Andrews-Garvan-Liang's Spt-crank for Marked Overpartitions

Nil Ratan Bhattacharjee ${ }^{1}$, Sabuj Das ${ }^{2}$ and Haradhan Kumar Mohajan** ${ }^{3}$

${ }^{1}$ Department of Mathematics, University of Chittagong, Bangladesh
${ }^{2}$ Senior Lecturer, Department of Mathematics Raozan University College, Bangladesh
${ }^{3}$ Premier University, Chittagong, Bangladesh

```
A R T I C L E I N F O
```

Received 13 Oct. 2014
Received in revised form 19 Oct. 2014
Accepted 22 Oct. 2014

Keywords:
$\overline{\text { crank }}$,
Non-negative,
Overpartitions,
Overlined,
$\overline{\text { sptcrank }}$,
Weight.

ABSTRACT

In 2009, Bingmann, Lovejoy and Osburn have shown the generating function for $\overline{s p t}_{2}(n)$. In 2012, Andrews, Garvan, and Liang have defined the $\overline{\text { sptcrank }}$ in terms of partition pairs. In this article the number of smaller parts in the overpartitions of n with smallest part not overlined and even are discussed, and the vector partitions and \bar{S} partitions with 4 components, each a partition with certain restrictions are also discussed. The generating function for $\overline{s p t}_{2}(n)$, and the generating function for $M_{\bar{S}_{2}}(m, n)$ are shown with a result in terms of modulo 3. This paper shows how to prove the Theorem 1 , in terms of $M_{\bar{S}_{2}}(m, n)$ with a numerical example, and shows how to prove the Theorem 2, with the help of sptcrank in terms of partition pairs. In 2014, Garvan and Jennings-Shaffer are capable to define the $\overline{\text { sptcrank }}$ for marked overpartitions. This paper also shows another result with the help of 15 $\overline{S P}_{2}$-partition pairs of 8 and shows how to prove the Corollary with the help of 15 marked overpartitions of 8 .
© 2014 International Journal of Applied Science-Research and Review All rights reserved

INTRODUCTION

In this paper we give some related definitions of $\overline{s p t_{2}}(n)$, various product notations, vector partitions and \bar{S}-partitions, $M_{\bar{S}_{2}}(m, n), M_{\overline{S_{2}}}(m, t, n), \bar{S}_{2}(z, x)$, marked partition and sptcrank for marked overpartitions. We discuss the generating function for $\overline{s p t}{ }_{2}(n)$ and prove the Corollary 1 with the help of generating function to prove the

Result 1 with the help of 3 vector partitions from \bar{S}_{2} of 4 . We prove the Theorem 1 with the help of various generating functions and prove the Corollary 2 with a special series $\bar{S}_{2}(z, x)$, when $n=1$ and prove the Theorem 2 with the help of $\overline{\text { sptcrank }}$ in terms of partition pairs $\left(\lambda_{1}, \lambda_{2}\right)$ when $0<s\left(\lambda_{1}\right) \leq s\left(\lambda_{2}\right)$. We prove the Result 2 using the $\overline{\text { crank }}$ of partition pairs
$\vec{\lambda}=\left(\lambda_{1}, \lambda_{2}\right)$ and prove the Corollary 3 and 4 with the help of marked overpartition of $3 n$ and of $3 n+1$ (when $n=2$) respectively. Finally we analyze the Corollary 5 with the help of marked overpartitions of $5 n+3$ when $n=1$.

Some related definitions

In this section we have described some definitions related to the article following ${ }^{7}$.
$\overline{s p t_{2}}(n)^{4}$: The number of smallest parts in the overpartitions of n with smallest part not overlined and even is denoted by $\overline{s p t_{2}}(n)$ for example,

n		
		$\overline{s p t}_{2}(n)$
1	$:$	
2	\vdots	2
3	$:$	0
4	$:$	4,
5	$:$	$3+2, \overline{3}+\dot{2}$

From above we get;
$s p t_{2}(6)=6, s p t_{2}(7)=6, \ldots$
Product notations

$$
\begin{aligned}
& (x)_{\infty}=(1-x)\left(1-x^{2}\right)\left(1-x^{3}\right) \ldots \\
& \left(x^{2} ; x^{2}\right)_{\infty}=\left(1-x^{2}\right)\left(1-x^{4}\right) \ldots \\
& (x)_{k}=(1-x)\left(1-x^{2}\right)\left(1-x^{3}\right) \ldots\left(1-x^{k}\right) \\
& \left(-x^{5} ; x\right)_{\infty}=\left(1+x^{5}\right)\left(1+x^{6}\right)\left(1+x^{7}\right) \ldots
\end{aligned}
$$

Vector partitions and \bar{S}-partitions
A vector partition can be done with 4 components each partition with certain restrictions ${ }^{5}$. Let, $\vec{V}=D \times P \times P \times D$, where D denote the set of all partitions into distinct parts, P denotes the set of all partitions. For a partition π, we let, $s(\pi)$ denotes the smallest part of π (with the convention that the empty partition has
smallest part $\left.{ }^{\infty}\right), \#(\pi)$ the number of parts in π, and $|\pi|$ the sum of the parts of π.

For $\quad \vec{\pi}=\left(\pi_{1}, \pi_{2}, \pi_{3}, \pi_{4}\right) \in \vec{V}, \quad$ we define the weight $\omega(\vec{\pi})=(-1)^{\#\left(\pi_{1}\right)-1}$, the crank $\mathrm{c}(\vec{\pi})=\#\left(\pi_{2}\right)-\#\left(\pi_{3}\right), \quad$ the norm $|\vec{\pi}|=\left|\pi_{1}\right|+\left|\pi_{2}\right|+\left|\pi_{3}\right|+\left|\pi_{4}\right|$.

