Original Article

Andrews-Garvan-Liang's Spt-crank for Marked Overpartitions

Nil Ratan Bhattacharjee¹, Sabuj Das² and Haradhan Kumar Mohajan*³

¹Department of Mathematics, University of Chittagong, Bangladesh

²Senior Lecturer, Department of Mathematics Raozan University College, Bangladesh

³Premier University, Chittagong, Bangladesh

ARTICLE INFO

Received 13 Oct. 2014 Received in revised form 19 Oct. 2014 Accepted 22 Oct. 2014

Keywords:

crank , Non-negative, Overpartitions, Overlined,

sptcrank ,
Weight.

Corresponding author: Premier University, Chittagong, Bangladesh. E-mail address: <u>haradhan1971@gmail.com</u>

ABSTRACT

In 2009, Bingmann, Lovejoy and Osburn have shown the generating function for $\overline{spt}_2(n)$. In 2012, Andrews, Garvan, and Liang have defined the $\overline{sptcrank}$ in terms of partition pairs. In this article the number of smaller parts in the overpartitions of n with smallest part not overlined and even are discussed, and the vector partitions and \overline{S} -partitions with 4 components, each a partition with certain restrictions are also discussed. The generating function for $\overline{spt}_2(n)$, and the generating function for $M_{\overline{S}_2}(m,n)$ are shown with a result in terms of modulo 3. This paper shows how to prove the Theorem 1, in terms of $M_{\overline{S}_2}(m,n)$ with a numerical example, and shows how to prove the Theorem 2, with the help of $\overline{sptcrank}$ in terms of partition pairs. In 2014, Garvan and Jennings-Shaffer are capable to define the $\overline{sptcrank}$ for marked overpartitions. This paper also shows another result with the help of 15 \overline{SP}_2 -partition pairs of 8 and shows how to prove the Corollary with the help of 15 marked overpartitions of 8.

© 2014 International Journal of Applied Science-Research and Review All rights reserved

INTRODUCTION

In this paper we give some related definitions of $\overline{spt_2}(n)$, various product notations, vector partitions and \overline{S} -partitions, $M_{\overline{S}_2}(m,n)$, $M_{\overline{S}_2}(m,t,n)$, $\overline{S}_2(z,x)$, marked partition and $\overline{sptcrank}$ for marked overpartitions. We discuss the generating function for $\overline{spt}_2(n)$ and prove the Corollary 1 with the help of generating function to prove the

Result 1 with the help of 3 vector partitions from \overline{S}_2 of 4. We prove the Theorem 1 with the help of various generating functions and prove the Corollary 2 with a special series $\overline{S}_2(z,x)$, when n = 1 and prove the Theorem 2 with the help of $\overline{sptcrank}$ in terms of partition pairs (λ_1, λ_2) when $0 < s(\lambda_1) \le s(\lambda_2)$. We prove the Result 2 using the \overline{crank} of partition pairs

 $\vec{\lambda} = (\lambda_1, \lambda_2)$ and prove the Corollary 3 and 4 with the help of marked overpartition of 3*n* and of 3n + 1 (when n = 2) respectively. Finally we analyze the Corollary 5 with the help of marked overpartitions of 5n + 3 when n = 1.

Some related definitions

In this section we have described some definitions related to the article following⁷.

 $\overline{spt_2}(n)^4$: The number of smallest parts in the overpartitions of *n* with smallest part not overlined and even is denoted by $\overline{spt_2}(n)$ for example,

n			$\overline{spt}_2(n)$
1	:		0
2	:	Ż	1
3	:		0
4	:	4, 2 + 2	3
5	:	$3+2$, $\bar{3}+2$	2

...

From above we get; $\overline{spt}_{2}(6) = 6$, $\overline{spt}_{2}(7) = 6$, ...

Product notations

 $(x)_{\infty} = (1-x) (1-x^{2}) (1-x^{3})...$ $(x^{2};x^{2})_{\infty} = (1-x^{2}) (1-x^{4})...$ $(x)_{k} = (1-x) (1-x^{2}) (1-x^{3})...(1-x^{k})$ $(-x^{5};x)_{\infty} = (1+x^{5}) (1+x^{6}) (1+x^{7})...$

Vector partitions and S -partitions

A vector partition can be done with 4 components each partition with certain restrictions ⁵. Let, $\vec{V} = D \times P \times P \times D$, where D denote the set of all partitions into distinct parts, P denotes the set of all partitions. For a partition π , we let, $s(\pi)$ denotes the smallest part of π (with the convention that the empty partition has

smallest part ∞), $\#(\pi)$ the number of parts in π , and $|\pi|$ the sum of the parts of π .

For $\vec{\pi} = (\pi_1, \pi_2, \pi_3, \pi_4) \in \vec{V}$, we define the weight $\omega(\vec{\pi}) = (-1)^{\#(\pi_1)-1}$, the crank $c(\vec{\pi}) = \#(\pi_2) - \#(\pi_3)$, the norm $\left|\vec{\pi}\right| = |\pi_1| + |\pi_2| + |\pi_3| + |\pi_4|$.

