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ABSTRACT   
 
Accurate measurement of ultrasonic velocities is the essential part of structural characterization 
of materials. The longitudinal and shear ultrasonic velocities in multicomponent glass systems can 
be measured experimentally by the conventional pulse-echo technique which needs highly 
sophisticated instrumentation and so costly. On the theoretical evaluation side the usual 
statistical simple or multiple regression analysis do not work well to predict the velocities, since 
the relationship between the characteristic parameters of the components and the ultrasonic 
velocities are highly non-linear and quite complex. In situations like this artificial intelligence 
techniques are the best choice to solve the problem. Present work deals with the development of 
a multiplayer perceptron (MLP) artificial neural network (ANN) to predict the ultrasonic 
velocities in binary oxide glass systems.  
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INTRODUCTION 
 
Variety of multicomponent oxide glasses are available today with different combinations and 
compositions of oxides. These find diverse application fields such as electronics, optical 
communication, solar cells, bioactive materials, etc. The structural properties of the glass are the 
determining factors to fit to the correct application. As a non-destructive testing (NDT) method, 
ultrasonic techniques are most commonly used to characterize these glasses.  Experimental 
measurement of ultrasonic longitudinal and shear velocities leads to the determination physical 
and elastical properties of these materials. As there do not exist any straightforward simple 
theoretical procedure to compute the ultrasonic velocities in heterogeneous glass systems, 
regression analysis can help to predict the velocities.  Again due to complicated non-linear 
relationship existing between the velocities and the structural properties of the components a new 
approach is needed to solve the problem. In this instance artificial neural network (ANN) come 
in handy as a powerful tool to explore the probability of predicting the ultrasonic velocities. 
Function approximation (non-linear regression) is one of the important application of ANNs. 
Good amount of work has been done in this direction to predict certain parameters of materials 
or systems [1–9]. In this work an attempt has been made to design a feed forward multiplayer 
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perceptron (FFMLP) artificial neural network to predict the two ultrasonic velocities in binary 
oxide glass systems. 
 
2. Methodology 
The structural property of a multicomponent glass system essentially depends on the 
characteristics and compositions of the oxides present in the system.  In their bond compression 
model Bridge et al. [10] have considered three important parameters to discuss the structural and 
elastic properties of the oxide glasses. They are:  
 
nb – number of bonds per unit volume of glass  

cn  – average cross-link density per unit glass formula, which includes the number of 
bridging bonds per cation 
F  –   average stretching force constant, which is a determining factor of bulk modulus.  
 
These three structural parameters are defined by the relations,   
 

nb = ∑
i
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a )(nx 
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where Na is Avagadro’s number, nf is the coordination number (the number of density and bonds 
per unit glass formula), ρ is the density and M effective molecular weight of the glass and x is 
the mole fraction. 
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where nc is the number of cross-link density per cation (equals the number of bridging bonds per 
cation minus two), Nc is the number of cations per glass formula unit and i represents the ith 
oxide.  
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where nf is the coordination number and f is the bond stretching force constant and i  represents 
the ith oxide, x being the mole fraction of the oxide. 
 
Makishima and Mackenzie [11,12] proposed the theoretical model to calculate the elastic moduli 
of oxide glasses, in terms of the packing density (VT) and dissociation energy (GT) of the glass. 
They are given by 
 

VT = ∑
i

ii xV 
M

ρ
 … (4) 

 
where ρ is the density of glass, M the effective molecular weight (M = ∑xiM i), Vi is the packing 
factor of the ith oxide and xi is the molefraction of the ith oxide. 
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GT = ∑
i

ii xG  … (5) 

where Gi is the dissociation energy of the ith oxide. 
 
According to Higazy and Bridge [13] the fractional ionic character (FIC) of an oxide is important 
in deciding the network forming capability in the glass system. The FIC of the glass system as a 
whole can be computed using the relation 
 

FICglass = 
∑

∑
ifi

iifi

)(nx

FIC)(nx
 … (6) 

 
where FICi is the fractional ionic character of the ith oxide which can be calculated using 
Pauling’s relation.  
 
Finally the molar volume (Vm) of the glass system also has considerable influence on the 
propagation of ultrasonic waves. Vm is calculated using the relation  
 
Vm = M/ρ … (7) 
 
where ρ is the density and M is the effective molecular weight of the glass.  Even though this 
molar volume is included while calculating the packing density (VT) and number of bonds (nb), it is 
used as an individual predictor variable in this study. 
 
