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INTRODUCTION
In this paper we give some related Result 1 with the help of 3 vector partitions from
definitions of  spt, (n), various  product S2 of 4. We prove the Theorem 1 with the help

. o e .. f vari nerating functions and pr. th
notations, vector partitions and S -partitions, of various generating functions and prove the

M- (m,n), M—(m,,n), S, (Z,x) . marked Corollary 2 with a special series S.2 (Z,x) , when

52 5 n=1 and prove the Theorem 2 with the help of
partition and  sptcrank  for  marked sptcrank in terms of partition pairs (4,4, )
overpartitions. We discuss the generating when 0<s(4,)<s(4,). We prove the Result

function for sptz(n) and prove the Corollary 1 2 using the crank of partition pairs

with the help of generating function to prove the
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= (21,22) and prove the Corollary 3 and 4
with the help of marked overpartition of 3n and

of 3n+1 (when n = 2) respectively. Finally we
analyze the Corollary 5 with the help of marked

overpartitions of 57+ 3 when n =1.

Some related definitions
In this section we have described some
definitions related to the article following’.

spt, (n)4: The number of smallest parts
in the overpartitions of n with smallest part not

overlined and even is denoted by spt, (n) for

example,

n spt, (n)
1 0
2 2 1
3 0
4 4, 2 +2 3
5 © 342, 342 2

From above we get;
spt,(6) =6, spt,(7)=6, ...

Product notations

(%), = (1=x) (1=x") (1-x")...
(x*;x?), =1-x*)(1-x%)...

() = (=) (1= %) (1= x")...(1—x*)
(=x%;x), =(1+x)A+x°)(1+x")...

Vector partitions and S -partitions
A vector partition can be done with 4
components each partition with certain

restrictions °. Let, 17 =DxPx PxD,where D
denote the set of all partitions into distinct parts,
P denotes the set of all partitions. For a partition
7, we let, s(r) denotes the smallest part of 7
(with the convention that the empty partition has

smallest part ®), #(7)the number of parts in
7, and |ﬂ| the sum of the parts of 7.

For 7[2(72'],7[2,71'3,71'4)617, we
define the weight a)(;) = (=1)"™7" the crank
¢ (7) =H (7, )—#(x,), the norm

7| = 7|+, |+ |75 | + |7

N
We say 7 is a vector partition of n if
5

T=n_Let S denotes the subset of ¥ and it is
given by;

S:{(ﬂl,ﬂ2,7[3,774)€V,lSS(/Tl)<OO,S(7Z1)S

S(7Z2),S(7Z'1)SS(7Z'3),S(7Z'1)<S(7T4)}.
Let S_zdenotes the subset of S with

§ (ﬂ 1) even.

M (m,n): The number of vector
2

partitions of n in S2 with crank m are counted
according to  the  weight w is

Mgz (m’ l’l) .

M, (m,t,n): The number of vector

exactly

partitions of n in S2with crank congruent to m
modulo t are counted according to the weight @
is exactly M (m,t,n).

\) 2(z, x): The series S, (z, x) is defined
by the generating function for M (m,n).

ie., S> (z, x)

( 2n+l x) ( x2n+1 x)oo
x) (z x? "ix),

z M (m n)z"x

m=—w

Marked Partition': We define a marked
partition as a pair (A,k) where Aisa partition

i

and k is an integer identifying one of its smallest
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parts i.e., k =1, 2, ..., v(4), where v(A) is the
number of smallest parts of A,

sptcrank for Marked overpartitions®:
We define a marked overpartitions of n as a pair
(7,j) where 7 is an overpartition of n in
which the smallest part is not overlined and

even. It is clear that spt, (n) = # of marked
overpartitions (7, j) of n. For example, there

are 3 marked overpartitions of 4, like:
(4,1), (2+2,1), and (2+2,2).

Then, az (4)=3.