We say $\vec{\pi}$ is a vector partition of n if $\vec{\pi} = n$. Let \overline{S} denotes the subset of \overline{V} and it is given by;

$$\overline{S} = \left\{ (\pi_1, \pi_2, \pi_3, \pi_4) \in \overrightarrow{V}, 1 \le s(\pi_1) < \infty, s(\pi_1) \le s(\pi_2), s(\pi_1) \le s(\pi_3), s(\pi_1) < s(\pi_4) \right\}.$$
Let $\overline{S_2}$ denotes the subset of \overline{S} with

 $s(\pi_1)$ even.

 $M_{\overline{S}_2}(m,n)$: The number of vector partitions of n in \overline{S}_2 with crank m are counted according to the weight ω is exactly $M_{\overline{S}_2}(m,n)$.

 $M_{\overline{S}_2}(m,t,n)$: The number of vector partitions of n in \overline{S}_2 with crank congruent to m modulo t are counted according to the weight ω is exactly $M_{\overline{S}_2}(m,t,n)$.

 $S_2(z, x)$: The series $\overline{S}_2(z, x)$ is defined by the generating function for $M_{\overline{S}_2}(m, n)$.

i.e.,
$$\overline{S}_{2}(z, x)$$

= $\sum_{n=1}^{\infty} \frac{x^{2n} (x^{2n+1}; x)_{\infty} (-x^{2n+1}; x)_{\infty}}{(zx^{2n}; x)_{\infty} (z^{-1}x^{2n}; x)_{\infty}}$
= $\sum_{n=1}^{\infty} \sum_{m=-\infty}^{\infty} M_{\overline{S_{2}}}(m, n) z^{m} x^{n}$.

Marked Partition¹: We define a marked partition as a pair (λ, k) where λ is a partition and k is an integer identifying one of its smallest

parts i.e., k =1, 2, ..., $v(\lambda)$, where $v(\lambda)$ is the number of smallest parts of λ .

 $\overline{sptcrank}$ for Marked overpartitions⁶: We define a marked overpartitions of n as a pair (π, j) where π is an overpartition of n in which the smallest part is not overlined and even. It is clear that $\overline{spt_2}$ (n) = # of marked overpartitions (π, j) of n. For example, there are 3 marked overpartitions of 4, like: (4,1), (2+2,1), and (2+2,2). Then, $\overline{spt_2}$ (4) = 3.

The generating function for $\overline{spt_2}$ (n)

The generating function (Bringmann *et al.* have shown in⁵) for $\overline{spt_2}$ (n) is given by;

$$\sum_{n=1}^{\infty} \frac{x^{2n}(-x^{2n+1};x)_{\infty}}{(1-x^{2n})^2 (x^{2n+1};x)_{\infty}}$$

= $\frac{x^2(-x^3;x)_{\infty}}{(1-x^2)^2 (x^3;x)_{\infty}} + \frac{x^4(-x^5;x)_{\infty}}{(1-x^4)^2 (x^5;x)_{\infty}} + \dots$
= $o.x + 1.x^2 + o.x^3 + 3.x^4 + 2.x^5 + 6.x^6 + \dots$
= $\overline{spt_2}(1)x + \overline{spt_2}(2)x^2 + \overline{spt_2}(3)x^3 + \overline{spt_2}(4)x^4 + \overline{spt_2}(5)x^5 + \dots$
= $\sum_{n=1}^{\infty} \overline{spt_2}(n)x^n$.
For convenience, define $\overline{spt_2}(1) = 0$.

From above we get $\overline{spt_2}(3) = 0$, $spt_{2}(6) = 6,...$ i.e., $spt_2(3.1) = 0 \equiv 0 \pmod{3}$, $\overline{spt_2}(3.2) = 6 \equiv 0 \pmod{3}, \dots$ can We conclude that $spt_2(3n) \equiv 0 \pmod{3}$. $\overline{spt_2}(4) = 3,$ We also get $spt_{2}(7) = 6,...$ i.e., $\overline{spt_2}(3+1) = 3 \equiv 0 \pmod{3}$, $\overline{spt_2}(3.2+1) = 6 \equiv 0 \pmod{3}$

We can conclude that

$$\overline{spt_2}(3n+1) \equiv 0 \pmod{3}^4$$
. Again from above
we get;
 $\overline{spt_2}(3) = 0$, $\overline{spt_2}(8) = 15$,...
i.e., $\overline{spt_2}(3) = 0 \equiv 0 \pmod{5}$,
 $\overline{spt_2}(5+3) = 15 \equiv 0 \pmod{5}$, ...
We can conclude that
 $\overline{spt_2}(5n+3) \equiv 0 \pmod{5}$.

Corollary 1

$$\overline{spt_2}(n) = \sum_{m=-\infty}^{\infty} M_{\overline{S}_2}(m,n).$$

Proof

The generating function for $M_{\overline{s}_2}(m,n)$ is given by;

