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ABSTRACT

In traditional method of concrete mix design, a normal concrete of required strength, can be achieved after several
trials on mix proportion. This trial mix design approach has proven to be complex and difficult. This article
demonstrates the applicability of artificial neural network (ANN) to the design of concrete of required modulus of
rupture (MOR). The architecture of the neural network created is 4-20-1 (i.e. 4 input neurons, 20 neurons in the
hidden layer and one output neuron). And, a feed forward back propagation learning algorithm was used for the
training of the neural network. Sufficient set of mix proportions with their corresponding modulus of rupture, were
generated experimentally and used for the training and testing of the neural network. The neural network toolbox of
MATLAB software with TRAINGDM training function, LEARNGDM learning function and MSE regularization
performance function, was utilized in creating the neural network. The results predicted by the network were in
close agreement with corresponding experimental values. And a correlation coefficient of 0.9051 for all, shows that
thereisalinear relationship between the output and target during training.

Keywords: Artificial neural network.

INTRODUCTION

Concrete has been in use in construction for cuiteng time now. It is the world’s most utilizednstruction
material and the need for infrastructural developinie both the developing and developed countries flaced a
great demand on it [8]. Its popularity as a corgdtam material is due to the fact that it is madenf commonly
available ingredients and it can be tailored tocfiomal requirements in a particular situation [18h exact
determination of concrete mix proportions from &bbr computer data is generally not possible olmsequence,
all that is possible is to make an intelligent guasthe optimum relationship already establisibérefore, in order
to obtain a satisfactory mix, not only are the pmipns of available material estimated, but tridkes are also
made. These mixes are checked and adjustment imikhgroportions are made in the laboratory untilully
satisfied mix is obtained [7]

An alternative method of designing concrete of nemll MOR has been developed using the artificiairale
network (ANN) approach. The ANN approach uses nmatiteeal formulations to model nervous system ojpemnat
[9]. Many researchers have applied the ANN in mglredictions. An ANN is configured for a specifipplication
such as pattern recognition or data classificatiormugh a learning process. In the past, conditierattention has
been focused on the problem of applying neural agtvin diverse fields, including systems, fault ghasis and
controls. This is because ANNs are a good tool tmleh non-linear systems [13]. Many research aativihave
been carried out using supervised learning ANNs[R]6] used the ANN in the prediction of globalas radiation
of Uyo and Warri, Nigeria. [1] Used the ANN to pretdultrasonic velocities in binary oxide glassesile/[2] used
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the ANN to predict the n-octanol/water partitioretficient of derivatives of the anti-HIV drug in gatum chemical
calculations.

1.0ARTIFICIAL NEURAL NETWORK

An artificial neural network is an information pessing system that has certain performance chasdict® in
common with biological neural network [4]. It cosis of a network of artificial neurons, which areqessing units
arranged in layers similar to the biological nesram the brain. It developed as a generalizatiomathematical
models of human cognition or neural biology basedh@ assumption that;

() Information processing occur at many simple elesieatied neurons.

(ii) Signals are passed between neurons over connattsd |

(iif) Each connected link has an associated weight whiattypical network multiples the signal transkemkt

(iv) Each neuron applies an activation function (usuaby-linear) to its net input (sum of the weighiegut
signal) to determine its input signal.

In practice, artificial neural network can perfoany computable function which a normal digital caitgp can
handle.

Artificial neural network are specified by its aitgtture, training or learning algorithm, and aatien function.

2.1NETWORK ARCHITECTURE

The network architecture has to do with the arramg@ of the neurons within the neural network. Fighows the
architecture of the neural network adopted in tiiel\s There are four neurons in the input layeresponding to
the mix proportions of water-cement ratio, cemeand and granite chippings, and one neuron in atgub layer,
corresponding to the modulus of rupture of concrétee main task here is to determine the numbereafons in
the hidden layer. In order to determine the nundfereurons in the hidden layer, lots of trials weagried out in
the MATLAB neural network tool box environment. Afidally, a network with twenty neurons in one hésidayer
was selected and used in this study. Thereforenfiguration of 4 -20-1 was adopted for this netkvor