We say $\vec{\pi}$ is a vector partition of n if $\vec{\pi}=n$. Let \bar{S} denotes the subset of \bar{V} and it is given by;
$\bar{S}=\left\{\left(\pi_{1}, \pi_{2}, \pi_{3}, \pi_{4}\right) \in \vec{V}, 1 \leq s\left(\pi_{1}\right)<\infty, s\left(\pi_{1}\right) \leq\right.$
$\left.s\left(\pi_{2}\right), s\left(\pi_{1}\right) \leq s\left(\pi_{3}\right), s\left(\pi_{1}\right)<s\left(\pi_{4}\right)\right\}$.
Let $\overline{S_{2}}$ denotes the subset of \bar{S} with $s\left(\pi_{1}\right)$ even. $M_{\bar{S}_{2}}(m, n)$: The number of vector partitions of n in \bar{S}_{2} with crank m are counted according to the weight ω is exactly $M_{\bar{S}_{2}}(m, n)$.
$M_{\bar{S}_{2}}(m, t, n)$: The number of vector partitions of n in \bar{S}_{2} with crank congruent to m modulo t are counted according to the weight ω is exactly $M_{\bar{S}_{2}}(m, t, n)$.
$\bar{S}_{2(\mathrm{z}, \mathrm{x}) \text { : The series }} \bar{S}_{2(\mathrm{z}, \mathrm{x})}$ is defined by the generating function for $M_{\bar{S}_{2}}(m, n)$.
i.e., $\bar{S}_{2(\mathrm{z}, \mathrm{x})}$
$=\sum_{n=1}^{\infty} \frac{x^{2 n}\left(x^{2 n+1} ; x\right)_{\infty}\left(-x^{2 n+1} ; x\right)_{\infty}}{\left(z x^{2 n} ; x\right)_{\infty}\left(z^{-1} x^{2 n} ; x\right)_{\infty}}$
$=\sum_{n=1}^{\infty} \sum_{m=-\infty}^{\infty} M_{\overline{s_{2}}}(m, n) z^{m} x^{n}$.
Marked Partition ${ }^{1}$: We define a marked partition as a pair (λ, k) where λ is a partition and k is an integer identifying one of its smallest
parts i.e., $\mathrm{k}=1,2, \ldots, v(\lambda)$, where $v(\lambda)$ is the number of smallest parts of λ.
$\overline{\text { sptcrank }}$ for Marked overpartitions ${ }^{6}$:
We define a marked overpartitions of n as a pair (π, j) where π is an overpartition of n in which the smallest part is not overlined and even. It is clear that $\overline{s p t_{2}}(\mathrm{n})=\#$ of marked overpartitions (π, j) of n. For example, there are 3 marked overpartitions of 4, like:
$(4,1),(2+2,1)$, and $(2+2,2)$.
Then, $\overline{s p t}_{2}(4)=3$.
The generating function for $\overline{s p t_{2}}(\mathrm{n})$
The generating function (Bringmann et al. have shown in ${ }^{5}$) for $\overline{s p t_{2}}(\mathrm{n})$ is given by;

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{x^{2 n}\left(-x^{2 n+1} ; x\right)_{\infty}}{\left(1-x^{2 n}\right)^{2}\left(x^{2 n+1} ; x\right)_{\infty}} \\
& =\frac{x^{2}\left(-x^{3} ; x\right)_{\infty}}{\left(1-x^{2}\right)^{2}\left(x^{3} ; x\right)_{\infty}}+\frac{x^{4}\left(-x^{5} ; x\right)_{\infty}}{\left(1-x^{4}\right)^{2}\left(x^{5} ; x\right)_{\infty}}+\ldots \\
& =o . x+1 . x^{2}+o . x^{3}+3 . x^{4}+2 . x^{5}+6 . x^{6}+\ldots \\
& =\overline{\operatorname{spt}_{2}}(1) x+\overline{{s p t t_{2}}}(2) x^{2}+\overline{s p t_{2}}(3) x^{3}+ \\
& \overline{s p t_{2}}(4) x^{4}+\overline{\operatorname{spt}_{2}}(5) x^{5}+\ldots \\
& =\sum_{n=1}^{\infty} \overline{\operatorname{spt}_{2}}(n) x^{n} .
\end{aligned}
$$

For convenience, define $s p t_{2}(1)=0$.
From above we get $\overline{\operatorname{spt}_{2}}(3)=0$,
$\overline{s p t_{2}}(6)=6, \ldots$
i.e., $\operatorname{spt}_{2}(3.1)=0 \equiv 0(\bmod 3)$,
$\overline{s p t_{2}}(3.2)=6 \equiv 0(\bmod 3), \ldots$
We can conclude that
$\overline{s p t}_{2}(3 n) \equiv 0(\bmod 3)$.
We also get $s p t_{2}(4)=3$, $s p t_{2}(7)=6, \ldots$
i.e., $\overline{s p t_{2}}(3+1)=3 \equiv 0(\bmod 3)$, $\overline{s p t_{2}}(3.2+1)=6 \equiv 0(\bmod 3), \ldots$

We can conclude that $\overline{s p t_{2}}(3 n+1) \equiv 0(\bmod 3)^{4}$. Again from above we get;
$\overline{s p t_{2}}(3)=0, \overline{s p t_{2}}(8)=15, \ldots$
i.e., $\overline{s p t_{2}}(3)=0 \equiv 0(\bmod 5)$, $\overline{s p t_{2}}(5+3)=15 \equiv 0(\bmod 5), \ldots$
We can
$\overline{s p t_{2}}(5 n+3) \equiv 0(\bmod 5)$.$\quad$ conclude that

Corollary 1

$$
\overline{s p t_{2}}(n)=\sum_{m=-\infty}^{\infty} M_{\bar{S}_{2}}(m, n) .
$$

Proof
The generating function for $M_{\bar{S}_{2}}(m, n)$ is given by;

$$
\begin{aligned}
& \sum_{\mathrm{n}=1}^{\infty} \sum_{\mathrm{m}=-\infty}^{\infty} M_{\bar{S}_{2}}(m, n)_{z^{m} x^{n}} \\
& \sum_{n=1}^{\infty} \frac{x^{2 n}\left(x^{2 n+1} ; x\right)_{\infty}\left(-x^{2 n+1} ; x\right)_{\infty}}{\left(z x^{2 n} ; x\right)_{\infty}\left(z^{-1} x^{2 n} ; x\right)_{\infty}} .
\end{aligned}
$$

$$
\text { If } z=1 \text {, then, }
$$

$$
\sum_{n=1}^{\infty} \sum_{m=-\infty}^{\infty} M_{\bar{S}_{2}}(m, n) \mathrm{x}^{\mathrm{n}}
$$