The generating function for E (n)
The generating function (Bringmann e¢
al. have shown in’) for E (n) is given by;

% X2 (—x s x)
; (1= x> (x> x)
B X7 (=%’ %), xH(=x’;x),
A=), (-2 ),
=ox+1x +0x’ +3.x* +2.X° +6.x° +...
= spt,(1)x + spt,(2)x* + spt,(3)x° +

o0

spt, (8)x*+spt, (5)x°+....

o0

=Y sph,(n)x".
n=1

For convenience, define spt, (1) =0.
From above we get spt,(3)=0,
spt,(6)=6,...

ie, PLGD=0=0 41

p,3.2)=6=0 (043,
We can

spt,(3n) = 0(mod3).

conclude that

We also get spt,(4) =3,
spt,(7) =6,...
i, PH(3+1)=3=0(mod3)

spt,(3.2+1) =6 = 0(mod3)

9 eee

We can conclude that

Eﬁn +1)= O(mod 3)4. Again from above
we get;
spt,(3) =0, spt,(8) =15,...

spt,(3) = 0=0(mod5)

ie., ,

spt,(5+3)=15=0(mod 5)

5 e

We can conclude that

spt,(5n+3) =0(mod 5)

Corollary 1

0

spty(m)= 3. My (m.n).

m=—0

Proof

The generating function for
M (m,n)is given by;

00

z z ME2 (m, n) 25"

n m=-—o0

=1
i x2n (‘X,Z}H—l;x)oo(_x2n+l;x)OO

T (@), (27,
If z=1, then,

z z MEZ (m, I’l) x"

n=l  m=—o

i x2n (x2n+1 , x)go (_x2n+1 ;x)Qo

_o (x*"32) . (x*"; %),

X (—x’x), (%),
(*;x)

+

X (=x3x),, (3% %),,
(x*50)% +...
X (=x;x), (1=x)(1-x")... N
(1-x*)’(1-x") ...
x(=x;x), (1= x)(1 = x°)...
(I-x*)’(1-x) ...

+...
x*(=x%;x),
_(1=-x)?1-x)A-xY)...

e,
L (1=x)(A-x")(1-x°)..
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i x2n( x2n+1;x)oo and
_e =2 ("),

spt, (n)x

» DIV

=BT

Now equating the co-efficient of

x" from both sides we get;
spty(n) m_z Mg, (m,n)

Hence the Corollary.

RESULT 1

1 -
Mg (034) =M (134) =M (234) = spy(4)

Proof
We prove the result with the help of
examples. We see the vector partitions from

S_2 of 4 along with their weights and cranks and

are given as follows: (See table 1.)
Here we have used ¢ to indicate the

empty partition. Thus we have,

M3 (034)=1, M, (134)=1
M (234)=M(-134) =1
S M(03,4) = M (13,4)

1. 1—
M 234 =1=_3=25p10)

3
Hence the Result.
Now from above table we get;

N 2
Ya(r)=3,ie, D, M (k34)=3.
k=0

_ 2 5
SAGEDY My (k3.4)= > ().
k=0
Now we can define;

M (k,t,n) = > M (m,n)

m=k(mod ¢)

. S t—1
spty(n)= D M-(m,n) =) M (k,t,n).
m=—wo k=0

Theorem 1
The number of vector partitions of # in

S_2 with crank m counted according to the

weight @ is non-negative, ie.,
M (m,n) > 0.

Proof
The generating function for M (m,n)

is given by;

i ZM (m,n)z"x"

n=l m=

i x2n (x2n+1_x) ( x2n+l,x)m

o 7 x),, (2% x),,
~ x> 4nv2. 2
_Z‘ (zx*";x),(z7'x*";x),, ( 2.

z (‘x/_ZnJrl;)‘/_)OO(_-X/_ZnJrl;x)Oo

[Since r=!
=(x;x) (=x7;x), +(x°; %), (=x°;x), +...
=(1=-x)1=xY...Ad+x)A+xY)...+
(1I=x)(1=x%)..(1+x7)..+ ...
=(1=-x)A=x*)..+1=x")HA=x")..+
(1=x").+..
=(x%x%), +(x'"%x%), +

zi (x4n+2;x2)oo]
:i x2n( 4n,x) (x4n+2;xz)oO

D (ax™x), (2 xx), (M)
_z xZn(x4n x) 1

T @), (), (=xT) "),
S s
[oolnc(ex4n+2,x2) (xﬁ ,x2) (XIO,XZ)
Z s o __ s © s ©
n=1

oy, (), (),

0
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_ (1-xA-x%)... N
(1-xH1-x")1=x°)...
(1=x"")(1=x")... N
(1-xH1-x)A-x"")Ha-x")...