All these seven characteristic parameters of the glass are used as predictor variables and thus 
form the inputs to the ANN. The longitudinal velocity (VL) and shear velocity (VS) of ultrasonic 
waves are the two outputs of the ANN. 
 
3.  Artificial neural network 
3.1. Design concepts  
The architecture of ANN is problem dependent. ANNs do not require any specific equation form 
and thus differ from traditional prediction models. Instead they need enough input-output data 
pairs.  Also ANN can retrain for a new data so that it adapts to predict the new output.  When 
designing an ANN model one has to observe certain considerations. At first the suitable structure 
of the model must be chosen. Then the activation function need to be determined. Next the 
training algorithm has to be selected. Most importantly a comprehensive database must be prepared 
for efficient training of the network.  
 
3.2. Architecture  
The first step in designing ANN model is to determine the network architecture. To data there 
are no established rules to decide the architecture of a back propagation network.  Multilayer 
perceptron (MLP) feed forward networks very popular and successful are being used to variety 
of tasks such as pattern recognition, function approximation (non-linear regression), dynamic 
modeling, forecasting, etc. Back propagation algorithm is most commonly used for training the 
networks. In this, the network propagates the input pattern from layer to layer until the output 
layer generates the output pattern. If this pattern is different from the desired (target) output an 
error is calculated and propagated back to the input layer. Based on the error the weights are 
modified until the desired error between the predicted and target outputs are achieved.  
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3.3. Deciding factors of topology of MLP NN 
There are several factors that should be considered to select the topology of a MLP NN. They are 
briefly discussed [13]. 
 
3.3.1. Input-output parameters  
Too many input and output parameters will drastically slow down the learning process. It is 
essential to optimize the number of input and output parameters.  
 
3.3.2. Layers and neurons 
Neurons in the input layer simply accept the inputs and pass them to the first hidden layer and do 
not perform any computational work. Output neurons produces the predicted outputs. Only the 
neurons in the hidden layer play the key role of capturing all the features of the input-output 
pattern. The number of neurons in the input layer equals the number of input parameters i.e., 
predictor variables. Similarly the number of output neurons equals the number of outputs to be 
generated. It has been suggested that a single hidden layer with sufficient number of neurons can 
do the entire job of computing. The number of neurons in the hidden layer drastically affects the 
output of the network. Too few neurons cannot learn properly and so their response to unseen 
inputs will be poor. Similarly too many neurons will memorize the input pattern and results in 
overfitting of data and thus have poor generalization capacity. A parametric study has to be done 
for fixing the number of neurons in the hidden layer so as to give best prediction capability.  
 
In this study a three layer feed forward neural network trained with back propagation algorithm 
is used and is shown in Fig. 1. 
 
4. Network training  
4.1. Data sets  
A database is the essential part of training process. It is a collection of data points, each 
representing a particular feature of the input-output pattern. The most common practice to train 
and evaluate the performance of the network is to divide the database into two parts. 80% of the 
data are used for training and 20% for testing. The training data must be comprehensive. The 
input-output patterns must cover the lower and upper boundaries for all the parameters and 
should represent all features of the model. Network training is evaluated by calculating mean 
square error (MSE). 
 
In the present work 105 data points representing input-output pattern belonging to 26 binary 
oxide glass systems are used. These data are collected from earlier acoustical studies done by 
several researchers. All the predictor variables for these systems, other than those taken from 
references, are computed using relations (1) through (7). 85 data points are used for training and 
20 data points for testing the network.  The ranges of parameters are shown in Table 1. The 
binary glass systems and their corresponding characteristics used as predictor variables in the test 
set are provided in Table 2.   
 
4.2. Epochs 
Presenting entire set of training pattern to the network is called an epoch. The number of epochs 
affects the performance of the network. This number depends on the number of training data and 
parameters, number of hidden layers and neurons in them, number of output parameters and the 
error goal to be achieved.  If the training is carried out for few epochs the network will not learn 
all the features of the input-output pattern.  For too long training the network overfits the data 
and losses generalization ability leading to poor predictions of unseen data.  Thus the number of 
epochs should be optimal similar to the selection of number of hidden neurons. The only way to 
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find these optimum numbers is to carryout a parametric study [14]. To limit the number of 
epochs to a lower optimal value, the training error goal is set at 1e–003 in the present work. 
Further four training algorithms namely, Levenberg Marquardt (trainlm), one-step sequent back 
propagation (trainoss), scaled conjugate gradient back propagation (trainscg) and Powell-Beale 
conjugate gradient back propagation (traincgb) are used in this parametric study. 
 
