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Introduction
A data center contains tens of thousands of server machines 
located in a single warehouse to reduce operational and 
capital costs. Within a single data center modern application 
are typically deployed over multiple servers to cope with their 
resource requirements. The task of allocating resources to 
applications is referred to as resource management. In particular, 
resource management aims at allocating cloud resources in a 
way to align with application performance requirements and to 
reduce the operational cost of the hosted data center. However, 
as applications often exhibit highly variable and unpredicted 
workload demands, resource management remains a challenge.

A common practice to resource management has been to 
over-provision applications with resources to cope even with 
their most demanding but rare workloads. Although simple, 
this practice has led to substantial under-utilization of data 
centers since practitioners are devoting disjoint groups of server 
machines to a single application. At the same time, the advent 
of virtualization enables a highly configurable environment for 
application deployment. A server machine can be partitioned into 
multiple Virtual Machines (VMs) each providing an isolated server 
environment capable of hosting a single application or parts of 
it in a secure and resource assured manner. The allocation of 
resources to VM can be changed at runtime to dynamically match 
the virtualized application workload demands. Virtualization 
enables server consolidation where a single physical server 
can run multiple VMs while sharing its resources and running 
different applications within the VMs. In addition, studies have 
shown that reducing the frequency of VM migrations and server 
switches can be very beneficial for energy saving. Ultimately, 
server consolidation increases data center utilization and thus 
reduces energy consumption and operational costs.

The main challenge of server consolidation is how to dynamically 
adjust the allocation of VM resources so as to match the virtualized 
application demands, meet their Service Level Objectives (SLOs) 
and achieve increased server utilization. Towards this end, different 
autonomic resource management methods have been proposed 
to dynamically allocate resources across virtualized applications 
with diverse workload and highly fluctuating workload demands. 
Autonomic resource management in a virtualized environment 
using control-based techniques has recently gained significant 
attention [1].

With increasing scale and complexity of modern enterprise data 
centers, administrators are being forced to rethink the design 
of their data centers. In a traditional data center, application 
computation and application data are tied to specific servers and 
storage subsystems that are often over-provisioned to deal with 
workload surges and unexpected failures. Such configuration 
rigidity makes data centers expensive to maintain with wasted 
energy and floor space, low resource utilizations and significant 
management overheads.
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Today, there is significant interest in developing more agile data 
centers, in which applications are loosely coupled to the underlying 
infrastructure and can easily share resources among themselves. 
Also desired is the ability to migrate an application from one 
set of resources to another in a non-disruptive manner. Such 
agility becomes key in modern cloud computing infrastructures 
that aim to efficiently share and manage extremely large data 
centers. One technology that is set to play an important role in 
this transformation is virtualization [2].

Virtualization
Virtualization is the process of decoupling the hardware from 
the operating system on a physical machine. It turns what used 
to be considered purely hardware into software. Put simply, you 
can think of virtualization as essentially a computer within a 
computer, implemented in software. This is true all the way down 
to the emulation of certain types of devices, such as sound cards, 
CPUs, memory, and physical storage. An instance of an operating 
system running in a virtualized environment is known as a virtual 
machine. The main idea of virtualization is to provide computing 
resources as pools. Depending on the needs, resources are then 
assigned to different applications either manually or dynamically 
from different pools. The scope of virtualization can vary from 
a single device to a large data centre and virtualization can be 
applied to different areas such as servers, networks, storage 
systems and applications.

Virtualization technology allows multiple virtual machines, with 
heterogeneous operating systems to run side by side and in 
isolation on the same physical machine. By emulating a complete 
hardware system, from processor to network card, each virtual 
machine can share a common set of hardware unaware that 
this hardware may also be being used by another virtual 
machine at the same time. The operating system running in the 
virtual machine sees a consistent, normalized set of hardware 
regardless of the actual physical hardware components. There 
are some other types of Virtualization technology available. 
For example, computer memory virtualization is software that 
allows a program to address a much larger amount of memory 
than is actually available. To accomplish this, we would generally 
swap units of address space back and forth as needed between 
a storage device and virtual memory. In computer storage 
management, Virtualization is the pooling of physical storage 
from multiple network storage devices into what appears to be a 
single storage device that is managed from a central console. In 
an environment using network virtualization, the virtual machine 
implements virtual network adapters on a system with a host 
network adapter.

The focus of server virtualization is to create virtual machines 
or virtual environments by using normal server hardware and 
a virtual machine software. Virtual machine software enables 
sharing physical hardware among several instances called virtual 
machines. Sharing is done by creating a special virtualization layer, 
which transforms physical hardware into virtual devices seen by 
virtual machines. The most visible change is the possibility to 
run different operating systems (OS) within the same hardware 
concurrently [3].

Virtualization is shown in Figure 1 [4].

There are three different techniques used for virtualization which 
mainly differ in the way they trap the privileged instructions 
executed by the guest kernel.

Full virtualization with binary translation: In this approach, user 
mode code runs directly on CPU without any translation, but 
the non-virtualizable instructions in the guest kernel code are 
translated on the fly to code which has the intended effect on the 
virtual hardware.

