
American Journal of Computer Science and Engineering Survey www.pubicon.co.in

 Original Article

Applying Aspect Oriented Programming on
Security

Mohammad Khalid Pandit*1, Azra Nazir1 and Arutselvan M2

1Department of computer Science and engineering, National institute of technology Srinagar, India
2MGR University Chennai, India

ABSTRACT

The problem of code scattering and tangling is very common among
sizeable applications. These result in crosscutting concerns.. The
issues that are related to security are particularly severe. Mechanisms
are being developed to deal with different concerns separately. An
interesting case of this separation is security. The implementation of
security mechanisms are usually scattered all over the code and
tangled with the core functionality of the application. This results in
unmanaged code with high risk. Aspect-oriented programming
(AOP) promises to tackle the problem of crosscutting concerns by
offering several abstractions that help to reason about and specify the
concerns individually. Aspect-oriented programming is an emerging
programming paradigm that seeks ways to modularize software
systems. Modularizing involves separating and localizing the
different concerns. State-of-the-art software techniques already
support separating concerns, for instance by using method
structuring, object-oriented programming and design patterns.
However, these techniques are inadequate for more complex
modularization problems (security). Aspect-oriented programming is
an approach that provides more innovative modularization techniques
i.e. it helps to minimize these risks by eliminating the tangling and
scattering of the code.

Keywords: Programming languages, Aspect oriented programming,
Security, Separation of concerns, Modularization.

INTRODUCTION

The principle of separation of
concerns proposes encapsulating features
into separate entities in order to localise
changes to them and deal with one important
issue at a time.

While software development the
security should never be considered as the
minor issue and security should never be
added to an application as an afterthought
because it leads to bugs and vulnerabilities1.
The security should be considered as an

Address for

Correspondence

Department of
computer Science and
engineering, National
institute of technology
Srinagar, India.

E-mail: khalidpandit
@gmail.com

Khalid et al___ ISSN 2349 – 7238

AJCSES[3][2][2015] 135-142

issue in each and every phase in software
development right from requirements
gathering to final implementation. It is
relatively easier to take security into account
in the initial phases of development like
requirements gathering and analysis. But it
becomes harder as the development reaches
higher and more complicated stages because
not only application but the security
mechanism also becomes more complex.
The major problem is the interaction
between the functionality of the application
and how security policy should work2. At
the root of this problem lies the structural
mismatch between the application logic and
the required security solution. This security
mismatch can be eliminated if the
application logic and security and every
other concern is properly modularized.
State-of-the-art software techniques already
support separating concerns, for instance by
using method structuring, clean object-
oriented programming and design patterns.
However, these techniques are inadequate
for complex modularization problems13. E.g
Object oriented programming paradigm
separates concerns in an intuitive manner by
grouping them into objects. However, object
oriented paradigm only helps in
modularizing concepts that easily map to the
objects, but it is not good at separating
concerns4. For example it is difficult to
model security in object oriented paradigm,
while we can write a central security
manager for the application, and explicit
calls to be made to the security manager
from every spot where security is needed.
Unfortunately if the important call to
security manager is forgotten from a point in
the application it causes a security leak at
that point. i.e. forgetting to trigger security
checks at sensitive points in an application
can lead to hard-to-spot security holes.
Aspect oriented programming can solve this
problem by allowing security concerns to be

specified modularly and main application in
a uniform way.

Aspect oriented programming is a
new programming paradigm that explicitly
promotes the separation of concerns9. In the
context of security this would mean that the
main program should not need to encode
security information4, instead it should be
moved to separate independent piece of
code. This helps to reduce the tangling and
scattering of security related code in the
application. Modern programming
techniques that support separation of
concerns like object oriented programming,
method structuring, encapsulation etc are
insufficient for more complex
modularization problems. A major cause for
this limitation is the inherently forced focus
of these techniques on one view of the
problem; they lack the ability to approach
the problem from different viewpoints
simultaneously. The final result is that
conventional modularization techniques are
unable to entirely modularize crosscutting
concerns.

At large, every software application
has two types of concerns associated with its
operation i.e. primary concern and
secondary concern. Usually the primary
concerns in an application do not crosscut
with other concerns; it is the secondary
concerns which crosscut the application12.
E.g. consider the case of File access. The
primary concern in this operation is the
updation or deletion of the file, while as the
secondary concern is the security related to
the operation. The security concern
crosscuts the application and the code
related to security is scattered with other
concerns. This causes the security of the
application precarious.

Aspect oriented programming is the
answer to this problem. It has constructs to
declare how modules crosscut one another.
In this paper we use AspectJ, an aspect
oriented extension of java10; that helps

Khalid et al___ ISSN 2349 – 7238

AJCSES[3][2][2015] 135-142

dealing with crosscutting at implementation
level.