Finally, to get satisfactory training of the network there are some data selection methodologies. 
Division of the database into sub groups for training, validation and testing is the methodology 
followed for learning process. The commonly used learning methods for estimating error rates 
are: Holdout, Random sub-sampling, K-fold cross validation, Leave-one-out and Bootstrap [15].  
 
5. Network performance  
The completion of network training is indicated by the reduction in training error. The output 
generated shows reasonable similarities with the target output. A well trained model should 
describe a smoother curve through the training data points, missing some, but resisting the effect 
of noise. To evaluate the function approximation ability of the designed network, the accuracy of 
the predicted values of ultrasonic velocities is found. It is done by calculating the mean absolute 
percentage error (MAPE), root means square error (RMS) and absolute fraction of variance (R2) 
given by the following relations, 
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where t is the target value, o is the predicted value and n is the number of samples used in the test 
set. 
 

RESULTS AND DISCUSSION 
 

The predicted values of longitudinal and shear ultrasonic velocity by the four training methods 
are provided in Table 3.  These predicted values are illustrated in Fig. 2(a–h) along with the 
experimental values. To compare the performance of the network using the four training 
methods, the calculated error parameters are furnished in Table 4. All these evaluation 
parameters are separately computed for longitudinal and shear velocities and shown in this Table 
along with their average values. 
 
It can be seen from Table 4, the trainscg algorithm has good generalization ability. For this 
method very low values of MAPE (mean) = 4.3916 and RMS (mean) 184.88 are obtained with a 
high value of R2 (mean) = 0.9965. The evaluation parameters reveal that the other three methods 
are more or less equal in their performances.     
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Table 1: Range of values of input and output parameters used in training set and test set 
 

Parameter Range 
Training set  Test set 
Min. Max.  Min. Max. 

Inputs     
 Vm (kg/m3) 20.2 60.0  21.3 59.6 
 nb 4.48 14.3  4.53 12.8 
 cn  1.03 4.00  1.30 4.00 

 F 198.8 663.6  203 623.8 
 VT 0.34 0.88  0.36 0.84 
 GT (109 kJ/mol) 23.12 61.90  25.38 62.00 
 FIC 0.3750 0.8122  0.3810 0.7927 
Outputs      
 VL (m/s) 2810 6702  3110 6730 
 VS (m/s) 1561 3990  1786 3941 
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Table 2 Glass systems used in training set, their compositions and characteristic parameters used as predictor variables 
 

Sample  
No. 

System (% Mol) Predictor variables (inputs to ANN) 
Vm 
(kg/m3) 

nb cn  F VT GT                     
(109 kJ/mol) 

FIC 

1 0.85 TeO2 – 0.15 BaO 28.3 12.8 4.00 218.3 0.51 51.83 0.4545 
2 0.65 TeO2 – 0.35 B2O3 26.72 11.2 2.44 311.7 0.56 43.01 0.4006 
3 0.80 TeO2 – 0.20 B2O3 28.5 11.4 3.00 266.0 0.52 47.72 0.3957 
4 0.94 Na2O – 0.06 B2O3 35.1 6.77 1.94 246.7 0.36 31.32 0.7927 
5 0.10 Li2O – 0.90 B2O3 33.2 6.00 1.30 623.8 0.44 28.13 0.4814 
6 0.11 Na2O – 0.88 B2O3 35.5 5.66 1.33 580.7 0.42 23.62 0.4910 
7 0.70 TeO2 – 0.30 MoO3 31.61 11.4 4.00 218.7 0.53 58.74 0.3810 
8 0.70 B2O3 – 0.30 Na2O 28.8 8.16 1.90 464.6 0.50 25.38 0.5822 
9 0.73 V2O5 – 0.27 PbO 33.1 7.27 2.00 240.2 0.84 57.57 0.4898 
10 0.35 Li2O – 0.65 B2O3 24.3 10.1 2.05 541.1 0.54 41.96 0.5909 
11 0.90 TeO2 – 0.76 P2O5 31.4 11.4 4.00 207.2 0.53 57.14 0.4100 
12 0.24 Ce2O3 – 0.76 P2O5 59.5 4.53 2.47 157.4 0.55 38.42 0.5067 
13 0.25 Ce2O3 – 0.75 P2O5 59.6 4.56 2.51 156.4 0.55 39.25 0.5757 
14 0.30 MnO – 0.70 B2O3 23.4 10.10 1.53 534.9 0.64 38.08 0.4926 
15 0.40 MnO – 0.60 B2O3 21.3 11.9 1.75 503.1 0.69 43.24 0.5100 
16 0.70 TeO2 – 0.30 V2O5 36.4 8.93 3.08 229.4 0.57 58.65 0.4278 
17 0.75 TeO2 – 0.25 ZnO 25.6 14.1 4.00 215.7 0.51 52.97 0.4350 
18 0.50 TeO2 – 0.50 V2O5 42.7 7.76 3.33 243.8 0.58 62.00 0.4673 
19 0.90 TeO2 – 0.10 Sm2O3 30.9 11.9 2.71 203.6 0.51 54.91 0.4302 
20 0.90 TeO2 – 0.10 La2O3 31.0 11.9 2.65 203.0 0.51 55.18 0.4325 