$$\begin{split} &\sum_{n=1}^{\infty} \sum_{m=-\infty}^{\infty} M_{\overline{s}_{2}}(m,n) z^{m} x^{n} \\ &= \sum_{n=1}^{\infty} \frac{x^{2n} (x^{2n+1};x)_{\infty} (-x^{2n+1};x)_{\infty}}{(zx^{2n};x)_{\infty} (z^{-1}x^{2n};x)_{\infty}} \\ &\text{If } z = 1, \text{ then,} \\ &\sum_{n=1}^{\infty} \sum_{m=-\infty}^{\infty} M_{\overline{s}_{2}}(m,n) x^{n} \\ &= \sum_{n=1}^{\infty} \frac{x^{2n} (x^{2n+1};x)_{\infty} (-x^{2n+1};x)_{\infty}}{(x^{2n};x)_{\infty} (x^{2n};x)_{\infty}} \\ &= \frac{x^{2} (-x^{3};x)_{\infty} (x^{3};x)_{\infty}}{(x^{2};x)_{\infty}^{2}} + \\ &\frac{x^{4} (-x^{5};x)_{\infty} (x^{5};x)_{\infty}}{(x^{4};x)^{2} \infty} + \\ &= \frac{x^{2} (-x^{3};x)_{\infty} (1-x^{3}) (1-x^{4}) \dots}{(1-x^{2})^{2} (1-x^{3})^{2} \dots} + \\ &= \frac{x^{4} (-x^{5};x)_{\infty} (1-x^{5}) (1-x^{6}) \dots}{(1-x^{4})^{2} (1-x^{5})^{2} \dots} + \\ &= \frac{x^{4} (-x^{5};x)_{\infty}}{(1-x^{4})^{2} (1-x^{5}) (1-x^{6}) \dots} \\ &+ \frac{x^{4} (-x^{5};x)_{\infty}}{(1-x^{4})^{2} (1-x^{5}) (1-x^{6}) \dots} + \\ &= \frac{x^{4} (-x^{5};x)_{\infty}}{(1-x^{4})^{2} (1-x^{5}) (1-x^{6}) \dots$$

$$\sum_{n=1}^{\infty} \frac{x^{2n}(-x^{2n+1};x)_{\infty}}{(1-x^{2n})^2(x^{2n+1};x)_{\infty}}$$

$$\sum_{n=1}^{\infty} \overline{spt_2}(n)x^n$$
i.e., $\sum_{n=1}^{\infty} \overline{spt_2}(n)x^n \sum_{n=1}^{\infty} \sum_{m=\infty}^{\infty} M_{\overline{s}_2}(m,n)x^n$.
Now equating the co-efficient of x^n from both sides we get;

$$\frac{1}{spt_2(n)} = \sum_{m=-\infty}^{\infty} M_{\overline{s}_2}(m,n)$$

Hence the Corollary.

RESULT 1

$$M_{\overline{S_2}}(0,3,4) = M_{\overline{S_2}}(1,3,4) = M_{\overline{S_2}}(2,3,4) = \frac{1}{3}\overline{spt_2}(4)$$

Proof

We prove the result with the help of examples. We see the vector partitions from $\overline{S_2}$ of 4 along with their weights and cranks and are given as follows: (See table 1.)

Here we have used ϕ to indicate the empty partition. Thus we have,

$$M_{\overline{S_2}}(0,3,4) = 1, \quad M_{\overline{S_2}}(1,3,4) = 1$$

$$M_{\overline{S_2}}(2,3,4) = M_{\overline{S_2}}(-1,3,4) = 1$$

$$\therefore M_{\overline{S_2}}(0,3,4) = M_{\overline{S_2}}(1,3,4)$$

$$= M_{\overline{S_2}}(2,3,4) = 1 = \frac{1}{3} \cdot 3 = \frac{1}{3} \cdot \overline{spt_2}(3) .$$

Hence the Result.

Now from above table we get;

$$\sum \omega(\vec{\pi}) = 3, \text{ i.e., } \sum_{k=0}^{2} M_{\overline{S_2}}(k,3,4) = 3.$$

$$\therefore \overline{spt_2}(4) = \sum_{k=0}^{2} M_{\overline{S_2}}(k,3,4) = \sum \omega(\vec{\pi}).$$

Now we can define;

$$M_{\overline{S_2}}(k,t,n) = \sum_{m \equiv k \pmod{t}} M_{\overline{S_2}}(m,n)$$

and

$$\overline{spt_2}(n) = \sum_{m=-\infty}^{\infty} M_{\overline{S_2}}(m,n) = \sum_{k=0}^{t-1} M_{\overline{S_2}}(k,t,n)$$

Theorem 1

The number of vector partitions of *n* in $\overline{S_2}$ with crank *m* counted according to the weight ω is non-negative, i.e., $M_{\overline{S_2}}(m,n) \ge 0.$

Proof

The generating function for $M_{\overline{S}_2}(m,n)$ is given by;

