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Abstract
The main focus of this paper is to measure the discrimination ability of the fitted 
binary logistic regression model after admission the patients in ICU (intensive care 
unit). In this paper we use parametric and non-parametric methods for measuring 
discrimination ability of the logistic regression classifier. The most important 
analysis in which the outcome variable is binary or dichotomous. It can be used 
to predict a binary dependent variable from a set of independent variables. Since 
our outcome variables have binary categories, so binary logistic regression prefers 
to estimate model parameters. This technique is preferred by many researchers in 
the analytical fields. It is also widely used in various clinical researches to predict 
the risk of a patient's future health status. Predictions based on these models 
have an important role in predicting the survival of patients in ICU. Concordance 
statistic (C-statistic), which is equivalent to the area under a receiver operating 
characteristic curve (AUC), is frequently used to quantify the discriminatory power 
of the logistic model because of its straightforward clinical interpretation. In this 
paper we assess the discrimination power in simulation and real data for binary 
logistic regression.
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Introduction
Logistic regression is the appropriate regression analysis to 
conduct when the dependent variable is dichotomous (binary). 
The binary logistic model is used to estimate the probability of a 
binary response based on one or more predictor (or independent) 
variables (features). As such it is not a classification method. It 
could be called a qualitative response/discrete choice model  in 
the terminology of economics [1]. Thus, it treats the same set of 
problems as probability regression using similar techniques, with 
the latter using a cumulative normal distribution curve instead. 
Equivalently, in the latent variable interpretations of these two 
methods, the first assumes a standard  logistic distribution  of 
errors and the second a standard  normal distribution  of errors 
[2]. One situation in which logistic regression is applicable is in 
model clinical research, where the clinicians are concerned 
about predicting the patient’s survival based upon predictor’s 
[3,4]. For example, the Trauma and Injury Severity Score, which 
is widely used to predict mortality in injured patients, was 
originally developed by Boyd et al. using logistic regression [5]. 

Most regression models are described in terms of the way the 
outcome variable is modeled: in linear regression the outcome is 
continuous, logistic regression has a dichotomous outcome, and 
survival analysis involves a time to event outcome [6]. Logistic 
regression is the statistical technique used when we wish to 
estimate the probability of a dichotomous outcome such as the 
presence or absence of a disease or of death.

For modern clinical medicine, risk prediction procedures 
are valuable tools for disease prevention and management. 
Pioneered by the Framingham study, risk score systems have 
been established for assessing individual risks of developing 
cardiovascular diseases, cancer or many other conditions within 
a certain time period [7]. A key component in the assessment of 
risk algorithm performance is its ability to distinguish subjects 
who will develop an event (“cases”) from those who will not 
(“controls”). This concept, known as discrimination, has been 
well studied and quantified for binary outcomes using measures 
such as the estimated area under the Receiver Operating 
Characteristics (ROC) curve (AUC), which is also referred to as a 
“C-statistic”. Such a statistic is an estimated conditional probability 

https://www.statisticssolutions.com/academic-solutions/membership-resources/member-profile/data-analysis-plan-templates/data-analysis-plan-logistic-regression/
https://en.wikipedia.org/wiki/Discrete_choice
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https://en.wikipedia.org/wiki/Logistic_distribution
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that for any pair of “case” and “control,” the predicted risk of 
an event is higher for the “case” [8]. To evaluate the adequacy 
of such a system, C-statistics are routinely used in the medical 
literature to quantify the capacity of the estimated risk score 
in discriminating among subjects with different event times. 
The C-statistic provides a global assessment of a fitted survival 
model for the continuous event time rather than focusing on 
the prediction of t-year survival for a fixed time. When the event 
time is possibly censored, however, the Population parameters 
corresponding to the commonly used C-statistics may depend on 
the study-specific censoring distribution [9]. We provide a large 
sample approximation to the distribution of this estimator for 
making inferences about the concordance measure. Results from 
numerical studies suggest that the new procedure performs well 
in finite samples.

Materials and Methods
Data
The ICU data is a type of secondary data. This data was taken 
from Hosmer and Lemeshow [10]. The ICU study dataset consists 
of a sample of 200 subjects who were part of a much larger study 
on survival of patients following admission to an adult intensive 
care unit (ICU). Vital status (lived/died) of patients after the 
admission in the ICU are depend mostly in some variable such as 
age of the patients, service at ICU admission, history of chronic 
renal failure, sex, systolic blood pressure at ICU admission etc. 
Data were collected on 200 patients, 40 of which had died and 
160 of which had vital status. The predictors of interest were 
AGE, SEX (male/female), RACE (white/black/other), service at 
ICU admission (SER (medical/surgical)), cancer part of present 
problem (no/yes), history of chronic renal failure (CRN) (no/
yes), infection probable at ICU admission (INF(no/yes)), CPR 
prior to ICU admission(CPR (no/yes)), systolic blood pressure at 
ICU admission (SYS), heart rate at ICU admission (HRA), previous 
admission to an ICU within 6 months (PRE (no/yes)), type of 
admission (TYP (elective/emergency)), long bone, multiple, neck, 
single area, or hip fracture (FRA (no/yes)), p  from initial blood 
gases (P (bg>60,bg 60)), ph from initial blood  gases (PH (ph

7.25, ph<7.25)), pc  from initial blood gases (PCO (pco 45, 
pco>45)), bicarbonate from initial blood gases (BIC ( 18, 

<18)), creatinine from initial blood gases (CRE( 2.0, 
>2.0)) and level of consciousness at ICU admission (LOC (no/deep 
stupor/coma)). The main focus here is to illustrate the validation 
measures for simple binary data.