The problems caused by crosscutting
concerns in the implementation of software
are well known, and are the raison d’^etre of
the aspect-oriented software development
community3,5. In the particular case of
security related applications, there are at
least three specific issues:

(1) It is not easy to change the
current access control implementation (e.g.,
to change the kind of security policies being
enforced) because it is not modularly
defined.

(2) Programs that do not take
security into account cannot be made
security aware without directly modifying
them.

(3) Forgetting to trigger access
control checks at sensitive points in an
application can lead to hard-to-spot security
holes.

Motivation

Separation of concerns reduces
system complexity caused by mixing
crosscutting concerns, which are aspects of a
system that affect other concerns. Secure
software systems can be developed by
separating application and security concerns
with the goal of making these systems more
maintainable and reusable6. By careful
separation of concerns, the security
requirements are captured separately from
the application requirements. In the design,
security concerns are modelled in security
components separately from the application
components as well.

An aspect plays an important role to
separate security code from application code
in the implementation. An aspect can be
described as a combination of four integral
parts: the aspect itself, a join point (s), a
pointcut (s), and advice6,3. These concepts
are crucial to creating an implementation
model with separation of concerns from

design models in aspect oriented
programming. Though definitions may vary,
an aspect is generally thought of as a feature
of a system, which is scattered at multiple
points throughout the system. Aspects are
commonly used to represent crosscutting
concerns that are separated from the core
business logic of a system. For example,
imagine a File access application where a
user can implement the operations like
delete, update or add. The operation depends
upon the permissions of the user given by
the security system, ie some users may be
authorized to delete or update a particular
file while other users may not be authorized.
Core business logic for this application
system would be the methods that involve
delete or update of file chosen by the user,
whereas concerns separated from business
logic would include all security concerns
such as authentication and access control.
Thus security concerns can be modelled
with both authentication and access control
as separate aspects of the system, because
they are not directly involved with core
business logic. (See figure 1.)

Introduction to aspectj

Aspect-oriented programming is a
programming paradigm that aims to increase
modularity by allowing the separation of
cross-cutting concerns3,7. AOP forms a basis
for aspect-oriented software development.
AspectJ is the aspect oriented extension of
the java language. All valid Java programs
are also valid AspectJ programs, but AspectJ
also allows programmers to define special
constructs called aspects. Aspects can
contain several entities unavailable to
standard classes7. These are:

Inter-type declarations

Allow a programmer to add methods,
fields, or interfaces to existing classes from
within the aspect.

Khalid et al___ ISSN 2349 – 7238

AJCSES[3][2][2015] 135-142

aspect VisitAspect {
 void Point.acceptVisitor(Visitor v) {
 v.visit(this);
 }}

Pointcuts

Allow a programmer to specify join
points (well-defined moments in the
execution of a program, like method call,
object instantiation, or variable access). All
pointcuts are expressions (quantifications)
that determine whether a given join point
matches. For example, this point-cut
matches the execution of any instance
method in an object of type Point whose
name begins with set:
pointcut set() : execution(* set*(..)) &&
this(Point);

Cross-cutting concerns

Even though most classes in an OO
model will perform a single, specific
function, they often share common,
secondary requirements with other classes.
For example, the security is a concern which
spans all over the application ie in our
example the call to security manager is done
in both methods (delete and update).

Advice

This is the additional code that you
want to apply to your existing model. In our
example, this is the deletion code that we
want to apply whenever the thread enters or
exits a method.

Aspect

The combination of the pointcut and
the advice is termed an aspect. In the
example, we add a secure aspect to our
application by defining a pointcut and giving
the correct advice.

In AspectJ we can use the pointcut-
advice (PA) model5 for aspect-oriented
programming, crosscutting behavior is
defined by means of pointcuts and advice.

Execution points at which advice may be
executed are called (dynamic) join points. A
pointcut identifies a set of join points, and a
piece of advice is the action to be taken at a
join point matched by a pointcut. An aspect
is a module that encompasses a number of
pointcuts and pieces of advice. Following is
the shape of an aspect in AspectJ, which
follows the PA model:
aspect AspectExample {
pointcut pc(): . . . //predicate selecting join
points
before(): pc() {
//action to take before selected join point
execution

Figure 2 shows two implementations
of this example: an ordinary object-oriented
implementation in Java, and an aspect-
oriented implementation in AspectJ. The key
difference between the implementations is
that in the AOP version the security
behaviour is implemented in an aspect,
whereas in the non-AOP code it is scattered
across the methods of update and delete.

In the aspect secure, the first member
declares a pointcut named cross (). This
pointcut identifies certain join points in the
program’s execution, specifically the
execution of the update and delete methods in
Deletion. (See figure 2.)

Public class deletion
{
 public void delete() {

// Permission checking (authorization)
// Logging
// Checking for the authentic User
// Actual Deletion Logic comes here

 }
 public void update() {

// Permission checking (authorizing)
// Logging
// Checking for the authentic User
// Actual updation Logic comes here

 } }

Khalid et al___ ISSN 2349 – 7238

AJCSES[3][2][2015] 135-142

Typical implementation of delete and
update methods.