$$\begin{split} &\sum_{n=1}^{\infty} \sum_{m=-\infty} M_{\overline{s_2}}(m,n) z^m x^n \\ &= \sum_{n=1}^{\infty} \frac{x^{2n} (x^{2n+1};x)_{\infty} (-x^{2n+1};x)_{\infty}}{(zx^{2n};x)_{\infty} (z^{-1}x^{2n};x)_{\infty}} \\ &= \sum_{n=1}^{\infty} \frac{x^{2n}}{(zx^{2n};x)_{\infty} (z^{-1}x^{2n};x)_{\infty}} . (x^{4n+2};x^2)_{\infty} \\ &\sum_{n=1}^{\infty} (x^{2n+1};x)_{\infty} (-x^{2n+1};x)_{\infty} \\ &[\text{Since} \ _{n=1}^{n=1} (x^{2n+1};x)_{\infty} (-x^{2n+1};x)_{\infty} \\ &= (x^3;x)_{\infty} (-x^3;x)_{\infty} + (x^5;x)_{\infty} (-x^5;x)_{\infty} + ... \\ &= (1-x^3)(1-x^4)...(1+x^3)(1+x^4)...+ \\ &(1-x^5)(1-x^6)...(1+x^5)...+... \\ &= (1-x^6)(1-x^8)...+(1-x^{10})(1-x^{12})...+ \\ &(1-x^{14})...+... \\ &= (x^6;x^2)_{\infty} + (x^{10};x^2)_{\infty} + ... \\ &= \sum_{n=1}^{\infty} (x^{4n+2};x^2)_{\infty}] \\ &= \sum_{n=1}^{\infty} \frac{x^{2n} (x^{4n};x)_{\infty}}{(zx^{2n};x)_{\infty} (z^{-1}x^{2n};x)_{\infty}} . \frac{(x^{4n+2};x^2)_{\infty}}{(x^{4n};x)_{\infty}} \\ &= \sum_{n=1}^{\infty} \frac{x^{2n} (x^{4n};x)_{\infty}}{(zx^{2n};x)_{\infty} (z^{-1}x^{2n};x)_{\infty}} . \frac{1}{(1-x^{4n})(x^{4n+1};x^2)_{\infty}} \\ &[\text{Since,} \\ &\sum_{n=1}^{\infty} \frac{(x^{4n+2};x^2)_{\infty}}{(x^{4n};x)_{\infty}} = \frac{(x^6;x^2)_{\infty}}{(x^{4n};x)_{\infty}} + \frac{(x^{10};x^2)_{\infty}}{(x^{8};x)_{\infty}} + ... \end{aligned}$$

$$= \frac{(1-x^{6})(1-x^{8})...}{(1-x^{4})(1-x^{5})(1-x^{6})...} + \frac{(1-x^{10})(1-x^{12})...}{(1-x^{8})(1-x^{9})(1-x^{10})(1-x^{11})...} + ...$$

$$= \frac{1}{(1-x^{4})(1-x^{5})(1-x^{7})...} + \frac{1}{(1-x^{4})(1-x^{5})(1-x^{7})...} + ...$$

$$= \sum_{n=1}^{\infty} \frac{1}{1-x^{4n}} \cdot \frac{1}{(x^{4n+1};x^{2})_{\infty}}]$$

$$= \sum_{n=1}^{\infty} x^{2n} \sum_{k=0}^{\infty} \frac{(z^{-1}x^{2n})^{k}}{(zx^{2n+k};x)_{\infty}(x)_{k}} \cdot \frac{1}{(1-x^{4n})(x^{4n+1};x^{2})_{\infty}}$$

$$[Since, \sum_{n=1}^{\infty} \frac{x^{2n}(x^{4n};x)_{\infty}}{(zx^{2n};x)_{\infty}(z^{-1}x^{2n};x)_{\infty}}]$$

$$= \sum_{n=1}^{\infty} x^{2n} \sum_{k=0}^{\infty} \frac{(z^{-1}x^{2n})^{k}}{(zx^{2n+k};x)_{\infty}(x)_{k}} ... (by^{3})$$

We see that the coefficient of any power x in the right hand side is non-negative so the coefficient $M_{\overline{s}_2}(m,n)$ of $z^m x^n$ is non-negative, i.e., $M_{\overline{s}_2}(m,n) \ge 0$. Hence the Theorem.

Numerical example 1

The vector partitions from $\overline{S_2}$ of 5 along with their weights and cranks are given as follows: (See table 2.)

Here we have used ϕ to indicate the empty partition. Thus we have;

$$M_{\overline{S_2}}(0,5) = 1 - 1 = 0, M_{\overline{S_2}}(1,5) = 1$$
, and

$$M_{\overline{S_2}}(-1,5) = 1$$
, i.e., $\sum_{m} M_{\overline{S_2}}(m,5) = 2$,

i.e., every term is non-negative, i.e., $M_{\overline{s_n}}(m,n) \ge 0.$

So we can conclude that, $M_{\overline{S}}(m,n) \ge 0.$

Corollary 2

$$\overline{S}_{2}(1,x) = \sum_{n=1}^{\infty} \overline{spt_{2}}(n)x^{n}$$

Proof

We get;

$$\overline{S}_{2}(z, x) = \sum_{n=1}^{\infty} \frac{x^{2n}(x^{2n+1}; x)_{\infty}(-x^{2n+1}; x)_{\infty}}{(zx^{2n}; x)_{\infty}(z^{-1}x^{2n}; x)_{\infty}} {}_{2}$$
If $z = 1$, then we get;

$$\overline{S}_{2}(1, x) = \sum_{n=1}^{\infty} \frac{x^{2n}(x^{2n+1}; x)_{\infty}(-x^{2n+1}; x)_{\infty}}{(x^{2n}; x)_{\infty}(x^{2n}; x)_{\infty}} + \frac{x^{2}(x^{3}; x)_{\infty}(-x^{3}; x)_{\infty}}{(x^{2}; x)_{\infty}^{2}} + \frac{x^{4}(-x^{5}; x)_{\infty}(x^{5}; x)_{\infty}}{(x^{4}; x)_{\infty}^{2}} + \dots$$