Estimation of C-statistic for logistic regression 
model
The C- statistics is numerically identical to the area under the 
receiver operating characteristic curve (AUC). It equals the 
proportion of pairs in which the predicted event probability is 
higher for the subject who experienced the event of interest 
than that of the subject who did not experience the event. For 
a pair of subjects (i, j), where i and j correspond to those who 
experienced the event and those who did not respectively, with 
event probabilities   ( ){ ( )}| , |i ix xπ β π β the 

C-statistics can be defined as 

( ) ( )| | | 1& 0i i i jC P x x Y Yπ β π β = > = = 

Since there exists a one-to-one transformation between  and 
, the above probability expression can be written as  

Pr | 1& 0T T
i i i jC x x Y Yβ β = > = = 

The value of C statistic lies between and 1. A value of 
indicates that the model has no ability to discriminate between 
low and high-risk subjects, whereas a value of 1 indicates that 
the model can perfectly discriminate between these two groups. 
The C-statistic for the logistic regression models can be estimated 
using both parametric and nonparametric approaches. Under 
the assumption of normal distribution, the method of maximum 
likelihood may be used to estimate the C-statistic. 

Non-parametric (C-statistic) estimation: Mann-
Whitney U statistic (CU)
The widely used non-parametric approach to estimate the 
C-statistic is based on the Mann-Whitney U statistic and does not 
require any distributional assumptions regarding the prognostic 
index. The C-statistic or AUC has been shown to be equal to the
U statistic− . Let  ( )1 | 1 | 0T T

i i j i jx Y and x Yη β η β= = = =  be 
PI derived by the model for subject i with event and for subject 
j without event, respectively. Further, let 0η  and 1η  be the 
number of events and non-events, respectively. Considering 
all pairs (i, j), the C-index can be estimated by analogy to the U 
statistic formulations [11] as:

( ) ( )( )
01

1 0

1 11 0

1 ,
nn

U i j
i j

C I n n
n n = =

= ∑∑

Where

=

( )( ) { ( ) ( ) ( ) ( ) ( )1 0 1 0 1 00 1 1, 1 0
2i jI if if ifη η η η η η η η= > = <

A concordance pair can be defined (as above using the indicator 
function) as a pair in which the subject who experienced the event 
had a higher predicted probability of experiencing the event than 
the subject who did not experience the event. The total number 
of pars is the product of number of subjects with event of interest 
and the number of subjects without an event.
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Non-parametric estimation (C-statistic): Kernel 
statistic (CK)
To obtain C-statistic or AUC from a smooth ROC curve an 
alternative to the above estimator suggested by Lloyd [12] is 
based on standard normal Kernel smoothing. The resulting Kernel 
estimate of the C-statistic can be written as

CK =

( ) ( )1 0

1 2 2
1 0 1 0

1 n n i i
K i i

C
n n h h

η ηφ
= =

 − =
 + 

∑ ∑

With the bandwidth ( ) 1.5
1 1 1 10.9min , 1.34h s iqr n−= , where 1s  

and iqr  are the standard deviation and inter quartile range 
of risk score ( )1

iη  and ( )φ ⋅  is the standard normal cumulative 
distribution function. Similarly, one can defined 0h  for risk score

( )0
iη

.

Parametric Estimation (C-statistic) (CP)
Based on the central limit theorem, the prognostic index is likely 
to follow normal distribution as the dimension of the parameter 
vector  increases [13]. The estimation of the parametric C-index 
is as follows:

Let   ( ) ( ) ( )1 2
0 0| ~1 ,T

i i jx Y Nη β µ σ= =  and 
( ) ( ) ( )1 0 2 2

1 0 1 0,~i j Nη η µ µ σ σ− − +
. 

The parametric concordance statistic is:

( ) ( )1 0Prp i jC n n = > 

After standardizing the term ( ) ( )1 0 ,i j pCη η− can be obtained as:

1 0
2 2
1 0

PrpC z µ µ

σ σ

 −
 = <
 + 

                                           = 1 0
1 2
1 0

µ µφ
σ σ

 − =
 + 

Where ( )~ 0,1Z and ( )φ ⋅ is the standard normal CDF. The estimate 

of pC can be obtained by replacing 1 0,µ µ  and, 2 2
1 0,σ σ  by their 

sample estimates and 01 ,x x  and 2 2
1 0,s s respectively.

