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Abstract
The increasing global health expenditure positions primary care to use digital health 
technologies to manage chronic disease and deliver cost-effective personalized and 
preventive care. In this paper, we review the recent advancements in telehealth 
and big data technologies that have the potentials to move primary care services 
to smart environments. We adopt the smart environment concept to propose our 
conceptual model for a Smart Primary Care Environment (SPCE). We also identify 
challenges and key factors for a successful realization of the model in the future.
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Introduction
The old saying that “an ounce of prevention is worth a pound of 
cure” is nowhere more applicable today than in primary care, the 
first point of contact in healthcare system. While global spending 
on health is expected to increase to $18.28 trillion in 2040 [1], 
the future of primary care is positioned to use advancements 
in telehealth technologies and big data analytics to deliver 
preventive medicine and personalized healthcare under value-
based care models [2]. Telehealth allows remote monitoring 
of patients and managing of their disease progression with 
continuous assessment; while big data analytics processes data 
collected from telehealth modality including both objective data 
(e.g. vital signs, ambient environment) and subjective data (e.g. 
symptoms, patient behavior) along with historical data to enable 
risk prediction and management. The significant increase in 
the global level of chronic diseases and the associated financial 
burden of hospital utilization; in addition to the progressive 
nature of these diseases, which often presents with symptoms 
varying within a day and over longer periods of time, have 
increased the demands for telehealth mode to deliver timely care 
over distance. Multiple studies on telehealth for chronic disease 
management reported improved quality of life, reductions in 
hospital admission/readmissions and emergency department 
(ED) visits, reductions in length of hospital stay and even a 
decreased rate of mortality [3-5].

While aspects of telehealth and analytics have existed for decades, 
the developments in emerging digital health technologies provide 
innovative solutions to collect and process a massive amount of 
real time data. This has great potential to expand the capacity of 
primary healthcare to reduce risks, improve physicians-patients 
and patients-patients communication, and reveal unseen 
patterns or sensory features in a ubiquitous, personalized and 
continuous manner. For example, Intel has launched a wearable-
to-analytics devices “A-wear” that directly ties wearable devices 
with big data analytics engine for instant processing and 
detecting of changes in data. Apple is working on a wearable 
medical-sensor-laden device “iWatch” to monitor blood through 
the skin; while Google announced the development of eye 
contact lenses that could analyze glucose levels through tears. 
Dell started a pilot program that focuses on analytics and tele-
monitoring to predictively target patient with chronic diseases for 
more effective management. Thus, a patient with diabetes can 
have critical vital signs actively monitored, with dietary intake 
and activity tracked in order to receive reminders of prescribed 
schedule of treatment and encouragement to maintain a certain 
life style. In a real life applied scenario, El Camino Hospital in USA 
has made the news as it achieved a 39% reduction in falls in six 
months through a tele-based analytics project to identify patients 
at risk and immediately prescribe the most appropriate means of 
intervention. Such solutions also can support the critical role of 
primary care to deliver responsive, holistic care that will reduce 
the likelihood of preventable risks.
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Primary care is defined as “integrated, accessible health care 
services by clinicians who are accountable for addressing a large 
majority of personal health care needs, developing a sustained 
partnership with patients, and practicing in the context of family 
and community” [6]. Accordingly, the primary care should be 
derived by key principals such as: (i) relationships to serve as the 
bedrock of value fostered by teams, improved clinical operations, 
and technology; (ii) patients and non-physicians engaged in most 
aspects of healthcare; and (iii) the whole-person care including 
health behaviors and social services [7]. In alignment with this 
vision, we propose the Smart Primary Care Environment (SPCE) 
as a health ecosystem of interacting objects, e.g. sensors, devices, 
embedded systems, health professionals, patients, that have 
the capability to seamlessly provide services and manipulate 
complex data in a self-organize manner. In smart environments 
[8], technological devices and intelligent computing systems 
are adopted to analyze and manage daily activities of people. 
Translating primary care services to smart environment targets 
solving issues related to again and dependency; e.g. monitoring 
chronic diseases and reducing medication administration error. 
It also contributes to improving patient engagement, and 
promoting cross-sector integration to realize the whole-person 
care. The quality, persistency and responsiveness of services in 
SPCE requires handling the vast amount of data generated from 
interacted objects by big data analytics methods to support 
evidence- based decision making and action plans. One unique 
feature of smart environment, is the ability of its objects to 
acquire and apply knowledge about the environment in order to 
optimize the service model and reduce expenses of the essential 
resources (e.g. prioritize cases that need extra medical attention); 
while maintaining high communication loads to improve the 
whole experience.