lst

Water/cement ratio

Cement
Modulus of rupture

Sand

Granite chippings

Fig 1: Architecture of the 3-layer neural network

2.2 LEARNING OF THE ANN

Artificial Neural Network has the ability to leamgiven data and generalize the relationship betwee input data
(i.e. weights of the connection), even when theuingata are incomplete or contain error. Like peppitificial
neural network learns by example. It requires tHheaming examples as prior knowledge. These exasnpbnsist
of the collections of input and output patternsevehthe patterns are representative of patterastofation.When
the neural network is presented with examples ef cbmputation to be performed, it learns the outpat
corresponds to the input specified. In order tauemshat a network learns, the input data shoutdaio the specific
information from which the desired output is dedv®uring the learning phase of the network, thaeaata is
processed many times as the connection weightefined. The following steps are involved in tharleing phase:

(i) Feed forward of the training data.
(ii) Back propagation of the associated error.
(iii) Adjustment of the weights.
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2.2.1 FEED FORWARD COMPUTATION

In feed forward computation, information flows imeo (i.e. forward) direction. In general, each neuno the
network operates by summing up all the weightedtisijit received and then passes the result thraugbn-linear
activation function. The operations of the differkyers of neurons are as follows:

(a) Each input neuron, (Xi = 1,...,n) receives input signals, and broadcasts this signal to all units in thestay
above (i.e. hidden neurons).

(b) Each hidden neuron;(H= 1, 2,...,m) sums up its weighed input signalse Tiet input signal to the hidden unit,
H; is described as:

n
nety; = wy+ /wil;

=1 )
wherey, = bias on hidden neurons jwweight from neuron i (source) to neuron j (destiion); | = input value

from neuron i. And the output;,tof the hidden unit (jias a function of its net input is given by:

hy = f(net) 2
where f = sigmoid function = 1/[1 + Expfx

But, X = ney; 3)
Thus, h= 1/ [1+ Exp(-nes)] 4)

The signal given by Eqn. (4), is sent from the kitldeuron, Ho all neurons in the output layer.

(c) Each output neuron, (& = 1, 2,...,p)) sums its weighted input signalseTet input to the output neuron
(nety) is given as:

m
netpr = Wor T 2 wikh

=1 ®)
Where wy= bias on output neuron,Ow= weights from neuron j to neuron k.
The output signal from neuron, s obtained by applying its activation functianits weighted input signals
o = f(nety (6)
Where f = sigmoid (activation) function
Therefore, p = 1/[1 + exp(-ngf)] ©)
The set of calculation that results in obtaining tutput state of the network is carried out theesavay for both

training and testing phases. However, the test njosteinvolves presenting the input units and daltbog the
resulting output in a single forward pass.

2.2.2 BACK PROPAGATION OF ERROR

The training algorithm adopted in this work, is tiradient descent with momentum constant. The pegiagation
computation involves the use of the chain rulea€walus. According to [11], error measurg, Enown as the mean
square error, (mse) is defined as
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n
E.:_-, = 2 (f k=1

k=1 (8)
Where
fy = target (desired) value ofutput neuron
0y = actual output obtained from Qutput neuron
n = the ' values of the outputs obtained frong ©utput neuron

But the change in weightywy, from hidden unit, Hto output unit, @, is directly proportional to the negative
gradient of the error function,&ith respect to the weights.

Awy o (DEplowy) ()]
Therefore, Awy = -aEy/wy (10)
Wherea = learning rate

The Egn. (10) is known as the delta rule.

But, Awy = -adih; (11)
Whered, = portion of error correction weight fori.e. the error at the output unit,)O

hi = 8ne§)k/ 8Wik

I
netpr =wep T E“'_ikh_i: net cutput to the output unit
=1 (12)
Where, w= bias on output neuron, k; 3w weights from neuron j to neuron k.