= 1 +
(1-xH1-x)A=x")...
1 +
(1—x8)(1—x9)(1—x”)...
e 1
; 1 X : X4n+1, 2)00]
AN xzni X" 1

TS @000, (=),

0 2n 4n,
X7 (xx
[Since, E ( )

(zx™";x),, (277" x).,

~ w w (Zl Zn)
_z Z (Zx2n+k,X)w(X)k]

n=l k=0

- (by)
We see that the coefficient of any power
x in the right hand side is non-negative so the

coefficient My (m,n) of z"x" is non-
negative, ie., M (m,n)=0. Hence the
2

Theorem.

Numerical example 1

The vector partitions from S_2 of 5

along with their weights and cranks are given as
follows: (See table 2.)
Here we have used ¢ to indicate the

empty partition. Thus we have;
M (0,5)=1-1=0, M-(1,5)=1,and

M (-15)=Lie, > M (m5)=2,

ie., every term is non-negative, i.e.,

M- (m,n) 2 0.

So we can conclude that,
M (m,n)20.
Corollary 2

gz(l,x) = Z spt, (n)xn.

n=1

Proof
We get;

_ B 0 xZn(x2n+l,x) (_-X:errl;-x/_)DO
SZ(Z’X)_,,ZI: (2" 3X), X" ;X), 2
Ifz=1, then we get;

S2 1 © x2n(x2n+1_x) (_‘X,errl_x)Oo
00=2 — o, .
X (x5 %), (=x% %),

(5 x)
x(=x"3x), (375 %),,
(x*3 )]

X (=x;x), (1-x)(1—x")...
_ 1-x*)’(1-x)"..
' (=x7;x), (1=x"Y1=x%)...
(1-x")?(1-x).
X (—x ;X))

+
_(1=-x)*A=-x)...
x'(=x*;x),

+
(1-x*")>(1-x")...

0 2n+1,

X(=x"" ),
_ ; (l—xZ") ( 2n+1’x)oo
XD

ie., gz(l,x) = Z spt, (n) x" . Hence

n=1

the Corollary.

Theorem 2

sp(m= D1

{eﬁz
‘/1‘:‘/11‘-%—‘/12‘:}1
Proof

First we define the spfcrank in terms
of partition pairs,

SP={A=(4,4)ePxP:0<s(4)<s(4)

and all parts of A

odd?}.

2 that are >2s(4,)+1 are

IJAS [1][2]2014 071-081
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Let EDZ be the set of
A=(4,4,) € SP  with s(4,)even. The

generating function for a ,(n) is given by;

2n+l1

2n
- o X=X,
spt,(n)x" = . —
HZ::' ’ Z’ (1=x*") (x""sx),,
0 2n
X 20+l
= —X X ©
; (l_ x2n)2 (x2n+l ;x)Oo ( )
© x2n (x4n+2 2)
= ; (1 x2n)2 (x2n+l x)w ( 2}':-%—1,)(/_)DO

[Since,

z( 2n+1

:(1 )1+ XM+ A+ )0+ x%)...

+(1+x) A+ x4+

_ (1-x*)(1-x*)... . (1-x"")(1-x")...
1-x)1-x"... (A-x")1-x°)...

), =(=x;x), +(=x;x), +

14
+(1 x7)...+
(1-x")...

_ (%), (a0,

(x), (50,

i 4n+2 x )

n=l1 (XZ”H )oo ]

0 x2n (x4n+2 2)
_; (1_x2n)2(x2n+l’x)oo ( 2n+1’x)oo

2n 1 (x4n+2;x2)DO

— (-x/_Zn;x)QO : (1_x2n) : (x2n+1;x)oo

X
[Since’ ; (1 _ x2n)2 (x2n+1 ;x)oo

2 4
X X

T (1-X) (i),
x2

= +
(1-x*)’A=x")(1—-x%)...

+ +
(1-x")*(x";x),,

4
X

+
(l—x4)2(l—x5)(l—x6)...

> 1
_Z ( 2n, x)oo (l_xZn ]

n=l

2 2 1
; (x2 52),, (I=x") (=2 =x") (" x%)
[Since,
o0 ()(/AnJrZ;xZ)DO B ()(/_6;)(:2)DO (XIO;XZ)DO
Z‘ "), (Fix), (v,
B (1-xH1-x)... N
(1-x)H)A-x"...
(1-x"")(1-x")... N
(1-x)A=x%)..A=x"")1-x")...
3 1
_(l—x3)(1—x4)(1—x5)...+

o

1
A=) 1= (=)A= x )

> 1
z (1 2n+1) (1 x4n)(x4n+l X )

n=l

® Z xu‘ Z xuz
= z L eP A, eP

wel  S(4)=n S(/lz Y>n

. >
All parts in A 22n+1 are odd

-y 3

n=1 16532

‘ﬂ"=‘ﬂ'l‘+‘ﬂ“2‘=”

Equating the co-efficient of * " from
both sides we get;

spt,(n) = Zl . Hence the
/IESPZ
M | 2|+ 4| =n
Theorem.