In this paper, we identify the major technologies to enable our 
Smart Primary Care Environment (SPCE) model. Our proposed 
conceptual model for SPCE aims at providing a meaningful 
blueprint to design and implement telehealth and analytics 
services in primary care settings. We also discuss the key 
influencing factors to achieve successful penetration and impact 
on primary care delivery. The remaining of this paper is organized 
as follows. Section 2 discusses the emerging technologies on 
telehealth and big data analytics. Section 3 presents the SPCE 
conceptual model while key success factors are discussed in 
Section 4. Section 5 concludes the paper with future outlooks.

Enabling Technologies: Opportunities and 
Challenges
Wearable systems/sensors
The wearable technology nowadays offers more sophisticated 
designs of miniaturized electronic devices or sensors that can be 
implanted within the body of a user to transduce various types of 
information related to the user or his/her ambient environment. 
Wearables can capture physical (e.g. heart rate, respiratory rate, 
blood pressure) and chemical (e.g. glucose, lactate, potassium) 
signals; and they are usually integrated with a ubiquitous 
system of smartphone and wireless connectivity (e.g., WiFi and 

Bluetooth technologies) to develop more dynamic and real-time 
motioning systems. A wearable monitoring system transmits the 
continuously acquired data to the cloud or local servers for data 
processing, and receives feedback and/or notifications for future 
action. On a recent stage, hearable technology has emerged 
to add the advantages of audio feedback and even treatment 
information to be sent to the device’s wearer [9]. For example, 
AccendoWave has partnered with Samsung to produce a 
hearable device for pain management [10]. The device measures 
discomfort in the user's electroencephalography (EEG) system 
then uses a Samsung tablet to generate audio content (e.g. 
music, short movies) based on the user’s discomfort level. The 
user’s pain level is continuously monitored through their brain 
waves to assess how the suggested content alleviates their pain.

While the wearable systems hold substantial promises to improve 
the quality of human life by expanding the ability to tailor care 
to the particular physiology of the individual patient, they still 
face significant challenges in terms of efficient connectivity and 
single reliability. The real-time scenario entails the access to 
live and high-speed streaming data via continuous noise-free 
signals. However, the length of data transmission is typically 
short resulting in a sparse data sampling with uncertainty in the 
measured variables which reduces quality and utility of the data. 
On the other hand, poor network connectivity and poor noise-
filtration result in data loss and may generate false alarms. In 
addition, there is a governance challenge such as lack of standards 
and data protocols especially that captured data are downloaded 
only using proprietary software and data formats provided by the 
device manufacturers. The high cost of implementing wearable 
systems that enable data sensing in a large scale is also an open 
challenge. More of developments in wearable technologies for 
telehealth and associated challenges for clinical adoption are 
presented in [9,11,12].