Results and Analysis 
Simulation study
In this section, we check the properties of the C-statistics by 
the standard error for simulation studies. The properties of the 
C-statistics were investigated in a range of scenarios, created by 
varying sample size of simulated data. The C-statistics are also 
evaluated by varying the distributional assumptions of risk score 
derived from the model. The aim was to identify scenarios where 
the C-statistics did not perform adequately, for example, whether 
C- statistics were affected by decreasing sample size. The section 
begins by describing the simulation design which is followed by 
describing the strategies for evaluating the C-statistics and the 
results. Only binary responses were generated from Bernoulli 
distribution with probability derived from a true logistic model 
based on ICU data. The covariates of the data were the same. The 
probability form logistic model were calculated using:

( ) [ ]
1|

1 expi
i

xπ β
η

=
+ −

Where ˆT
i xη β= , That is, the estimated coefficients from the 

fitted model for ICU data were used as the true value of the 
parameter of the true logistic model.

Simulations with normal distributions
The performance of the different C-statistics was investigated 
under various simulations Scenarios. As distributional assumption 
of parametric approach of C-statistic is required, the simulation 
was conducted varying the distribution of prognostic index. 
Based on normality assumptions, we try to show the evaluation 
and comparison of validation measures for the estimator of 
concordance statistics for different approaches. According to the 
simulation procedure, we were conducted the simulation study 
and different validation measures of our estimates are obtained. 
Table 1 provides the estimates of C-statistic for methods and its 
validation properties in simulation scenarios.

From the above table in standard error approaches, we were 
found that the estimated value of  and  were close to 
the true value but  has more deviation than others for each 
scenarios of simulation that means standard error for non-
parametric estimators are smaller than parametric estimator. 
Allowing the effect of sample size on the validation measures, it 
may be noticed that standard error for all the approaches were 
increased when the sample size was decreased for all scenarios 
but it was more for parametric estimators than non-parametric. 
From above discussion, we can draw an approximate conclusion; 
standard error was affected by sample size. From the above all 
discussion, we say that non-parametric estimators  provide 
better result among all estimators.
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Assessing the risk model for ICU data
The logistic model was fitted to the ICU data and its discriminatory 
power assessed using C-statistic. We have to fit the model 
to derive the prognostic index as well as C-statistic and its 
properties by using binary response variable STA (vital status) 
against independent variables AGE, CAN, CPR, SYS, TYP. After 
constructing the model, estimate of coefficients, its standard 
error we have to assess the estimated risk model using the 
C-statistic. Discrimination measure for ICU data is very close for 
parametric and non-parametric approaches but standard error 
larger for parametric estimator than the non-parametric and 
hence provides larger confidence. The estimated C-statistic, its 
standard error (SE) and confidence interval are showed in Table 2.

Discussion and Conclusion
The Concordance statistic is frequently used to assess the 
discriminatory ability of the for-risk model for binary data. 
Several approaches including parametric and non-parametric 
of estimating C-statistic has been proposed in the literature 
but it is still unclear to the practitioner which approach should 

generally be used. The results from ICU datasets suggest that 
“non-parametric” and “Kernel smoothing” estimators provided 
approximately similar results but “parametric” estimators 
provided different results particularly produced larger standard 
error than the others. If the sample size is large under normality 
of the prognostic index all the approaches produced comparable 
results. However, when sample size is small, the non-parametric 
Mann-Whitney U estimator performed better than the non-
parametric Kernel smoothing estimators and parametric 
estimator. Parametric estimator performed well when the sample 
size was large. Sample size is less depending on the distribution 
of prognostic index. Above discussion provides the conclusion 
that nonparametric estimators may be used generally in practice 
rather than the other estimators. In summary, before evaluating 
the predictive performance (discriminatory power) of the risk 
models for binary data using C-statistics, it is essential to check 
sample size and distribution of the log-odds derived from the 
model. In the both real data and simulation data we conclude 
that nonparametric estimator  having more discriminatory 
power than other methods.

Table 1 Empirical comparison of concordance statistics for normal distribution.

True Value = 0.746

Sample Size                                               C-Statistic Estimate    SE

189

CU 0.74639 0.00108

CK 0.74639 0.00108

CP 0.74702 0.00105

100

CU 0.74744 0.00216

CK 0.74744 0.00215

CP 0.74747 0.00192

75

CU 0.76083 0.00332

CK 0.76084 0.00332

CP 0.76199 0.00294

50

CU 0.72038 0.00698

CK 0.72033 0.00699

CP 0.64758 0.01005

 Table 2 Concordance statistics for ICU data.

Concordance Statistics Estimate SE 95% C.I.
Cu 0.7995 0.0418 [0.7306, 0.8684]
CK 0.7996 0.0419 [0.7307, 0.8685]
Cp 0.7933 0.1381 [0.7227, 0.8520]
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