$$= \frac{x^{2}(-x^{3}; x)_{\infty}(1-x^{3})(1-x^{4})...}{(1-x^{2})^{2}(1-x^{3})^{2}...} + \dots$$

$$= \frac{x^{4}(-x^{5}; x)_{\infty}(1-x^{5})(1-x^{6})...}{(1-x^{4})^{2}(1-x^{5})^{2}...} + \dots$$

$$= \frac{x^{2}(-x^{3}; x)_{\infty}}{(1-x^{2})^{2}(1-x^{3})...} + \dots$$

$$= \frac{x^{2}(-x^{3}; x)_{\infty}}{(1-x^{2})^{2}(1-x^{3})...} + \dots$$

$$= \sum_{n=1}^{\infty} \frac{x^{2n}(-x^{2n+1}; x)_{\infty}}{(1-x^{2n})^{2}(x^{2n+1}; x)_{\infty}}$$

$$= \sum_{n=1}^{\infty} \overline{spt_{2}}(n) x^{n}.$$
i.e., $\overline{S}_{2}(1, x) = \sum_{n=1}^{\infty} \overline{spt_{2}}(n) x^{n}.$ Hence

the Corollary.

Theorem 2

$$\overline{spt_2}(n) = \sum_{\substack{\overline{\lambda} \in SP_2 \\ |\overline{\lambda}| = |\lambda_1| + |\lambda_2| = n}} 1$$

Proof

First we define the $\overline{sptcrank}$ in terms of partition pairs,

$$\overline{SP} = \{\overline{\lambda} = (\lambda_1, \lambda_2) \in P \times P : 0 < s(\lambda_1) \le s(\lambda_2)$$

and all parts of λ_2 that are $\geq 2s(\lambda_1) + 1$ are odd}.

Let \overline{SP}_2 be the set of $\vec{\lambda} = (\lambda_1, \lambda_2) \in \overline{SP}$ with $s(\lambda_1)$ even. The generating function for $\overline{spt}_2(n)$ is given by;

$$\sum_{n=1}^{\infty} \overline{spt}_{2}(n) x^{n} = \sum_{n=1}^{\infty} \frac{x^{2n} (-x^{2n+1}; x)_{\infty}}{(1-x^{2n})^{2} (x^{2n+1}; x)_{\infty}}$$
$$= \sum_{n=1}^{\infty} \frac{x^{2n}}{(1-x^{2n})^{2} (x^{2n+1}; x)_{\infty}} (-x^{2n+1}; x)_{\infty}$$
$$= \sum_{n=1}^{\infty} \frac{x^{2n}}{(1-x^{2n})^{2} (x^{2n+1}; x)_{\infty}} \frac{(x^{4n+2}; x^{2})_{\infty}}{(x^{2n+1}; x)_{\infty}}$$

[Since,

 $\sum_{n=1}^{\infty} (-x^{2n+1}; x)_{\infty} = (-x^3; x)_{\infty} + (-x^5; x)_{\infty} + \dots$ $(1+x^3)(1+x^4)...+(1+x^5)(1+x^6)...$ $+(1+x^{7})(1+x^{8})...+...$ $=\frac{(1-x^6)(1-x^8)\dots}{(1-x^3)(1-x^4)\dots}+\frac{(1-x^{10})(1-x^{12})\dots}{(1-x^5)(1-x^6)\dots}$ $+\frac{(1-x^{14})...}{(1-x^7)}+...$ $=\frac{(x^{6};x^{2})_{\infty}}{(x^{3};x)_{\infty}}+\frac{(x^{10};x^{2})_{\infty}}{(x^{5};x)_{\infty}}+\dots$ $=\sum_{n=1}^{\infty} \frac{(x^{4n+2};x^2)_{\infty}}{(x^{2n+1};x)_{\infty}}$ $=\sum_{n=1}^{\infty} \frac{x^{2n}}{(1-x^{2n})^2 (x^{2n+1};x)} \frac{(x^{4n+2};x^2)_{\infty}}{(x^{2n+1};x)}$ $=\sum_{n=1}^{\infty} \frac{x^{2n}}{(x^{2n};x)_{\infty}} \cdot \frac{1}{(1-x^{2n})} \cdot \frac{(x^{4n+2};x^2)_{\infty}}{(x^{2n+1};x)_{\infty}}$ [Since, $\sum_{n=1}^{\infty} \frac{x^{2n}}{(1-x^{2n})^2 (x^{2n+1};x)_{\infty}}$ $=\frac{x^2}{(1-x^2)^2(x^3;x)_{-}}+\frac{x^4}{(1-x^4)^2(x^5;x)_{-}}+\dots$ $=\frac{x^2}{(1-r^2)^2(1-r^3)(1-r^4)}+$