IoT
The coupling IoT and wearable technology has the potential 
to improve the availability and accessibility of healthcare 
services by producing more personalized systems at -relatively- 
lower cost. The IoT concept reflects a worldwide network of 
intercommunicating set of anyone, any services, any networks, 
any physical objects, or “things” that are connected to the 
Internet, and available from anywhere, anyhow and anytime; 
with the ability to identify themselves to others. In healthcare 
industry, it is often referred to as “internet of healthcare things” 
(IoHT) or “internet of patients” (IoP) to emphasize its potential to 
ease cost- effective interactions through secure communication 
mechanisms across different parties in the healthcare system 
including individual patients, clinics, and healthcare organizations. 
IoT-based healthcare systems can be established using different 
technologies, topologies and architectures but with basic building 
elements that are: i) sensors to collect data, ii) micro-controllers 
to process, analyze and wirelessly communicate the data; iii) 
micro-processors to enable rich graphical user interfaces; and 
iv) healthcare-specific gateways through which data is further 
analyzed and forwarded to the cloud. A prototype of a cloud-based 
IoT system is presented in [13] to collect sensor biosignals data, 
motion data (through accelerometers) and contextual data (e.g. 
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location, ambient temperature, activity status). Data is wirelessly 
sent to a mobile phone or directly to the cloud infrastructure 
utilizing the established techniques for IoT communication. Next, 
appropriate interfaces or gateways enable the data dissemination 
to external applications that provide the essential data real-time 
monitoring, management and analysis. Similarly, a telehealth 
model controlled by IoT , “Cogsense”, is proposed in [14]. The 
“Cogsense” system works with sensors module and cloud-
network communication module to enable interconnection and 
collaboration of multiple devices and personals involved in the 
patient care. The system also incorporates analytics module to 
process information from cloud infrastructure with IoT algorithms 
and machine learning techniques.

Yet, the penetration of IoT-driven healthcare solutions into actual 
clinical practice is in its infancy with many challenges to address 
in areas such as heterogeneity and semantic interoperability 
of devices on IoT networks. The study in [15] provides a 
comprehensive survey for advances in IoT-based healthcare 
technologies including a review of the state-of-the-art IoT-
network architectures, platforms, applications, and industrial 
trends.

Edge/fog computing
Edge computing or Fog computing is an emerging trend that 
brings cloud computing capabilities to the edge of the network 
and as a result, closer to the IoT devices and applications that 
increasingly generate massive amounts of data while they 
interact and consume cloud services. Thus, IoT services and data 
computations are performed only at the network edge, or where 
data is originated, resulting in higher efficiency processing than if 
it needed to be sent to the cloud. In other words, fog computing 
acts as a middle layer or a smart gateway of computing power 
between the sensing devices and the cloud in a sense that it 
allows wearables and IoT health devices to conduct critical 
processing based on their computing capacity. They become 
processing nodes that can handle smaller and time-sensitive 
computational decisions without having to send all their data up 
to the cloud. This new perspective aims at extending the cloud 
computing to address the need to adequate distribution of 
services in ambient environments in order to provide sensitivity 
to real-time monitoring and other applications that require 
minimum and predictable latency. It also displaces the focus 
from centralized processing in cloud computing to a middleware 
platform perceived by sensors as a service point that enables 
the distribution of information processing among several central 
processing units or sensors.

In addition to latency reduction, the advantages of fog computing 
to telehealth applications include enforcing of security measures 
and data privacy due to the hierarchal structure of the system 
and the concept of service localization [16]. For example, a 
service-oriented fog computing architecture is proposed in [17] 
to reduce storage requirements and, thus, increase the overall 
efficiency of telehealth communication and big data solutions. 
The proposed system is built using Intel®’s Edison embedded 
processor, referred to as fog computer, to perform local data 
analytics and only transmits necessary data to the cloud after 
preliminary processing and filtering. A fog computing assisted 

distributed analytics system, FAST, is also proposed in [18] as a 
real-time fall detection system to monitor fall for stroke patients. 
The system employs a set of fall detection algorithms, including 
algorithms based on acceleration measurements and time-series 
analysis methods. It also applies several filtering techniques to 
extract important features and facilitate fall detection process. 
The system divides the fall detection task between the edge/
fog devices and the cloud in order to achieve a high sensitivity 
and specificity while enhancing the efficiency and reliability 
of the system operations. More on fog computing principles, 
architectures, and applications for telehealth is reviewed in [19].