$$
\sum_{=n=1}^{\infty} \frac{x^{2 n}\left(x^{2 n+1} ; x\right)_{\infty}\left(-x^{2 n+1} ; x\right)_{\infty}}{\left(x^{2 n} ; x\right)_{\infty}\left(x^{2 n} ; x\right)_{\infty}}
$$

$$
=\frac{x^{2}\left(-x^{3} ; x\right)_{\infty}\left(x^{3} ; x\right)_{\infty}}{\left(x^{2} ; x\right)_{\infty}^{2}}+
$$

$$
\frac{x^{4}\left(-x^{5} ; x\right)_{\infty}\left(x^{5} ; x\right)_{\infty}}{\left(x^{4} ; x\right)_{\infty}^{2}}+\ldots
$$

$$
=\frac{x^{2}\left(-x^{3} ; x\right)_{\infty}\left(1-x^{3}\right)\left(1-x^{4}\right) \ldots}{\left(1-x^{2}\right)^{2}\left(1-x^{3}\right)^{2} \ldots}+
$$

$$
\frac{x^{4}\left(-x^{5} ; x\right)_{\infty}\left(1-x^{5}\right)\left(1-x^{6}\right) \ldots}{\left(1-x^{4}\right)^{2}\left(1-x^{5}\right)^{2} \ldots}
$$

$$
=\frac{x^{2}\left(-x^{3} ; x\right)_{\infty}}{\left(1-x^{2}\right)^{2}\left(1-x^{3}\right)\left(1-x^{4}\right) \ldots}
$$

$$
+\frac{x^{4}\left(-x^{5} ; x\right)_{\infty}}{\left(1-x^{4}\right)^{2}\left(1-x^{5}\right)\left(1-x^{6}\right) \ldots}+\ldots
$$

$\sum_{n=1}^{\infty} \frac{x^{2 n}\left(-x^{2 n+1} ; x\right)_{\infty}}{\left(1-x^{2 n}\right)^{2}\left(x^{2 n+1} ; x\right)_{\infty}}$
$\sum_{n=1}^{\infty} \overline{s p t_{2}}(n) x^{n}$.
i.e., $\sum_{\mathrm{n}=1}^{\infty} \overline{\operatorname{spt_{2}}}(n) x^{n} \sum_{\mathrm{n}=1}^{\infty} \sum_{\mathrm{m}=-\infty}^{\infty} M_{\bar{S}_{2}}(m, n) x^{n}$.

Now equating the co-efficient of x^{n} from both sides we get;
$\overline{s p t_{2}}(n)=\sum_{\mathrm{m}=-\infty}^{\infty} M_{\bar{S}_{2}}(m, n)$.
Hence the Corollary.

RESULT 1

$M_{\bar{S}_{2}}(0,3,4)=M_{\bar{S}_{2}}(1,3,4)=M_{\bar{S}_{2}}(2,3,4)=\frac{1}{3} \overline{s p t}(4)$.
Proof
We prove the result with the help of examples. We see the vector partitions from $\overline{S_{2}}$ of 4 along with their weights and cranks and are given as follows: (See table 1.)

Here we have used ϕ to indicate the empty partition. Thus we have,
$M_{\bar{S}_{2}}(0,3,4)=1, \quad M_{\bar{S}_{2}}(1,3,4)=1$,
$M_{\overline{S_{2}}}(2,3,4)=M_{\overline{S_{2}}}(-1,3,4)=1$
$\therefore M_{\overline{S_{2}}}(0,3,4)=M_{\overline{S_{2}}}(1,3,4)$
$=M_{\overline{S_{2}}}(2,3,4)=1=\frac{1}{3} \cdot 3=\frac{1}{3} \overline{s p t_{2}}(3)$.
Hence the Result.
Now from above table we get;
$\sum \omega(\vec{\pi})=3$, i.e., $\sum_{k=0}^{2} M_{\overline{S_{2}}}(k, 3,4)=3$.
$\therefore \overline{\operatorname{spt}_{2}}(4)=\sum_{k=0}^{2} M_{\overline{S_{2}}}(k, 3,4)=\sum \omega(\vec{\pi})$.
Now we can define;

$$
M_{\overline{S_{2}}}(k, t, n)=\sum_{m=k(\bmod t)} M_{\overline{S_{2}}}(m, n)
$$

and
$\overline{s p t_{2}}(n)=\sum_{m=-\infty}^{\infty} M_{\overline{S_{2}}}(m, n)=\sum_{k=0}^{t-1} M_{\overline{S_{2}}}(k, t, n)$.
Theorem 1
The number of vector partitions of n in $\overline{S_{2}}$ with crank m counted according to the weight ω is non-negative, i.e., $M_{\bar{S}_{2}}(m, n) \geq 0$.

Proof

The generating function for $M_{\bar{S}_{2}}(m, n)$ is given by;

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \sum_{m=-\infty} M_{\overline{S_{2}}}(m, n) z^{m} x^{n} \\
& =\sum_{n=1}^{\infty} \frac{x^{2 n}\left(x^{2 n+1} ; x\right)_{\infty}\left(-x^{2 n+1} ; x\right)_{\infty}}{\left(z x^{2 n} ; x\right)_{\infty}\left(z^{-1} x^{2 n} ; x\right)_{\infty}}
\end{aligned}
$$

$$
=\sum_{n=1}^{\infty} \frac{x^{2 n}}{\left(z x^{2 n} ; x\right)_{\infty}\left(z^{-1} x^{2 n} ; x\right)_{\infty}} \cdot\left(x^{4 n+2} ; x^{2}\right)_{\infty}
$$