$$\begin{aligned} \frac{x^{*}}{(1-x^{4})^{2}(1-x^{5})(1-x^{6})...} + ... \\ &= \sum_{n=1}^{\infty} \frac{x^{2n}}{(x^{2n};x)_{\infty}} \cdot \frac{1}{(1-x^{2n})} \end{bmatrix} \\ &= \sum_{n=1}^{\infty} \frac{x^{2n}}{(x^{2n};x)_{\infty}} \cdot \frac{1}{(1-x^{2n})(1-x^{2n+1})...(1-x^{4n})(x^{4n+1};x^{2})_{\infty}}{[Since,} \\ &\sum_{n=1}^{\infty} \frac{(x^{4n+2};x^{2})_{\infty}}{(x^{2n+1};x)_{\infty}} = \frac{(x^{6};x^{2})_{\infty}}{(x^{3};x)_{\infty}} + \frac{(x^{10};x^{2})_{\infty}}{(x^{5};x)_{\infty}} + ... \\ &= \frac{(1-x^{6})(1-x^{8})...}{(1-x^{3})(1-x^{4})...} + \\ &= \frac{(1-x^{6})(1-x^{8})...}{(1-x^{5})(1-x^{6})...(1-x^{10})(1-x^{11})...} + ... \\ &= \frac{1}{(1-x^{3})(1-x^{4})(1-x^{5})...} + \\ &= \frac{1}{(1-x^{3})(1-x^{4})(1-x^{5})...} + \\ &= \frac{\sum_{n=1}^{\infty} \frac{1}{(1-x^{2n+1})...(1-x^{4n})(x^{4n+1};x^{2})_{\infty}}{(1-x^{2n+1})...} \\ &= \sum_{n=1}^{\infty} \frac{\sum_{\substack{\lambda_{i} \in P \\ S(\lambda_{i}) = n}} x^{|\lambda_{i}|} \sum_{\substack{\lambda_{i} \in P \\ S(\lambda_{i}) \geq n}} x^{|\lambda_{i}|} \\ &= \sum_{n=1}^{\infty} \sum_{\substack{\lambda_{i} \in P \\ S(\lambda_{i}) = n}} x^{|\lambda_{i}|} \\ &= x^{1} \\$$

Equating the co-efficient of x^n from both sides we get;

$$spt_2(n) = \sum_{\substack{\overline{\lambda} \in SP_2 \\ |\overline{\lambda}| = |\lambda_1| + |\lambda_2| = n}} 1$$
. Hence the

Theorem.

Numerical example 2

The overpartitions of 6 with smallest parts not overlined and even are 6, 4+2, $\overline{4}$ + 2, and 2+2+2. Consequently, the number of

smallest parts in the overpartitions of 6 with smallest part not overlined and even is given by;

 $\dot{6}_{4+2}, \bar{4}+2, \dot{2}+2+2,$ so that $\overline{spt}_{2}(6) = 6$ i.e., there are $6 \overline{SP_{2}}$ partition pairs of 6 like: $(6,\phi), (4+2,\phi), (2,4), (2+2+2,\phi),$ (2+2,2) and (2, 2+2).

RESULT 2

$$M_{\overline{S_2}}(0,5,8) = M_{\overline{S_2}}(1,5,8,) =$$

$$M_{\overline{S_2}}(2,5,8,) =$$

$$M_{\overline{S_2}}(3,5,8) = M_{\overline{S_2}}(4,5,8) = 3 = \frac{1}{5}$$

$$\overline{spt}_2(8)$$

Proof

We prove the result with the help of examples. We can define a \overline{crank} of partition pairs $\vec{\lambda} = (\lambda_1, \lambda_2) \in \overline{SP}_2$.

For $\vec{\lambda} = (\lambda_1, \lambda_2) \in \overline{SP_2}$, we define, $\vec{k} (\lambda) = \#$ of pairs j in λ_2 such that $s(\lambda_1) \le j \le 2 \ s(\lambda_1) - 1$, and also define;

$$\overrightarrow{crank}(\overrightarrow{\lambda}) = \begin{cases} (\# \text{ of parts of } \lambda_1 \ge s(\lambda_1) + k) - k \\ \text{ if } k > 0 \\ (\# \text{ of parts of } \lambda_1) - 1; \text{ if } k = 0 \end{cases}$$

where $k = k(\vec{\lambda})$.

We know that $\overline{spt_2}(8) = 15$. There are

15 $\overline{SP_2}$ -partition pairs of 8. (See table 3.) From the table we get; $M_{\overline{S_2}}(0,5,8) = M_{\overline{S_2}}(1,5,8,) =$

 $M_{\overline{s}_{2}}(2,5,8,) =$

$$M_{\overline{s}_2}(3,5,8) = M_{\overline{s}_2}(4,5,8) = 3 = \frac{1}{5}$$

 $\overline{spt}_2(8)$. Hence the Result.

Now we will describe the $\overline{sptcrank}$ of a marked overpartition⁶. To define the $\overline{sptcrank}$ of a marked overpartition we first need to define a function k(m,n) for positive integers m, n such that $m \ge n+1$, we write $m = b2^{j}$, where b is odd and $j \ge o$. For a given odd integer b and a positive integer n we define $j_0 = j_0(b,n)$ to be the smallest non-negative integer j_0 such that $b2^{j_0} \ge n+1$.