Big data visual analytics
Big data analytics is evolved from business intelligence to enable 
healthcare organizations to analyze an immense volume, variety 
and velocity of health data for insights. HIMSS defines health 
analytics in general as the “systematic use of data and related 
clinical and business insights developed through applied analytical 
disciplines such as statistical, contextual, quantitative, predictive, 
and cognitive spectrums to drive fact-based decision making 
for planning, management, measurement and learning” [20]. 
In a different view, it refers to a complete series of “integrated 
capabilities” that provide progressively deeper insights into 
health-related information. It encompasses a four-stage 
model composed of descriptive analytics, predictive analytics, 
prescriptive analytics and discovery analytics that are ideal for 
analyzing the totality of data related to patient healthcare and 
well-being which makes up the “big data”. Predictive analytics in 
particular is believed to go beyond reducing cost, to be able to 
reduce preventable deaths [21]. For instance, predictive analytics 
could be used to identify high-risk patients for healthcare 
providers to intervene early and make proactive decisions to 
provide them treatment and avoid unnecessary readmissions 
or hospitalizations. It also can be used to develop a prediction 
model from past history of individuals so that a new individual 
can get a predictive alert to prevent a future risk. For doing 
so, predictive analytics involves using statistical techniques, 
machine learning methods and modeling to examine historical 
or summarized health data, detect patterns of relationships in 
these data, and then extrapolate these relationships to predict 
potential outcomes. However, predictive analytics is different 
from traditional statistics and evidence-based medicine as 
predictions are made for individuals and not for groups; and they 
do not rely upon a normal curve. A general overview of big data 
analytics potentials in healthcare is provided in [22].

The modern generation of big data analytics in healthcare 
incorporates a range of advanced and innovative data 
presentation capabilities to enable visual analytics [23]. In 
such models, visualization allows interactive analytic process, 
where humans and computers effectively cooperate using their 
respective distinct capabilities for data processing and visual 
recognition. The “visual analytics" filed itself has formally begun 
in 2005 by the publication of Illuminating the Path: The R&D 
Agenda for visual analytics [24]. R&D agenda defines visual 
analytics as “the science of analytical reasoning facilitated by 
interactive visual interfaces”. As people are better to discover and 
understand their world through integrating direct observations 
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with theoretical models, visual analytics reconciles conceptual 
models with direct observations of evidence to enable insights 
to explain those observations when they do not fully conform to 
existing theory [25]. In big data analytics, the visual representation 
of the large and complex healthcare data sets conveys the 
intensive relationships among many elements in parallel, and 
provides analysts with directly observable memory. It enables 
them to dynamically operate between their cognitive models 
(i.e. experiences and knowledge) and the evolved patterns and 
insights from data exploration to identify new or verify existing 
knowledge [26].

However, the exponentially increasing volume of big data 
poses a challenge for the data current processing, analysis and 
management capabilities. Process challenge relates to data 
acquisitions and the ubiquitous capture of life-logging personal 
health data via wearable monitoring devices and mobile apps 
along with the signal processing approaches for conditioning high-
resolution data. It also includes data warehousing and cleaning for 
analytical operations. The analysis process itself is challenged by 
the ability to integrate data from heterogeneous sources; and the 
complexity and cost of data standardization and interoperability 
between different health information systems. Moreover, there is 
a need for scale-tolerant visual approaches that enable reasoning 
over large and diverse information spaces and introduce a holistic 
information representation synthesizing all forms of data into 
inter-related knowledge structures. Management challenges, on 
the other side, cover for example privacy, security, governance 
and ethical aspects. A recent study in [27] presents a holistic 
view of big data analytics challenges and discusses the different 
methods proposed to overcome these challenges.