 
Table 3 Experimental values of longitudinal and shear velocities and ANN predicted using different training methods 

 
Sample 
No. 

Longitudinal velocity (m/s)  Shear velocity (m/s) 
Exp. ANN Exp. ANN 

trainscg trainlm traincgb trainoss trainscg trainlm traincgb trainoss 
1 3179 3178 3202 3227 3210  1786 1791 1785 1823 1805 
2 3581 3585 3487 3520 3525  2086 2107 2063 2087 2097 
3 3900 3694 3735 3899 3800  2400 2265 2286 2368 2263 
4 4207 4199 4203 4151 4215  2322 2318 2314 2279 2329 
5 4012 4144 4293 4236 4199  2472 2322 2357 2405 2369 
6 4615 4055 4801 4938 4817  2563 2608 3122 2921 3041 
7 3190 3291 3226 3193 3310  1823 1825 1830 1772 1856 
8 5721 5664 5695 5783 5683  3204 3187 3197 3242 3231 
9 3564 3681 3563 3575 3479  1994 1981 1922 1896 1824 
10 3564 6618 6561 6561 6632  3941 3920 3919 3896 3852 
11 3464 3616 3423 3671 3662  1911 2026 1914 2018 2004 
12 4744 4726 4784 4746 4811  2744 2720 2760 2742 2754 
13 4723 4786 4712 4713 4692  2688 2757 2697 2720 2691 
14 6730 6318 6378 6309 6278  3320 3323 3318 3353 3369 
15 6503 6567 6554 6564 6472  3425 3428 3409 3403 3421 
16 3110 3113 3044 3124 3111  1800 1722 1736 1759 1769 
17 3775 3336 4037 3607 3227  1968 1873 2155 1997 1822 
18 3655 3514 4831 2999 3678  1871 1946 2498 1680 1925 
19 3446 3085 4026 3116 3156  2175 1840 2343 1796 1852 
20 3415 3408 3610 3053 4135  1985 1931 1964 1753 2186 

 
Table 4 Network performance evaluation parameters obtained for the four training algorithms used 

 
Evaluation 
parameter 

Training algorithm 
trainscg  trainlm  traincgb  trainoss 
VL VS Mean  VL VS Mean  VL VS Mean  VL VS Mean 

MAPE 3.8126 4.9706 4.3916  4.6381 5.3727 5.0053  3.9167 6.1795 5.0481  4.3367 6.1752 5.2559 
RMS 219.87 149.90 184.88  303.47 225.48 264.48  223.80 206.72 215.26  246.31 212.31 229.31 
R2 0.9972 0.9958 0.9965  0.9947 0.9904 0.9925  0.9961 0.9919 0.9945  0.9965 0.9915 0.9940 
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Fig. 1. A three layer feed forward ANN used in the present work 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Fig. 2. Linear relationship between a) experimental and predicted VL (trainscg),  b) experimental and 
predicted VL (trainlm), c) experimental and predicted VL (traincgb), d) experimental and predicted VL 
(trainoss), e) experimental and predicted VS (trainscg), f) experimental and predicted VS (trainlm), g) 
experimental and predicted VS (traincgb) and h) experimental and predicted VS (trainoss)   
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CONCLUSION 
 

The ability of ANN for function approximation is well utilized in this work. This non-linear 
regression property of ANN is clearly established from the near perfect predictions of the two 
ultrasonic velocities in the studied binary oxide glasses. The use of the micro properties of the 
oxides involved, as predictor variables, is clearly illustrated. However mention should me made 
that by making the data base more comprehensive with the incorporation of as many as oxide 
glass systems possible, the ANN modelling will prove as a powerful tool for accurate predictions 
of ultrasonic velocities in new glass systems without going for the experimental measurements. 
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