[Since $\sum_{n=1}^{\infty}\left(x^{2 n+1} ; x\right)_{\infty}\left(-x^{2 n+1} ; x\right)_{\infty}$

$$
=\left(x^{3} ; x\right)_{\infty}\left(-x^{3} ; x\right)_{\infty}+\left(x^{5} ; x\right)_{\infty}\left(-x^{5} ; x\right)_{\infty}+\ldots
$$

$$
=\left(1-x^{3}\right)\left(1-x^{4}\right) \ldots\left(1+x^{3}\right)\left(1+x^{4}\right) \ldots+
$$

$$
\left(1-x^{5}\right)\left(1-x^{6}\right) \ldots\left(1+x^{5}\right) \ldots+\ldots
$$

$$
=\left(1-x^{6}\right)\left(1-x^{8}\right) \ldots+\left(1-x^{10}\right)\left(1-x^{12}\right) \ldots+
$$

$$
\left(1-x^{14}\right) \ldots+\ldots
$$

$$
=\left(x^{6} ; x^{2}\right)_{\infty}+\left(x^{10} ; x^{2}\right)_{\infty}+\ldots
$$

$$
\left.=\sum_{n=1}^{\infty}\left(x^{4 n+2} ; x^{2}\right)_{\infty}\right]
$$

$$
=\sum_{n=1}^{\infty} \frac{x^{2 n}\left(x^{4 n} ; x\right)_{\infty}}{\left(z x^{2 n} ; x\right)_{\infty}\left(z^{-1} x^{2 n} ; x\right)_{\infty}} \cdot \frac{\left(x^{4 n+2} ; x^{2}\right)_{\infty}}{\left(x^{4 n} ; x\right)_{\infty}}
$$

$$
=\sum_{n=1}^{\infty} \frac{x^{2 n}\left(x^{4 n} ; x\right)_{\infty}}{\left(z x^{2 n} ; x\right)_{\infty}\left(z^{-1} x^{2 n} ; x\right)_{\infty}} \cdot \frac{1}{\left(1-x^{4 n}\right)\left(x^{4 n+1} ; x^{2}\right)_{\infty}}
$$

[Since,
$\sum_{n=1}^{\infty} \frac{\left(x^{4 n+2} ; x^{2}\right)_{\infty}}{\left(x^{4 n} ; x\right)_{\infty}}=\frac{\left(x^{6} ; x^{2}\right)_{\infty}}{\left(x^{4} ; x\right)_{\infty}}+\frac{\left(x^{10} ; x^{2}\right)_{\infty}}{\left(x^{8} ; x\right)_{\infty}}+\ldots$

$$
\begin{aligned}
&= \frac{\left(1-x^{6}\right)\left(1-x^{8}\right) \ldots}{\left(1-x^{4}\right)\left(1-x^{5}\right)\left(1-x^{6}\right) \ldots}+ \\
& \frac{\left(1-x^{10}\right)\left(1-x^{12}\right) \ldots}{\left(1-x^{8}\right)\left(1-x^{9}\right)\left(1-x^{10}\right)\left(1-x^{11}\right) \ldots}+\ldots \\
&= \frac{1}{\left(1-x^{4}\right)\left(1-x^{5}\right)\left(1-x^{7}\right) \ldots}+ \\
& \frac{1}{\left(1-x^{8}\right)\left(1-x^{9}\right)\left(1-x^{11}\right) \ldots}+\ldots \\
&=\left.\sum_{n=1}^{\infty} \frac{1}{1-x^{4 n}} \cdot \frac{1}{\left(x^{4 n+1} ; x^{2}\right)_{\infty}}\right] \\
&=\sum_{n=1}^{\infty} x^{2 n} \sum_{k=0}^{\infty} \frac{\left(z^{-1} x^{2 n}\right)^{k}}{\left(z x^{2 n+k} ; x\right)_{\infty}(x)_{k}} \cdot \frac{1}{\left(1-x^{4 n}\right)\left(x^{4 n+1} ; x^{2}\right)_{\infty}} \\
& {\left[\text { Since, } \sum_{n=1}^{\infty} \frac{x^{2 n}\left(x^{4 n} ; x\right)_{\infty}}{\left(z x^{2 n} ; x\right)_{\infty}\left(z^{-1} x^{2 n} ; x\right)_{\infty}}\right.} \\
&\left.=\sum_{n=1}^{\infty} x^{2 n} \sum_{k=0}^{\infty} \frac{\left(z^{-1} x^{2 n}\right)^{k}}{\left(z x^{2 n+k} ; x\right)_{\infty}(x)_{k}}\right] .\left(b y^{3}\right)
\end{aligned}
$$

We see that the coefficient of any power x in the right hand side is non-negative so the coefficient $\quad M_{\bar{S}_{2}}(m, n)$ of $z^{m} x^{n} \quad$ is nonnegative, i.e., $M_{\overline{S_{2}}}(m, n) \geq 0$. Hence the Theorem.

Numerical example 1
The vector partitions from $\overline{S_{2}}$ of 5 along with their weights and cranks are given as follows: (See table 2.)

Here we have used ϕ to indicate the empty partition. Thus we have;
$M_{\overline{S_{2}}}(0,5)=1-1=0, M_{\overline{S_{2}}}(1,5)=1$, and
$M_{\overline{S_{2}}}(-1,5)=1$, i.e., $\sum_{m} M_{\overline{S_{2}}}(m, 5)=2$,
i.e., every term is non-negative, i.e., $M_{\overline{S_{2}}}(m, n) \geq 0$.

So we can conclude that, $M_{\bar{S}_{2}}(m, n) \geq 0$.

Corollary 2

$$
\bar{S}_{2}(1, x)=\sum_{n=1}^{\infty} \overline{\operatorname{spt_{2}}}(n)^{x^{n}}
$$

Proof

$$
\begin{aligned}
& \text { We get; } \\
& \bar{S}_{2}(z, x)=\sum_{n=1}^{\infty} \frac{x^{2 n}\left(x^{2 n+1} ; x\right)_{\infty}\left(-x^{2 n+1} ; x\right)_{\infty}}{\left(z x^{2 n} ; x\right)_{\infty}\left(z^{-1} x^{2 n} ; x\right)_{\infty}{ }^{2}} \\
& \text { If } z=1, \text { then we get; } \\
& \bar{S}_{2}(1, x)=\sum_{n=1}^{\infty} \frac{x^{2 n}\left(x^{2 n+1} ; x\right)_{\infty}\left(-x^{2 n+1} ; x\right)_{\infty}}{\left(x^{2 n} ; x\right)_{\infty}\left(x^{2 n} ; x\right)_{\infty}} \\
& =\frac{x^{2}\left(x^{3} ; x\right)_{\infty}\left(-x^{3} ; x\right)_{\infty}}{\left(x^{2} ; x\right)_{\infty}^{2}}+ \\
& \frac{x^{4}\left(-x^{5} ; x\right)_{\infty}\left(x^{5} ; x\right)_{\infty}}{\left(x^{4} ; x\right)_{\infty}^{2}}+\ldots \\
& =\frac{x^{2}\left(-x^{3} ; x\right)_{\infty}\left(1-x^{3}\right)\left(1-x^{4}\right) \ldots}{\left(1-x^{2}\right)^{2}\left(1-x^{3}\right)^{2} \ldots}+ \\
& \frac{x^{4}\left(-x^{5} ; x\right)_{\infty}\left(1-x^{5}\right)\left(1-x^{6}\right) \ldots}{\left(1-x^{4}\right)^{2}\left(1-x^{5}\right)^{2} \ldots}+\ldots \\
& =\frac{x^{2}\left(-x^{3} ; x\right)_{\infty}}{\left(1-x^{2}\right)^{2}\left(1-x^{3}\right) \ldots}+
\end{aligned}
$$