Numerical example 2
The overpartitions of 6 with smallest

parts not overlined and even are 6, 4+2, 4 +2,
and 2+2+2. Consequently, the number of

IJAS [1][2]2014 071-081
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smallest parts in the overpartitions of 6 with
smallest part not overlined and even is given by;

6 442, 4+2, 24242,
so that 52(6)26 i.e., there are 6S_P2-

partition pairs of 6 like:
(6,9), (4+2,¢),(2,4), (2+2+2,9),

(2+2.2) 4n4 2, 242).
RESULT 2

M@(O’S’S) = MEZ (1’5’8:) =
M§2 (2a5a85) =

1
My (3,5.8) = M (4,58)=3= E
p1(®)

Proof
We prove the result with the help of

examples. We can define a crank of partition
pairs A = (4,,,) € SPs.
For A=(4,,4,)¢€ S_P2 , we define,

k(_/)l)z # of pairs j in A, such that
s(4)=j<2s(4)-1

define;

and also

(#of partsof 4, >s(1,)+k)—k;
crank(A)=1if k>0
(#of partsof 4 )-1if k=0

k= k(A).

where

We know that P (&) =15 . There are

15 SE, -partition pairs of 8. (See table 3.)

From the table we get;

M@(O’S’S) = MEZ (1’5’8:) =
M§2 (255585) =

|
M. (458)=3=—
M, (358)= M5, (438)=3=2

spt,(8) . Hence the Result.

Now we will describe the sptcrank of
a marked overpartition®. To define the
sptcrank of a marked overpartition we first

k(m,n)

need to define a function for positive

integers m, n such that M 271+l we write

m=>b2’ , where b is odd and j=zo . For a given
odd integer b and a positive integer n we define

Jo = Jo(.1) to be the smallest non-negative

integer j, such that b2” >n+1.

We
0,if b>2n
Je(m,n)=127""if b2/ < 2n
define: 0,if b2 =2n.
For a marked overpartitions (ﬂ- 2 J) we
let ™1 be the partition formed by the non-

overlined parts of 7> 72 be the partition (into
distinct parts) formed by the overlined parts of

7_[ so that s(7,) > (7)), we define
k(z,i)=v(m)—j+k(z,,s(x))),

where

v(m) is the number of smallest parts of a4y
Now we can define;

(#of partsof 7, > S(/Zl)—/;),
if k =k(z,7)>0

(#of partsof 7z,)—1;

if k =k(z, j)=0.

sptcrank(rw, j) =

Corollary 3*
The residue of the sptcrank(mod3)
divides the marked overpartitions of 3n with the

smallest part not overlined and even into 3 equal
classes.

Proof

We prove the Corollary with the help of
an example when n = 2. There are 6 marked
overpartitions of 3n (when n = 2) with the
smallest part not overlined and even so that,

spt,(6)=6.

IJAS [1][2]2014 071-081
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We see that the residue of the

sptcrank(mod 3) divides  the  marked

overpartitions of 3n (when n = 2) with smallest
part not overlined and even into 3 equal classes.
Hence the Corollary. (See table 4.)

Corollary 4
The residue of the sptcrank(mod3)

divides the marked overpartitions of 3n+1 with
smallest part not overlined and even into 3 equal
classes.

Proof

We prove the Corollary with the help of
an example when n = 2. There are 6 marked
overpartitions of 7 with the smallest part not

overlined and even, so that spt,(7) = 6. We see

that the residue of the sptcrank (mod 3) divides

the marked overpartitions of 3n+1 (when n = 2)
with smallest part not overlined and even. Hence
the Corollary. (See table 5.)

Corollary 5

The residue of the sptcrank(modS5)
divides the marked overpartitions of Sn+3 with
smallest part not overlined and even into 5 equal
classes.

Proof

We prove the Corollary with the help of
example when n = 1. There are 15 marked
overpartitions of 5n + 3 (when n =1) with the
smallest part not overlined and even so that

spt,(8) =15.
We see that the residue of the
sptcrank(mod5)  divides  the  marked

overpartitions of 8 with the smallest part not
overlined and even into 5 equal classes. Hence
the corollary. (See table 6.)

