovidius University Annals of Chemistry, Vol. 22(2), **2011**.

[9]. WHO, Guidelines to drinking water quality. *World Health Organisation, Geneva,* **1983**, pp186. [10]. APHA, "Standard methods for the examination of water and waste water", 21st edition, American Public Health Association, Washington, DC., USA, **2005**.

[11]. Indian standard drinking water, Specification (First Revision) IS-10500:1991. BIS, New Delhi, India