$$
\frac{x^{4}\left(-x^{5} ; x\right)_{\infty}}{\left(1-x^{4}\right)^{2}\left(1-x^{5}\right) \ldots}+\ldots
$$

$$
=\sum_{n=1}^{\infty} \frac{x^{2 n}\left(-x^{2 n+1} ; x\right)_{\infty}}{\left(1-x^{2 n}\right)^{2}\left(x^{2 n+1} ; x\right)_{\infty}}
$$

$$
=\sum_{n=1}^{\infty} \overline{s p t_{2}}(n)_{x^{n}}
$$

$$
\text { i.e., } \bar{S}_{2}(1, x)=\sum_{n=1}^{\infty} \overline{s p t_{2}}(n) \mathrm{X}^{\mathrm{n}} \text {. Hence }
$$

the Corollary.
Theorem 2

$$
\overline{s p t_{2}}(n)=\sum_{\substack{\bar{\lambda}=S P_{2} \\|\bar{\lambda}|=\left|\lambda_{1}\right|+\left|\lambda_{2}\right|=n}} 1
$$

Proof

First we define the $\overline{\text { sptcrank }}$ in terms of partition pairs,

$$
\overline{S P}=\left\{\bar{\lambda}=\left(\lambda_{1}, \lambda_{2}\right) \in P \times P: 0<s\left(\lambda_{1}\right) \leq s\left(\lambda_{2}\right)\right.
$$

and all parts of λ_{2} that are $\geq 2 s\left(\lambda_{1}\right)+1$ are odd $\}$.

Let $\overline{S P}_{2}$ be the set of $\vec{\lambda}=\left(\lambda_{1}, \lambda_{2}\right) \in \overline{S P} \quad$ with $\quad s\left(\lambda_{1}\right)$ even. The generating function for $\overline{s p t}_{2}(n)$ is given by;

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \overline{s p t}_{2}(n) x^{n}=\sum_{n=1}^{\infty} \frac{x^{2 n}\left(-x^{2 n+1} ; x\right)_{\infty}}{\left(1-x^{2 n}\right)^{2}\left(x^{2 n+1} ; x\right)_{\infty}} \\
& =\sum_{n=1}^{\infty} \frac{x^{2 n}}{\left(1-x^{2 n}\right)^{2}\left(x^{2 n+1} ; x\right)_{\infty}}\left(-x^{2 n+1} ; x\right)_{\infty} \\
& =\sum_{n=1}^{\infty} \frac{x^{2 n}}{\left(1-x^{2 n}\right)^{2}\left(x^{2 n+1} ; x\right)_{\infty}} \cdot \frac{\left(x^{4 n+2} ; x^{2}\right)_{\infty}}{\left(x^{2 n+1} ; x\right)_{\infty}}
\end{aligned}
$$

[Since,
$\sum_{n=1}^{\infty}\left(-x^{2 n+1} ; x\right)_{\infty}=\left(-x^{3} ; x\right)_{\infty}+\left(-x^{5} ; x\right)_{\infty}+\ldots$
$=\left(1+x^{3}\right)\left(1+x^{4}\right) \ldots+\left(1+x^{5}\right)\left(1+x^{6}\right) \ldots$

$$
+\left(1+x^{7}\right)\left(1+x^{8}\right) \ldots+\ldots
$$

$$
=\frac{\left(1-x^{6}\right)\left(1-x^{8}\right) \ldots}{\left(1-x^{3}\right)\left(1-x^{4}\right) \ldots}+\frac{\left(1-x^{10}\right)\left(1-x^{12}\right) \ldots}{\left(1-x^{5}\right)\left(1-x^{6}\right) \ldots}
$$

$$
+\frac{\left(1-x^{14}\right) \ldots}{\left(1-x^{7}\right) \ldots}+\ldots
$$

$$
=\frac{\left(x^{6} ; x^{2}\right)_{\infty}}{\left(x^{3} ; x\right)_{\infty}}+\frac{\left(x^{10} ; x^{2}\right)_{\infty}}{\left(x^{5} ; x\right)_{\infty}}+.
$$

$$
=\sum_{n=1}^{\infty} \frac{\left(x^{4^{n+2}} ; x^{2}\right)_{\infty}}{\left.\left(x^{2 n+1} ; x\right)_{\infty}\right]}
$$

$$
=\sum_{n=1}^{\infty} \frac{x^{2 n}}{\left(1-x^{2 n}\right)^{2}\left(x^{2 n+1} ; x\right)_{\infty}} \cdot \frac{\left(x^{4 n+2} ; x^{2}\right)_{\infty}}{\left(x^{2 n+1} ; x\right)_{\infty}}
$$

$$
=\sum_{n=1}^{\infty} \frac{x^{2 n}}{\left(x^{2 n} ; x\right)_{\infty}} \cdot \frac{1}{\left(1-x^{2 n}\right)} \cdot \frac{\left(x^{4 n+2} ; x^{2}\right)_{\infty}}{\left(x^{2 n+1} ; x\right)_{\infty}}
$$