Using product rulegy, is derived as;
Ok = (fie 0)f'(nety) (13)

In order to improve generalization in this worketperformance function was modified by adding antéhat
consists of the mean of the sum of squares of éteark weights and biases (msw). Therefore, thennsemare
error with regularization ‘msereg’ can be defined a

msereg =kmse + (1 «)msw (14)

where k = performance ratio;

n
MSW= |3 Wit =
=1 mean of the squares of the network weights andbias (15)
2.2.3 TRAINING ALGORITHM
This is the procedure for modifying the weights the connection links in a neural network. There @y
algorithms for training neural networks; most ofeitih can be viewed as a straight forward applicatién
optimization theory and statistical estimation. ¥hiaclude: Back propagation, conjugate gradientcdet
levenberg-marquardt, simulated annealing, evolatiprcomputation methods, particle swarm optimizatand
other swarm intelligence techniques. But the bastiln example of a neural network training algorittisrthe back
propagation [4]. This is because it is the easikgirithm to understand.
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Back propagation (of error) or the generalizedadalie, is simply a gradient descent method to mmize: the total
squared error of the output computed by the netwbhe gradient vector of the error surface, is waked. This
vector points along the line of the steepest ddsfitem the current point. So we know that if we raadong it a
‘short’ distance, we will decrease the error. Awsatce of such moves will find a minimum of somet.sarvery
general nature of the back propagation traininghowtmeans that a back propagation network (a raydtil feed
forward, network trained by back propagation) canulsed to solve problems in many areas. Applicatizsing
back propagation and its variations can be foundriaially every field that uses neural network fooblems that
involves mapping a given set of inputs to a speaét of target outputs (i.e. networks that useesiiged learning).
As is the case with most neural networks, the aitoitrain the network to respond correctly to inpatterns that

are used for training (memorization) and have thityato give reasonable (good) responses to irtpat is similar,
but not identical, to that used in training (getieedion).

Numerous variations of back propagation have bemreldped to improve the speed of the training msce
Example of this variation can be seen in the wdrklg]. In their work, they combined the featurestioe feed
forward neural networks and the genetic algorithimslevelop a hybrid neural network model for thesige of
concrete beams. The effect of this hybridizationedral networks resulted to considerable imprafeidiency (i.e.
enhanced speed of training) of the network. Bacipagation algorithm was used in training the nenetvork.

2.2.4 ACTIVATION FUNCTION.

An activation function is a function that transfaritihe net input into a neuron to a value the netnamsmits. The
basic operation of an artificial neuron involveansning its weighted input signal and applying anpottor
activation function. For the input units, this ftioo is the Identity function. Typically, the saraetivation is used
for all neurons in any particular layer of a neuratwork, although this is not required. In mostesg a non-linear
activation function is used. In order to achieve tdvantages of multilayer nets, compared with litméed
capabilities of single layer network, non-lineandtions are required.

MATERIALSAND METHODS

3.1MATERIALS

Concrete used in this study was composed of censdatrp river sand, granite chippings and water.goten
cement, a brand of ordinary portland cement wad uséhis work. It conforms to the requirement 8f.[The sharp
river sand was obtained from Otamiri River in Owehmo State of Nigeria. It fell into the zone 34 yranite
chippings were obtained from Ishiagu quarry sitElronyi State of Nigeria. And, the water used waritgble water

obtained from municipal water supply. Somesof thr proportions of these constituent materials aficrete are
shown in Table 1.

Table 1: Mix proportionsof constituent materialsused in producing the concr ete beams

SINO | Mix proportion | Water-cement ratio | MixtureLabel | Water (Kg) | Cement (Kg) | Sand (Kg) | Granite(Kg)
1. 1:2:4 0.55 S1 2.56 4.63 9.26 18.51
2. 1:25:6 0.50 S2 1.71 341 8.53 20.46
3. 1:15:35 0.60 S3 3.24 5.40 8.10 18.90
4. 1:2.25:5 0.52 S4 2.06 3.93 8.84 19.64
5. 1:25:4.75 0.49 S5 1.96 3.93 9.82 18.65
6. 1:1.75:3.75 0.58 S6 2.87 4.98 8.72 18.69
7. 1:2.75:5.7 0.4¢ S7 1.62 3.41 9.3¢ 19.6]