We

$$k(m,n) = \begin{cases} 0, \text{ if } b \ge 2n \\ 2^{j-j_0} \text{ if } b2^{j_0} < 2n \\ 0, \text{ if } b2^{j_0} = 2n. \end{cases}$$

define;

For a marked overpartitions (π, j) we let π_1 be the partition formed by the nonoverlined parts of π, π_2 be the partition (into distinct parts) formed by the overlined parts of π so that $s(\pi_2) > s(\pi_1)$, we define $\overline{k}(\pi, i) = v(\pi_1) - j + k(\pi_2, s(\pi_1))$, where $v(\pi)$

 $v(\pi_1)$ is the number of smallest parts of π_1 . Now we can define;

$$\overline{sptcrank}(\pi, j) = \begin{cases} (\text{#of parts of } \pi_1 \ge s(\pi_1) - \bar{k}), \\ \text{if } \bar{k} = \bar{k}(\pi, j) > 0 \\ (\text{#of parts of } \pi_1) - 1; \\ \text{if } \bar{k} = \bar{k}(\pi, j) = 0. \end{cases}$$

Corollary 3⁸

The residue of the $sptcrank \pmod{3}$ divides the marked overpartitions of 3n with the smallest part not overlined and even into 3 equal classes.

Proof

We prove the Corollary with the help of an example when n = 2. There are 6 marked overpartitions of 3n (when n = 2) with the smallest part not overlined and even so that, $\overline{spt_2}(6) = 6$. We see that the residue of the $\overline{sptcrank} \pmod{3}$ divides the marked overpartitions of 3n (when n = 2) with smallest part not overlined and even into 3 equal classes. Hence the Corollary. (See table 4.)

Corollary 4

The residue of the $sptcrank \pmod{3}$ divides the marked overpartitions of 3n+1 with smallest part not overlined and even into 3 equal classes.

Proof

We prove the Corollary with the help of an example when n = 2. There are 6 marked overpartitions of 7 with the smallest part not overlined and even, so that $\overline{spt_2}(7) = 6$. We see that the residue of the $\overline{sptcrank} \pmod{3}$ divides the marked overpartitions of 3n+1 (when n = 2) with smallest part not overlined and even. Hence the Corollary. (See table 5.)

Corollary 5

The residue of the $sptcrank \pmod{5}$ divides the marked overpartitions of 5n+3 with smallest part not overlined and even into 5 equal classes.

Proof

We prove the Corollary with the help of example when n = 1. There are 15 marked overpartitions of 5n + 3 (when n = 1) with the smallest part not overlined and even so that $\overline{spt_2}(8) = 15$.

We see that the residue of the $\overline{sptcrank} \pmod{5}$ divides the marked overpartitions of 8 with the smallest part not overlined and even into 5 equal classes. Hence the corollary. (See table 6.)

CONCLUSION

In this study we have found the number of smallest parts in the overpartitions of *n* with the smallest part not overlined and even for n=1, 2, 3, 4 and 5. We have shown various relations $\overline{spt_2}(3n) \equiv 0 \pmod{3}$,

$$spt_{2}(3n+1) \equiv 0 \pmod{3},$$

$$\overline{spt_{2}}(5n+3) \equiv 0 \pmod{5},$$

$$M_{\overline{S_{2}}}(0,3,4) = M_{\overline{S_{2}}}(1,3,4) = M_{\overline{S_{2}}}(2,3,4)$$

$$= \frac{1}{3}\overline{spt_{2}}(4)$$

and

$$M_{\overline{S_{2}}}(0,5,8) = M_{\overline{S_{2}}}(1,5,8) = M_{\overline{S_{2}}}(2,5,8) =$$

$$M_{\overline{S_{2}}}(3,5,8) = M_{\overline{S_{2}}}(4,5,8) = 3 = \frac{1}{5} \frac{1}{spt_{2}}(8)$$

With numerical examples respectively. We have verified the Theorem 1 when n = 5 and have verified the Theorem 2 when n = 6. We have verified the Corollary 3 with 6 marked overpartitions of 6 and have verified the Corollary 4 with 6 marked overpartitions of 7 and also have established the Corollary 5 with 15 marked overpartition of 8.

REFERENCES

- 1. Andrews, G.; Dyson, F. and Rhoades R., On the distribution of the spt-crank, *Mathematics*, 1(3): 76–88, 2013.
- 2. Andrews, G.E.; Garvan, F.G. and Liang, J., Combinatorial Interpretations of Congruences for the spt-function, The *Ramanujan Journal*, *Springer*. 29(1–3): 321–338, 2012.
- 3. Berkovich, A. and Garvan, F.G., K. Saito's Conjecture for Nonnegative eta Products and Analogous Results for other Infinite Products, *Journal of Number Theory*, 128(6): 1731–1748, 2008.
- 4. Bringann, K.; Lovejoy, J. and Osburn, R., Rank and Crank Moments for Overpartitions, *Journal* of Number Theory, 129(7):1758–1772, 2009.
- 5. Bringann, K.; Lovejoy, J. and Osburn, R., Automorphic Properties of Generating Functions for Generalized Rank Moments and Durfee Symbols, *Int. Math. Res. Not. IMRN*, (2): 238– 260, 2010.
- 6. Chen, W.Y.C.; Ji, K.Q. and Zang, W.J.T., The spt-crank for Ordinary Partitions, arXiv e-prints, Aug. 2013.
- Garvan, F.G. and Shaffer, C.J., The spt-crank for Overpartitions, arXiv: 1311.3680v2 [Math. NT], 23 Mar 2014.
- 8. Lovejoy, J. and Osburn, R., M₂-rank Differences for Partitions without Repeated Odd Parts. *J. Theor. Nombres Bordeaux*, 21(2): 313–334, 2009.