$\left[\right.$ Since, ${ }^{n=1}{ }^{\infty} \frac{x^{2 n}}{\left(1-x^{2 n}\right)^{2}\left(x^{2 n+1} ; x\right)_{\infty}}$

$$
\begin{aligned}
& \quad=\frac{x^{2}}{\left(1-x^{2}\right)^{2}\left(x^{3} ; x\right)_{\infty}}+\frac{x^{4}}{\left(1-x^{4}\right)^{2}\left(x^{5} ; x\right)_{\infty}}+\ldots \\
& =\frac{x^{2}}{\left(1-x^{2}\right)^{2}\left(1-x^{3}\right)\left(1-x^{4}\right) \ldots}+
\end{aligned}
$$

$$
\begin{aligned}
& \frac{x^{4}}{\left(1-x^{4}\right)^{2}\left(1-x^{5}\right)\left(1-x^{6}\right) \ldots}+\ldots \\
& \left.=\sum_{n=1}^{\infty} \frac{x^{2 n}}{\left(x^{2 n} ; x\right)_{\infty}} \cdot \frac{1}{\left(1-x^{2 n}\right)}\right] \\
& =\sum_{n=1}^{\infty} \frac{x^{2 n}}{\left(x^{2 n} ; x\right)_{\infty}} \cdot \frac{1}{\left(1-x^{2 n}\right)\left(1-x^{2 n+1}\right) \ldots\left(1-x^{4 n}\right)\left(x^{4 n+1} ; x^{2}\right)_{\infty}} \\
& \text { [Since, } \\
& \sum_{n=1}^{\infty} \frac{\left(x^{4 n+2} ; x^{2}\right)_{\infty}}{\left(x^{2 n+1} ; x\right)_{\infty}}=\frac{\left(x^{6} ; x^{2}\right)_{\infty}}{\left(x^{3} ; x\right)_{\infty}}+\frac{\left(x^{10} ; x^{2}\right)_{\infty}}{\left(x^{5} ; x\right)_{\infty}}+\ldots \\
& =\frac{\left(1-x^{6}\right)\left(1-x^{8}\right) \ldots}{\left(1-x^{3}\right)\left(1-x^{4}\right) \ldots}+ \\
& \frac{\left(1-x^{10}\right)\left(1-x^{12}\right) \ldots}{\left(1-x^{5}\right)\left(1-x^{6}\right) \ldots\left(1-x^{10}\right)\left(1-x^{11}\right) \ldots}+\ldots \\
& =\frac{1}{\left(1-x^{3}\right)\left(1-x^{4}\right)\left(1-x^{5}\right) \ldots}+ \\
& \frac{1}{\left(1-x^{5}\right)\left(1-x^{6}\right) \ldots\left(1-x^{9}\right)\left(1-x^{11}\right) \ldots}+\ldots \\
& \sum_{n=1}^{\infty} \frac{1}{\left.\left(1-x^{2 n+1}\right) \ldots .\left(1-x^{4 n}\right)\left(x^{4 n+1} ; x^{2}\right)_{\infty}\right]} \\
& =\sum_{n=1}^{\infty} \sum_{\substack{\lambda_{1} \in P \\
S\left(\lambda_{1}\right)=n}} x^{\left|\lambda_{1}\right|} \sum_{\substack{\lambda_{2} \in P \\
s\left(\lambda_{2}\right) \geq n}} x^{\left|\lambda_{2}\right|} \\
& \text { All parts in } \lambda_{2} \geq 2 n+1 \text { are odd } \\
& =\sum_{n=1}^{\infty} \underset{\substack{\bar{\lambda} \in \bar{A} P_{2} \\
|\bar{\lambda}|=\left|\lambda_{1}\right|+\left|\lambda_{2}\right|=n}}{ } x^{|\bar{\lambda}|}
\end{aligned}
$$

Equating the co-efficient of x^{n} from both sides we get;

$$
\overline{s p t_{2}}(n)=\sum_{\substack{\bar{\lambda} \in \overline{S P} 2 \\|\vec{\lambda}|=\left|\lambda_{1}\right|+\left|\lambda_{2}\right|=n}} 1 . \quad \text { Hence } \quad \text { the }
$$

Theorem.

Numerical example 2

The overpartitions of 6 with smallest parts not overlined and even are $6,4+2, \overline{4}+2$, and $2+2+2$. Consequently, the number of
smallest parts in the overpartitions of 6 with smallest part not overlined and even is given by;

$$
\dot{6}_{4+} \dot{2}_{4}+\dot{2}, \dot{2}+\dot{2}+\dot{2}
$$

so that $\overline{s p t}_{2}(6)=6$ i.e., there are $6 \overline{S P}_{2}$ partition pairs of 6 like:
$(6, \phi),(4+2, \phi),(2,4),(2+2+2, \phi)$,
$(2+2,2)$ and $(2,2+2)$.

RESULT 2

$$
M_{\overline{S_{2}}}(0,5,8)=M_{\bar{S}_{2}}(1,5,8,)=
$$

$M_{\bar{S}_{2}}(2,5,8)=$,

$$
M_{\bar{S}_{2}}(3,5,8)=M_{\bar{S}_{2}}(4,5,8)=3=\frac{1}{5}
$$

$\overline{s p t}{ }_{2}(8)$

Proof
We prove the result with the help of examples. We can define a $\overline{\text { crank }}$ of partition pairs $\vec{\lambda}=\left(\lambda_{1}, \lambda_{2}\right) \in \overline{S P}_{2}$.

For $\vec{\lambda}=\left(\lambda_{1}, \lambda_{2}\right) \in \overline{S P_{2}}$, we define, $k(\vec{\lambda})=\#$ of pairs j in λ_{2} such that $s\left(\lambda_{1}\right) \leq j \leq 2 s\left(\lambda_{1}\right)-1, \quad$ and also define;
$\overrightarrow{\operatorname{crank}} \vec{\lambda})=\left\{\begin{array}{l}\left(\# \text { of partsof } \lambda_{1} \geq s\left(\lambda_{1}\right)+k\right)-k ; \\ \text { if } k>0 \\ \left(\# \text { of partsof } \lambda_{1}\right)-1 ; \text { if } k=0\end{array}\right.$
where $k=k(\vec{\lambda})$.
We know that $\overline{s p t_{2}}(8)=15$.
${ }_{15} \overline{S P_{2}}$-partition pairs of 8. (See table 3.)
From the table we get;
$M_{\overline{S_{2}}}(0,5,8)=M_{\bar{S}_{2}}(1,5,8)=$,
$M_{\bar{S}_{2}}(2,5,8)=$,

$$
M_{\bar{S}_{2}}(3,5,8)=M_{\bar{S}_{2}}(4,5,8)=3=\frac{1}{5}
$$

$\overline{s p t}_{2}(8)$. Hence the Result.