Smart Primary Care Environment (SPCE) 
Model
The enabling technologies discussed above can move primary care 
to smart environments that analyze daily-life activities of patients 
in order to provide an ambient assisted living. The visionary model 
of Smart Primary Care Environment (SPCE) aims at helping patients 
to stay with the best quality of life as long as possible in their 
homes; while they are engaged in advancing their health through 
improved communication and enhanced self- management. 
Most importantly, SPCE integrates big data analytics module in a 
telehealth-based primary care system to analyze both real-time 
data and historical information of the individual patient to predict 
possible future outcomes and trigger timely intervention by the 
healthcare professionals. The embedded IoHT or IoP system can 
route the action plan necessary for a patient to a wider audience 
of multiple healthcare professionals without interruption on the 
speed or quality of the service. For example, captured data and 
action plan can be forwarded to a specific nurse or a primary 
care physician responsible for the patient or even to an external 
specialist/consultant for further discussion - if the medical system 
of the provider or the region allows for such automatic routing 
or collaboration. While healthcare professionals will be able to 
access all the details of patients anytime by accessing multiple 
IoT devices through the SPCE network; patients will be also 
able to connect directly with their healthcare providers and/or 

other patients. If we consider the fact that 40% of of the world 
population are active on Internet; and apply the six degrees 
rule of complex network, then every other patients/healthcare 
professionals can be simply connected to a SPCE through the the 
users’ contacts.

Figure 1 presents the conceptual model for SPCE that consists 
of four subsystems: (1) wearables/hearables in IoHT/IoP network 
for data acquisition; (2) a fog computer acts as a smart gateway 
for onsite processing that varies from simple filtering to complex 
wavelet analysis; (3) big data visual analytics module; and (4) 
a cloud server for big data storage and back-end computation. 
The fog gateway connects the wearables and IoT sensors to 
primary care providers for diagnosis, evaluation, and treatment. 
It also accumulates and processes the real-time data acquired 
from continuous monitoring of patients in order to perform 
“on-demand real- time analytics” at that level using specific 
algorithms for extracting clinically relevant features and mining 
patterns in time-series data. The properties and local data 
processing techniques (i.e. storage, integration, filtering, mining 
and management) pertaining fog computers as smart gateways in 
telehealth systems are described in more details in [28,29]. The 
acquired data and/or extracted features and index of patterns 
from time- series analytics are sent to the the cloud; where they 
can be integrated with data from other data repositories (e.g. 
EHR, clinical registry, medical imaging and laboratory results, 
social media posts) and processed by the big data visual analytics 
module with more complex computing methods to meet 
requirements of different healthcare applications (e.g. diabetes 
management, medication management, allergic symptoms, 
melanoma detection, fall detector, asthma attack prediction, 
heart failure prediction..etc). The analytics result is displayed to 
the end users via the visualization engine providing predictions 
and action plans recommendations based on personal health-
risks assessment. The visual module may include mobile, desktop, 
and web based interfaces; while the visualization strategies 
include a different combinations of representations mechanisms, 
such as tables, bar charts, graphs, maps, and 3D modeling and 

A conceptual model for smart primary care environment.Figure 1
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others which enable the multidimensional exploration of health 
indicators.

Key Success Factors
Apart from technical challenges, there are key factor influencing 
the realization of successful SPCE. The most substantial factor is 
the development of new education paradigms for patients and 
healthcare professionals. For patients, it is important to consider 
their technology knowledge gaps that may create confusion, fear 
and low confidence in the quality of the service. In order to be 
effective, SPCE requires patients who are self- determined and 
motivated to use telehealth technologies. In addition, patients 
who are ready to utilize the great amount of information created 
within the SPCE to build knowledge and health literacy about 
disease self-management. Patients in SPCE are also expected 
to effectively involve in patient-to- patient interventions and 
communities enforcing the shift for more preventive care. On 
the other hand, healthcare professionals should also be ready 
to adopt the communication and analytics technologies; and 
to expand technological capabilities to form community of 
knowledge and practice. Such communities are set to establish 
a strong evidence base to inform practice while applying the 
most recent clinical and analytical advances towards scalable and 
sustainable smart primary care environments.