$\overline{S_2}$ -vector partition $(\vec{\pi})$ of 4	Weight $\omega(\vec{\pi})$	$Crank_{(\vec{\pi})}$	Mod 3
$\vec{\pi_1} = (4, \phi, \phi, \phi)$	1	0	0
$\stackrel{\rightarrow}{\pi}_2 = (2+2,\phi,\phi)$	1	1	1
$\vec{\pi}_{3} = (2, \phi, 2, \phi)$	1	-1	2
	$\sum \omega(\vec{\pi}) = 3$		

Table 1. Vector partitions their weights and cranks ($\overline{S_2}$ of 4)

Table 2. Vector partitions their weights and cranks ($\overline{S_2}$ of 5)

$\overline{S_2}$ -vector partition $(\vec{\pi})$ of 5	Weight $\omega(\vec{\pi})$	$\operatorname{Crank}_{\mathbf{c}^{(\vec{\pi})}}$
$\overrightarrow{\pi_1} = (3+2, \phi, \phi, \phi)$	-1	0
$\vec{\pi}_2 = (2, \phi, \phi_{,3})$	1	0
$\stackrel{\rightarrow}{\pi}_{3} = (2,3,\phi,\phi)$	1	1
$\stackrel{\rightarrow}{\pi}_4 = (2, \phi, 3, \phi)$	1	-1
	$\sum \alpha(\vec{\pi}) = 2$	

$\overline{SP_2}$ -partition pair of 8	k	crank	(Mod 5)
(3+2, 3)	1	0	0
(4+2, 2)	1	0	0
(8, <i>φ</i>)	0	0	0
(2+2, 4)	0	1	1
(4+4, ^{\$\phi\$})	0	1	1
(6+2, ^{<i>\phi</i>})	0	1	1
(2, 2+2+2)	3	-3	2
(3+3+2, ^{\$\phi\$})	0	2	2
(4+2+2, ^{<i>ø</i>})	0	2	2
(2, 3+3)	2	-2	3
(2+2, 2+2)	2	-2	3
(2+2+2+2, ^{\$\phi\$})	0	3	3
(2, 4+2)	1	-1	4
(4, 4)	1	-1	4
(2+2+2, 2)	1	-1	4

Table 3. 15 $\overline{SP_2}$ -partition pairs of 8

Table 4. Marked overpartition (π, j) of 6

Marked overpartition $(^{\pi,j)}$ of 6	π_1	π_2	$v(\pi_1)$	$k\bigl((\pi_2,s(\pi_1)\bigr)$	\overline{k}	sptcrank	(Mod 3)
(6 ,1)	6	ϕ	1	0	0	0	0
(4+2 ,1)	4+2	ϕ	1	0	0	1	1
$(\bar{4}+2,1)$	2	4	1	0	0	0	0
(2+2+2, 1)	2+2+2	ϕ	3	0	2	-2	1
(2+2+2, 2)	2+2+2	ϕ	3	0	1	-1	2
(2+2+2, 3)	2+2+2	ϕ	3	0	0	2	2

Marked overpartition ($^{\pi,j)}$ of 7	$\pi_1^{}$	π_2	$v(\pi_1)$	$k((\pi_2,s(\pi_1)))$	\overline{k}	sptcrank	(Mod 3)
(5+2, 1)	5+2	ϕ	1	0	0	1	1
$(\bar{5}+2,1)$	2	5	1	0	0	0	0
(3+2+2, 1)	3+2+2	ϕ	2	0	1	0	0
(3+2+2, 2)	3+2+2	ϕ	2	0	0	2	2
(³ +2+2, 1)	2+2	3	2	1	2	-2	1
(³ +2+2, 2)	2+2	3	2	1	1	-1	2

Table 5. Marked overpartition (π, j) of 7

Table 6. Marked overpartition (π, j) of 8

Marked overpartition (π , j) of 8	π_1	π_2	$v(\pi_1)$	$k\bigl((\pi_2,s(\pi_1))\bigr)$	\overline{k}	sptcrank	(Mod 5)
$(\bar{6}+2,1)$	2	6	1	2	2	-2	3
$(\overline{4} + 2 + 2, 1)$	2+2	4	2	0	1	-1	4
$(\overline{4} + 2 + 2, 2)$	2+2	4	2	0	0	1	1
$(\bar{3}+3+2,1)$	3+2	3	1	1	1	0	0
(2+2+2+2, 1)	2+2+2+2	ϕ	4	0	3	-3	2
(2+2+2+2, 2)	2+2+2+2	ϕ	4	0	2	-2	3
(2+2+2+2, 3)	2+2+2+2	ϕ	4	0	1	-1	4
(2+2+2+2, 4)	2+2+2+2	ϕ	4	0	0	3	3
(3+3+2, 1)	3+3+2	ϕ	1	0	0	2	2
(4+2+2, 1)	4+2+2	ϕ	1	0	1	0	0
(4+2+2, 2)	4+2+2	ϕ	2	0	0	2	2
(6+2, 1)	6+2	ϕ	1	0	0	1	1
(4+4, 1)	4+4	ϕ	2	0	1	-1	4
(4+4, 2)	4+4	ϕ	2	0	0	1	1
(8, 1)	8	ϕ	1	0	0	0	0