Now we will describe the sptcrank of a marked overpartition ${ }^{6}$. To define the sptcrank of a marked overpartition we first need to define a function $k(m, n)$ for positive integers m, n such that $m \geq n+1$, we write $m=b 2^{j}$, where b is odd and $j \geq o$. For a given odd integer b and a positive integer n we define $j_{0}=j_{0}(b, n)$ to be the smallest non-negative integer j_{0} such that $b 2^{j_{0}} \geq n+1$.

We
$k(m, n)=\left\{\begin{array}{l}0, \text { if } b \geq 2 n \\ 2^{j-j_{0}} \text { if } b 2^{j_{0}}<2 n \\ 0, \text { if } b 2^{j_{0}}=2 n .\end{array}\right.$
For a marked overpartitions (π, j) we let π_{1} be the partition formed by the nonoverlined parts of π, π_{2} be the partition (into distinct parts) formed by the overlined parts of $\pi \quad$ so that $s\left(\pi_{2}\right)>s\left(\pi_{1}\right)$, we define $\bar{k}(\pi, i)=v\left(\pi_{1}\right)-j+k\left(\pi_{2}, s\left(\pi_{1}\right)\right), \quad$ where $v\left(\pi_{1}\right)$ is the number of smallest parts of π_{1}. Now we can define;
$\overline{\operatorname{sptcrank}}(\pi, j)=\left\{\begin{array}{l}\left(\# \text { of parts of } \pi_{1} \geq s\left(\pi_{1}\right)-\bar{k}\right), \\ \text { if } \bar{k}=\bar{k}(\pi, j)>0 \\ \left(\# \text { of parts of } \pi_{1}\right)-1 ; \\ \text { if } \bar{k}=\bar{k}(\pi, j)=0 .\end{array}\right.$

Corollary 3^{8}

The residue of the $\overline{\operatorname{sptcrank}}(\bmod 3)$ divides the marked overpartitions of $3 n$ with the smallest part not overlined and even into 3 equal classes.

Proof

We prove the Corollary with the help of an example when $n=2$. There are 6 marked overpartitions of $3 n$ (when $n=2$) with the smallest part not overlined and even so that, $\overline{s p t_{2}}(6)=6$.

We see that the residue of the $\overline{\operatorname{sptcrank}}(\bmod 3)$ divides the marked overpartitions of $3 n$ (when $n=2$) with smallest part not overlined and even into 3 equal classes. Hence the Corollary. (See table 4.)

Corollary 4

The residue of the $\overline{\operatorname{sptcrank}}(\bmod 3)$ divides the marked overpartitions of $3 n+1$ with smallest part not overlined and even into 3 equal classes.

Proof
We prove the Corollary with the help of an example when $n=2$. There are 6 marked overpartitions of 7 with the smallest part not overlined and even, so that $\overline{s p t_{2}}(7)=6$. We see that the residue of the sptcrank (mod 3) divides the marked overpartitions of $3 n+1$ (when $n=2$) with smallest part not overlined and even. Hence the Corollary. (See table 5.)

Corollary 5
The residue of the $\overline{\operatorname{sptcrank}}(\bmod 5)$ divides the marked overpartitions of $5 n+3$ with smallest part not overlined and even into 5 equal classes.

Proof
We prove the Corollary with the help of example when $n=1$. There are 15 marked overpartitions of $5 n+3$ (when $n=1$) with the smallest part not overlined and even so that $\overline{s p t_{2}}(8)=15$.

We see that the residue of the $\overline{\operatorname{sptcrank}}(\bmod 5)$ divides the marked overpartitions of 8 with the smallest part not overlined and even into 5 equal classes. Hence the corollary. (See table 6.)

CONCLUSION

In this study we have found the number of smallest parts in the overpartitions of n with the smallest part not overlined and even for $n=1,2,3$, 4 and 5 . We have shown various relations $\overline{s p t_{2}}(3 n) \equiv 0(\bmod 3)$,

$$
\begin{aligned}
& \overline{s p t_{2}}(3 n+1) \equiv 0(\bmod 3), \\
& \overline{s p t_{2}}(5 n+3) \equiv 0(\bmod 5), \\
& M_{\overline{S_{2}}}(0,3,4)=M_{\overline{S_{2}}}(1,3,4)=M_{\overline{S_{2}}}(2,3,4) \\
& =\frac{1}{3} \overline{s p t_{2}}(4) \text { and } \\
& M_{\overline{S_{2}}}(0,5,8)=M_{\overline{S_{2}}}(1,5,8)=M_{\overline{S_{2}}}(2,5,8)= \\
& M_{\overline{S_{2}}}(3,5,8)=M_{\overline{S_{2}}}(4,5,8)=3=\frac{1}{5} \overline{s p t_{2}}(8)
\end{aligned}
$$

With numerical examples respectively. We have verified the Theorem 1 when $n=5$ and have verified the Theorem 2 when $n=6$. We have verified the Corollary 3 with 6 marked overpartitions of 6 and have verified the Corollary 4 with 6 marked overpartitions of 7 and also have established the Corollary 5 with 15 marked overpartition of 8 .

REFERENCES

1. Andrews, G.; Dyson, F. and Rhoades R., On the distribution of the spt-crank, Mathematics, 1(3): 76-88, 2013.
2. Andrews, G.E.; Garvan, F.G. and Liang, J., Combinatorial Interpretations of Congruences for the spt-function, The Ramanujan Journal, Springer. 29(1-3): 321-338, 2012.
3. Berkovich, A. and Garvan, F.G., K. Saito's Conjecture for Nonnegative eta Products and Analogous Results for other Infinite Products, Journal of Number Theory, 128(6): 1731-1748, 2008.
4. Bringann, K.; Lovejoy, J. and Osburn, R., Rank and Crank Moments for Overpartitions, Journal of Number Theory, 129(7):1758-1772, 2009.
5. Bringann, K.; Lovejoy, J. and Osburn, R., Automorphic Properties of Generating Functions for Generalized Rank Moments and Durfee Symbols, Int. Math. Res. Not. IMRN, (2): 238260, 2010.
6. Chen, W.Y.C.; Ji, K.Q. and Zang, W.J.T., The spt-crank for Ordinary Partitions, arXiv e-prints, Aug. 2013.
7. Garvan, F.G. and Shaffer, C.J., The spt-crank for Overpartitions, arXiv: 1311.3680 v 2 [Math. NT], 23 Mar 2014.
8. Lovejoy, J. and Osburn, R., M_{2}-rank Differences for Partitions without Repeated Odd Parts. J. Theor. Nombres Bordeaux, 21(2): 313-334, 2009.