However, in order to realize optimal preventive primary 
healthcare system, effective use of data is essential. Bigger and 
more data doesn’t equate to more or better insights! Predictive 
data molding should be personalized to each individual focusing 
on a specific clinical setting and particular individual parameters 
to avoid generic predictors. Moreover, the lack of diverse 
knowledge domains among healthcare professionals presents 
another challenge for generating accurate predictive insights. 
While the data is driven from different domains (i.e. clinical, 
administrative, social, research), it is critical to understand 
facts from other domains in order to predict something in one 
particular domain. For example, a prediction on cardiovascular 
damage may require an understanding of the socioeconomic 
environment that an individual is from or his behavior styles. 
Building  capabilities to combine knowledge from different 
domains is not only a technical-based challenge; but it also 
requires creating joint communities of knowledge, solving clinical 
adoption barriers, and infusing active patient’s engagement. A 
case study presented in [30] describes the implementation of a 
telehealth program that reduced 30-day hospital readmissions 
among heart failure. The study reported two key factors that have 
contributed to this achievement: (i) the significance of healthcare 
professionals trust and support to the program as well as their 
inter-profession collaboration; and (ii) patient engagement and 
motivation, enhanced by “user-friendly” tools, to achieve self-
care.

Another factor is about matching patients with the appropriate 
technologies to gather the most amount of meaningful data. 

This may lead to improved insights about current conditions and 
better assessment of provided care management strategies. The 
SPCE model is proposed as a possible solution to the cost and 
shortage of healthcare delivery; and so it is critical to decide 
wisely how and when to use the technology according to patient’s 
age, clinical condition, education, physical capabilities, cognitive 
abilities, functional independence, and ability to use/access 
technology. For example, elderly patients with visual limitations 
and limited manual dexterity are best matched with computer- 
based apps with large screens and static interaction. In contrast, 
younger patients prefer small devices that are able to follow their 
progress and provide immediate feedback. In fact, the telehealth 
is not appropriate for any patient! exactly as any other clinical 
procedure. In order to realize the cost-benefit ratio, it is important 
to firstly identify patients who will benefit the most from this 
delivery mode while still saving cost on the care provider end. 
On this thrust, one interesting recent study [31] investigated the 
strategies to invest on wearables and big data analytics strategies 
from an economic perspective revealing that with differentiated 
consumers/patients densities (i.e. preferences), organizations are 
more likely to engage in quality competition and achieve higher 
profits.

One more factor is about telehealth policies and the involved 
legal, ethical and licensing issues. There is an urgent need to 
clearly define telehealth care as a mode of healthcare delivery 
and to regulate its cross-sector and cross-border care (locally 
and internationally). Moreover, it is required to re-form the 
traditional licensing laws and policies to accommodate tele-
health practice; while at the same time ensuring that care is 
provisioned by a licensed professional evident via-for instance-a 
key-policy certified profile that could be shared instantaneously 
with the patient during the tele-care session.

Concluding Remarks
Telehealth and big data analytics have great potentials to increase 
capacity of primary care to enact the objectives of health care 
delivery system reform. The real-time analysis of sensing and 
historical data expands the bandwidth of primary care team for 
offering life-saving alerts. We introduced the concept of Smart 
Primary Care Environment (SPCE) as an interactive space where 
technology, patients and personals involved in patient care are 
synchronously connected to enhance disease management and 
quality of life. The adoption of our model, however, is challenged 
by a number of technical and nontechnical issues. Yet, at the 
core of successful realization of SPCE, is the establishment of 
clear evidences on clinical and economic benefits, and effective 
strategies to manage changes in the design and practice of 
current primary care systems. Most importantly is to get 
healthcare professionals and patients onboard to solve adoption 
barriers and deliver best value. We hope that this paper provides 
insights to the future of primary care as a smart environment for 
delivering continuous and preventive whole-person care.
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