8. 1:2:4.75 0.55 S8 2.30 4.18 8.36 19.86
9. 1:2.25:45 0.52 S9 2.19 4.18 9.41 18.81

10. 1:2.375:4.875 0.51 S10 2.01 3.93 9.33 19.14
11. 1:2.25:4.75 0.53 S11 2.13 4.05 9.11] 19.24
12. 1:2.125:4.625 0.54 S12 2.25 4.18 8.88 19.33
13. 1:1.75:4.12 0.5¢ S1: 2.71 4.71 8.2F 19.4¢
14 1:2.25:4.37 0.52 S1¢ 2.2% 4.2¢ 9.5€ 18.5¢

3.2 METHODS

The first part of the test was the laboratory testin flexure of the 150x150x600mm prototype cotereeam
specimens prepared from fourteen different concn@téures. These tests were conducted at the a@8 afays

after curing the specimens in open water tanks. fllee beams prepared from each mix, were testedtlagid
average values recorded as the results
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The second part was the development of the neatalank. The historical data consisting of the fhundred ratios
of concrete (inputs) and their corresponding faumdred modulus of rupture (outputs), were storeal imatrix form
and then processed using Matlab software with thepminmax” and “removeconstantrows” processing tions.
The processing functions were used for preventiegnietwork from being saturated. Subsequentlyed ferward
neural network with four input neurons, twenty ledd neurons and one output neuron, was created tisin
network command“newff”. Thereafter, the neural ratwwas configured by specifying the network parterse
such as activation functions for the different ksy@nd training algorithm. The configuration comuasrare
“net.inputs(1).processFcn”and“net.outputs(2).preEess”. Then the weights and biases of connectiathsp
between two processing neurons in the network, vit@lized and reinitialized using the commandetn=
init(net)”. Finally, the network was trained fortgen classification and validated. The processahing required
tuning the values of the weights and biases in rotde optimize the network performance. Training was
implemented using the batch mode. In all, four ledddata pair comprising of concrete mix proposiand
moduli of rupture were used in the training of tretwork.

In validating the network, the performance of tleéwork was checked in order to determine if anyngles need to
be made to the training process. The experimeatal were used for this purpose.

RESULTSAND DISCUSSION
The experimental results i.e. modulus of ruptuee@esented in column 2 of Table 2. And the requrislicted by
the neural network, are given in column 3 of themsalable 2. A comparison of the experimental resaitd the
neural network results show that the maximum peeggndifference is 3.276, which is negligible. Frbrgs 2 and
3, it will also be seen that there is a close agere between the experimental results and the heeaork results.

Table 2: Comparison of Experimental resultsvs. Neural Network Predictionsvs. Percentage Errors

Mix Label | Experimental Results(Mpa) | Neural Network Prediction (Mpa) | error | % error
S1 6.00 6.0101 -0.1101 1.866
S2 5.30 5.1904 0.109¢4 2.068
S3 6.22 6.2761 -0.0561 0.9
S4 5.20 5.2687 -0.068y 1.321
S5 4.60 4.6898 -0.0898 1.952
S6 6.30 6.3482 -0.048p 0.765
S7 4.89 4.9267 -0.036Y 0.751
S8 6.20 6.4031 -0.2031 3.276
S9 5.12 5.0453 0.074] 1.459
S10 4.70 4.7649 -0.064p 1.381
S11 5.20 5.2640 -0.064p 1.231
S12 5.70 5.7218 -0.021B 0.382
S13 6.15 6.2138 -0.0638  1.0374
S14 5.00 5.0260 -0.026p 0.521
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Fig 2: Line graph comparing experimental resultswith neural network predictions
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Fig 3: Bar chart comparing experimental resultswith neural network predictions

4.1VALIDATION OF NETWORK PERFORMANCE
The validation of network performance is preseriteéig 4. The correlation coefficient R is 0.905hieh shows
that there is a linear relationship between th@utstand targets.