Table 1. Vector partitions their weights and cranks ($\overline{S_{2}}$ of 4)

\bar{S}_{2}-vector partition $(\vec{\pi})$ of 4	Weight $\omega(\vec{\pi})$	Crank $(\vec{\pi})$	Mod 3
$\vec{\pi}_{1}=(4, \phi, \phi, \phi)$	1	0	0
$\vec{\pi}_{2}=(2+2, \phi, \phi)$	1	1	1
$\vec{\pi}_{3}=(2, \phi, 2, \phi)$	1	-1	2
	$\sum \omega(\vec{\pi})=3$		

Table 2. Vector partitions their weights and cranks ($\overline{S_{2}}$ of 5)

\bar{S}_{2}-vector partition $(\vec{\pi})$ of	Weight $\omega(\vec{\pi})$	Crank $\mathbf{c}(\vec{\pi})$
$\vec{\pi}_{1}=(3+2, \phi, \phi, \phi)$	-1	0
$\vec{\pi}_{2}=(2, \phi, \phi, 3)$	1	0
$\vec{\pi}_{3}=(2,3, \phi, \phi)$	1	1
$\vec{\pi}_{4}=(2, \phi, 3, \phi)$	1	-1
	$\sum \omega(\vec{\pi})=2$	

Table 3. $15 \overline{S P_{2}}$-partition pairs of 8

$\overline{S P_{2}}$-partition pair of 8	k	$\overline{\text { crank }}$	(Mod 5)
$(3+2,3)$	1	0	0
$(4+2,2)$	1	0	0
$(8, \phi)$	0	0	0
$(2+2,4)$	0	1	1
$\left(4+4, \phi^{\prime}\right)$	0	1	1
$\left(6+2, \phi^{\prime}\right)$	0	1	1
$(2,2+2+2)$	3	-3	2
$(3+3+2, \phi)$	0	2	2
$(4+2+2, \phi)$	0	2	2
$(2,3+3)$	2	-2	3
$(2+2,2+2)$	2	-2	3
$(2+2+2+2, \phi)$	0	3	3
$(2,4+2)$	1	-1	4
$(4,4)$	1	-1	4
$(2+2+2,2)$	1	-1	4

Table 4. Marked overpartition (π, j) of 6

Marked overpartition (π, j) of 6	π_{1}	π_{2}	$v\left(\pi_{1}\right)$	$k\left(\left(\pi_{2}, s\left(\pi_{1}\right)\right)\right.$	\bar{k}	$\overline{\text { sptcrank }}$	(Mod 3)
$(6,1)$	6	ϕ	1	0	0	0	0
$(4+2,1)$	$4+2$	ϕ	1	0	0	1	1
$(\overline{4}+2,1)$	2	4	1	0	0	0	0
$(2+2+2,1)$	$2+2+2$	ϕ	3	0	2	-2	1
$(2+2+2,2)$	$2+2+2$	ϕ	3	0	1	-1	2
$(2+2+2,3)$	$2+2+2$	ϕ	3	0	0	2	2

Table 5. Marked overpartition (π, j) of 7

Marked overpartition (π, j) of 7	π_{1}	π_{2}	$v\left(\pi_{1}\right)$	$k\left(\left(\pi_{2}, s\left(\pi_{1}\right)\right)\right.$	\bar{k}	$\overline{\text { sptcrank }}$	(Mod 3)
$(5+2,1)$	$5+2$	ϕ	1	0	0	1	1
$(\overline{5}+2,1)$	2	5	1	0	0	0	0
$(3+2+2,1)$	$3+2+2$	ϕ	2	0	1	0	0
$(3+2+2,2)$	$3+2+2$	ϕ	2	0	0	2	2
$(\overline{3}+2+2,1)$	$2+2$	3	2	1	2	-2	1
$(\overline{3}+2+2,2)$	$2+2$	3	2	1	1	-1	2

Table 6. Marked overpartition (π, j) of 8

Marked overpartition (π, j) of 8	π_{1}	π_{2}	$\nu\left(\pi_{1}\right)$	$k\left(\left(\pi_{2}, s\left(\pi_{1}\right)\right)\right.$	\bar{k}	$\overline{\text { sptcrank }}$	$($ Mod 5)
$(\overline{6}+2,1)$	2	6	1	2	2	-2	3
$(\overline{4}+2+2,1)$	$2+2$	4	2	0	1	-1	4
$(\overline{4}+2+2,2)$	$2+2$	4	2	0	0	1	1
$(\overline{3}+3+2,1)$	$3+2$	3	1	1	1	0	0
$(2+2+2+2,1)$	$2+2+2+2$	ϕ	4	0	3	-3	2
$(2+2+2+2,2)$	$2+2+2+2$	ϕ	4	0	2	-2	3
$(2+2+2+2,3)$	$2+2+2+2$	ϕ	4	0	1	-1	4
$(2+2+2+2,4)$	$2+2+2+2$	ϕ	4	0	0	3	3
$(3+3+2,1)$	$3+3+2$	ϕ	1	0	0	2	2
$(4+2+2,1)$	$4+2+2$	ϕ	1	0	1	0	0
$(4+2+2,2)$	$4+2+2$	ϕ	2	0	0	2	2
$(6+2,1)$	$6+2$	ϕ	1	0	0	1	1
$(4+4,1)$	$4+4$	ϕ	2	0	1	-1	4
$(4+4,2)$	$4+4$	ϕ	2	0	0	1	1
$(8,1)$	8	ϕ	1	0	0	0	0