The above pseudo code represents the
typical implementation of update and delete
methods in our File deletion example. As
shown in fig. 3 apart from actual
implementation code in that method all other
are the cross cutting concerns (secondary
concerns) which cause the scattering and
tangling of the code. E.g. permission
checking, logging, checking for authentic user
are the cross cutting concerns. The aspect
oriented programming removes these kinds of
concerns by defining the cross cutting
concerns as aspects. Take the example of
checking for authentic user, AOP defines this
as an aspect:
Aspect Authentication {
Pointcut cross() : execution (void
Deletion.update(File)) ||
execution (void Deletion.delete(File));
Before() {
if (args[0] instanceof User)
{//user has access rights
User user = (User)args[0];
// Authenticate if he/she is the right user }

We can use the concept of permission
aspects and restriction aspects to remove the
cross cutting concerns like authentication in
file access problem. Deploying Permission
aspect5 is equivalent to performing the
explicit invocation to Security Manager.
Check Permission in delete or update method.
However, the fundamental advantage of the
aspect-oriented approach is that explicit calls
to Security Manager. Check Permission are
no longer necessary. (See figure 4.)
Aspect Permission {
pointcut cross() : execution (void
Deletion.delete(File)) ||
execution (void Deletion.update(File));
Before() {
if (args[0] instanceof User)
{ SecurityManager.checkPermission(

newFilePermission(this.path,
FILEACCESS_ACTION)
User user = (User)args[0];
// Authenticate if he/she is the right user }

Another kind of aspects are needed
based on a different mechanism for access
control enforcement: restriction aspects. A
restriction aspect, instead of invoking
Security Manager. Check Permission in its
advice, throws an exception as soon as it sees
the resource access its pointcut identifies.
Aspect Restriction {
pointcut cross() : execution (void
Deletion.delete(File)) ||
execution (void Deletion.update(File));
before(){
if(User.Id.equals(“Invalid”)) {
throw new AccessControlException()||
srcurityException();
}
}}

CONCLUSION

This paper outlines an approach for
implementing complex systems by separating
application and security concerns. The goal of
this research is to reduce overall system
complexity and increase modularity and the
reusability of certain concerns in application
systems. This goal is imagined through the
careful separation of crosscutting security
concerns from business logic in the software
development. In this paper, we used the Java
programming language and AspectJ extension
to make this separation of concerns a reality
during implementation of a File deletion
example.

REFERENCES

1. International standards ISO IS 15408

common criteria for information technology
security evaluation (parts 1-3), version 2.1,
September 2000.

Khalid et al___ ISSN 2349 – 7238

AJCSES[3][2][2015] 135-142

2. Bart De Win, Bart Vanhaute, and Bart De
Decker “How Aspect oriented programming
can help to building secure software?”.

3. AspectJ Website. http://www.aspectj.org/.
4. J. Viega, J. Bloch, and P. Chandra, “Applying

Aspect-Oriented Programming to Security,”
Cutter IT Journal, vol. 14, no. 2, pp. 31-39,
Feb. 2001.

5. Rodolfo Toledo, Angel Nu´n˜ ez, _ Eric
Tanter “Aspectizing java access control”.

6. Chase Baker Michael Shin “Mapping of
Security Concerns in Design to Security
Aspects in Code”.

7. Aspect oriented programming, Wikipedia
page http://en.wikipedia.org/wiki/Aspect-
oriented_programming.

8. Taeho Kim and Hongchul Lee “Establishment
of a Security System using Aspect Oriented
Programming”.

9. Kiczales, G., Lamping, J., Mendhekar, A.,
Maeda, C., Lopes, C., Loingtier, J. and Irwin,
J.” Aspect-oriented programming”.

10. G. Kiczales, E. Hilsdale, J. Hugunin, M.
Kersten, J. Palm, and W. G. Griswold. “An
overview of aspectj”.

11. Azzam Mourad, Marc-Andr´e Laverdi`
ere and Mourad Debbabi “Towards an Aspect
Oriented Approach for the Security
Hardening of Code”.

12. Mohammad Khalid pandit “Developing
secure software using aspect oriented
programming” IOSR-JEC vol 10, issue 2,
mar, apr 2013.

13. Bart De Win, Joosen, and Frank Piessens
“Developing Secure Applications through
Aspect oriented programming.

Figure 1. Mapping security concerns to aspects

Khalid et al___ ISSN 2349 – 7238

AJCSES[3][2][2015] 135-142

Figure 2. Java and AspectJ implementation of file deletion example

Khalid et al___ ISSN 2349 – 7238

AJCSES[3][2][2015] 135-142

Figure 3. Implementation of cross cutting concerns

Figure 4. Architecture diagram