CONCLUSION

In this study we have found the number
of smallest parts in the overpartitions of n with the
smallest part not overlined and even for =1, 2, 3,
4 and 5. We have shown various relations

spt,(3n) = 0(mod3),

spt,(3n +1) = 0(mod3)

spt,(5n+3) =0 (mod 5),
M (0.3,4) = M- (1,3,4) = M- (2.3,4)

11—
=—spt,(4)
3 and

M (0,58) = M (158) = M (2,58)=

1
M (358 =M (458 =3=5 3,1 (3)

With numerical examples respectively.
We have verified the Theorem 1 when n = 5 and
have verified the Theorem 2 when n = 6. We have
verified the Corollary 3 with 6 marked
overpartitions of 6 and have verified the Corollary
4 with 6 marked overpartitions of 7 and also have
established the Corollary 5 with 15 marked
overpartition of 8.
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Table 1. Vector partitions their weights and cranks (S_2 of 4)

-vector partition Weight
of 4
7, = (4,0.4.9) 1 0 0
7= (2+2,4.9) 1 1 1
7_)Z'3=(2,¢,21¢) 1 -1 2
Sa(m) =3

Table 2. Vector partitions their weights and cranks (S_2 of 5)

-vector partition of
5
7. =(3+244,9) -1 0
na=(2, 4 43 1 0
73 =(23,6,9) 1 1
7i = (2,43,9) 1 -1
Sal(m)=2

IJAS [1][2]2014 071-081
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-partition pair of k (Mod 5)
8

(3+2,3) 1 0 0
(4+2, 2) 1 0 0
8,9) 0 0 0
(2+2,4) 0 1 1
(4+4, ) 0 1 !
(6+2, %) 0 1 1
(2, 2+2+2) 3 -3 2
(3+3+2, ¢) 0 2 2
(4+2+2, ¢) 0 2 2
(2, 3+3) 2 -2 3
(2+2, 2+2) 2 =7 3
(2+2+2+2, ¢) 0 3 :
(2, 4+2) 1 -1 4
4, 4) 1 -1 4
(2+2+2, 2) 1 —il 4

Table 4. Marked overpartition (7, j) of 6

Marked
overpartition
( of 6
(6,1) 6 @ 1 0 0 0
(4+2 ,1) 4+2 @ 1 0 0 1
(4+2)) 2 4 1 0 0 0 0
(24242, 1) 2+2+2 @ 3 0 2 -2 1
(2+2+2, 2) 24242 @ 3 0 1 -1 2
(2+2+2, 3) 24242 @ 3 0 0 2 2

IJAS [1][2]2014 071-081
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Table 5. Marked overpartition ( 7z, j) of 7

Marked overpartition

( of 7
(5+2,1) 542 @ 1 0 0 1 1
(5+2.0) 2 5 1 0 0 0 0
(3+2+2, 1) 3+2+2 @ 2 0 1 0 0
(3+2+2, 2) 3+2+2 @ 2 0 0 2 2
(34242, 1) 242 3 2 1 2 -2 1
(§+2+2, 2) 2+2 3 2 1 1 -1 2

Table 6. Marked overpartition ( 7, j) of 8
Marked
overpartition ( of 8 (Mod 5)

(6+2.]) 2 6 1 2 2 -2 3
(4+2+2)) 2+2 4 | 2 0 1 -1 4
(4+2+22) 2+2 4 | 2 0 0 1 1
(§ +3+21) 3+2 3 1 1 1 0 0
(2+2+2+2,1) 2424242 @ 4 0 3 -3 2
(2+2+2+2,2) 2424242 | @ 4 0 2 -2 3
(2+2+2+2, 3) 2424242 | @ 4 0 1 -1 4
(2+2+2+2, 4) 2424242 @ 4 0 0 3 3
(3+3+2,1) 3+3+2 @ 1 0 0 2 2
(4+2+2, 1) 442+2 @ 1 0 1 0 0
(4+2+2, 2) 442+2 1/ 2 0 0 2 2
(6+2,1) 6+2 @ 1 0 0 1 1
(4+4,1) 4+4 ¢ 2 0 1 -1 4
(4+4,2) 4+4 ¢ 2 0 0 1 1
(8,1) 8 ¢ 1 0 0 0 0
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