220
Pelagia Research Library



Onwuka. O. David and Awadiji. T.G. Chioma Adv. Appl. Sci. Res., 2013, 4(4):214-223
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Fig 4: Validation of network performance

Fig 5 shows the msereg error convergence histdrg.fiean square error with regularization (mseregjhe best
validation performance occurred at 11.56 for 1000ch. In Fig 6, the gradient at 1000 epoch is ®4There was
no validation check at 1000 epoch as the trainirtg@network stopped when the maximum epoch washied.

<Student Version> : Performance (plotperform) (=N e
Best Validation Performance is 11.5602 at epoch 1000
102 C T T T T T T T T
Train ]
WValidation |]
Test
******* Best

o
o
T

Mean Squared Error with Regularization (msereg)

@

a
=]
T

L L L L L L L L L
0 100 200 300 400 500 600 700 800 900 1000
1000 Epochs

Fig 5: Mean squareerror conver gence history
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Fig 6: Plot of network gradient vs. number of epoch

4.2TEST OF ADEQUACY OF THE NEURAL NETWORK
The students T-test was used in testing the adgmqfabe neural network at a significance leveDd5. The t-test
computations are presented in Table 3.

Table 3: Student T-test computation

SN| YE | YM | Di=YM-YE DA -Di (DA - Di)?
S1| 6 | 6.0101 0.0101 0.053392857 _ 0.002851
S2 | 53| 51004  -0.1096 0.1730928%7  0.029961

S3 5.9 | 6.2761 0.3761 -0.312607143  0.097723
S4 5.2 | 5.2687 0.0687 -0.005207143  2.71E-P5
S5 4.6 | 4.6898 0.0898 -0.026307143  0.000692
SE | 6.5 | 6.348: 0.048: 0.01529285 | 0.00023

S7 | 4.89| 4.9267 0.0367 0.0267928%7  0.000718
S8 6.2 | 6.4031 0.2031 -0.139607143 0.01949

S9 | 5.12| 5.0453 -0.0747 0.1381928%7  0.019Q97
S10| 4.7 | 4.7649 0.0649 -0.001407143  1.98E406
S11| 5.2 5.264 0.064 -0.000507143  2.57E-p7
S12| 5.7 | 5.7218 0.0218 0.0416928%7  0.001738
S13| 6.15] 6.2138 0.0638 -0.000307143  9.43E408
S14 5 5.026 0.026 0.037492857  0.0014p6

YD; = 0.8889
Y (Da-D) = 0.17394

Da = YDi/ N = 0.063492857

S= Y (Da—-D)/ (N-1) = 0.01338
S =S = 0.11567

Tew = Da*(N)~ 0.5/S = 2.05381

From standard statistical table, the T-value i®gigs, F.os 157 2.16

Since, the calculated T-value,,fis less than the critical T-value from standastistical table, (i.e. T = 2.16), the
null (H,) hypothesis is accepted as there is no significifférence between the neural network results taed
experimental results. This affirms that the resfitisn the neural network are reliable and so th&alenetwork can
be used to predict the 28lay flexural strength of concrete at 95% confidelevel.

CONCLUSION

In this study, the historical results of 400 samaplere applied to generate an artificial neuralvoet (ANN) to
predict the modulus of rupture of concrete. Theccete was made of different mix proportions of catmmeand,
granite chippings and water. The outcome of thaterte ANN was compared with the results of the erpental
work. The selected network and its parameters were;
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i. The water-cement ratio, cement, sharp sand andtgnaare the inputs while the Modulus of RuptureCaincrete
was the output of the network.
ii. The architecture of the selected network was 4-120
iii. A total of 400 data were used for training and &fadvere used for verifying and testing respedgfivel
iv. The ultimate network to predict the Modulus of Ruptwas the feed-forward back-propagation neuraVor, in
which the training and transmission function weRAINGDM and TANSIG respectively.
v. The outcome results of the created network wergedo the results of the experimental effort.
vi. Momentum constant and the learning rate were kemstant at 0.9 and 0.2 respectively.
vii. The selected ANN can be used to predict the ModofiRupture of Concrete with minimum error below 4%d
the maximum correlation coefficient close to 1.
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