Hardware assisted full virtualization: To make virtualization 
simpler, hardware vendors have developed new features in 
the hardware to support virtualization. Intel VT-x and AMD-V 
are two technologies developed by Intel and AMD respectively 
which provide special instructions in their ISA (Instruction Set 
Architecture) for virtual machines and a new ring privilege level 
for VM. Privileged and sensitive calls are set to automatically 
trap to the Virtual Machine Manager (VMM), removing the need 
for either binary translation or para-virtualization. It also has 
modified Memory Management Unit (MMU) with support for 
multi-level page tables and tagged translation look aside buffers 
(TLBs).

Para-virtualization: This technique requires modification of the 
guest kernel. The non-virtualizable/privileged instructions in the 
source code of the guest kernel are replaced with hyper calls 
which directly call the hypervisor. The hypervisor provides hyper 
call interfaces for kernel operations like memory management, 
interrupt handling, and communication to devices. It differs 
from full virtualization, where unmodified guest kernel is used 
and the guest OS does not know that it is running in a virtualized 
environment [5].

Hypervisors can be distinguished into two categories: Type 1 and 
Type 2. Type 1 hypervisors or bare-metal hypervisors run directly 
and exclusively on the hardware and provide virtual machine 
environments to the guest operating systems. Type 1 hypervisors 
are commonly used for cloud computing infrastructure such as 
Amazon’s Elastic Compute Cloud (EC2), Microsoft’s Azure Cloud, 
VMWare, Elastic Sky X (ESX) and Xen. A Type 1 hypervisor is 

Figure 1: Virtualization.



2020
Vol. 8 No.2:8

ARCHIVOS DE MEDICINA
ISSN 1698-9465

© Under License of Creative Commons Attribution 3.0 License

American Journal of Computer Science and Engineering Survey
ISSN 2476-2105

3

also what engineers would use for virtualization on embedded 
systems. Type 2 hypervisors or hosted hypervisors run as an 
application program inside another operating system, the host, 
and hence share the host resources with other applications 
running next to them. Type 2 hypervisors are often used in 
desktop environments. Examples are Oracle Virtual Box or 
VMWare. KVM-QEMU is a popular hosted hypervisor which 
runs on top of the Linux operating system. Kernel-based Virtual 
Machine (KVM) is a kernel module providing support for hardware 
assisted virtualization in Linux while, Quick Emulator (QEMU) is a 
user space emulator. KVM uses QEMU mainly for emulating the 
hardware. So, both these pieces of software work together as 
a complete hypervisor for Linux. KVM-QEMU and Xen are open 
source while ESX is proprietary [4,5].

There is a correlation between energy consumption, system 
structures, performance and task workload in the virtual 
machines. When jobs are running in the virtual machines 
resources are employed such as CPU, memory, disk, network 
bandwidth which direct to energy consumption [6].

Literature Survey
Gul B et al. proposed two energy-aware Virtual Machine 
(VM) consolidation schemes that take into account a server’s 
capacity in terms of CPU and RAM to reduce the overall energy 
consumption. The proposed schemes are compared with existing 
schemes using CloudSim simulator. The results show that the 
proposed schemes reduce the energy cost with improved Service 
Level Agreement (SLA).

They consider a cloud network of data centers (DCs) consisting 
of a large number of heterogeneous servers. Every server has 
its processing speed, memory, storage capacity, and energy 
consumption. Each individual server is represented by CPU 
capacity which is calculated in Million Instructions per Second 
(MIPS), a Random Access Memory (RAM) and a bandwidth. 
Servers contain local disks to host Operating Systems (OS) 
whereas Network Attached Storage (NAS) is used to store VMs 
and to enable live migration of VMs. Large number of cloud 
users can submit request for M number of VMs where each VM 
consists of its own load of CPU, memory utilization, and network 
transfer rate. For the management of resources, the proposed 
system consists of two layers: (a) a global manager and (b) a local 
manager as shown in Figure 2. Carbon emission directories are 
maintained for keeping energy efficiency information. 

Moreover, the schemes utilize a threshold mechanism in order 
to keep some resources free to tackle the increased resource 
demands at run time. They subdivide the resource allocation 
problem into two components: (a) host selection and (b) VM 
placement. The proposed techniques take into account a PM’s 
capacity and energy consumption while placing VMs on a server 
[7].

Singh A et al. describe the design of an agile data center with 
integrated server and storage virtualization technologies. Such 
data centers form a key building block for new cloud computing 
architectures. They also show how to leverage this integrated 
agility for non-disruptive load balancing in data centers across 
multiple resource layers-servers, switches, and storage. They 
propose a novel load balancing algorithm called VectorDot 
for handling the hierarchical and multi-dimensional resource 
constraints in such systems. The algorithm, inspired by the 
successful Toyoda method for multi-dimensional knapsacks, is 
the first of its kind.

They evaluate their system on a range of synthetic and real data 
center testbeds comprising of VMware ESX servers, IBM SAN 
Volume Controller, Cisco and Brocade switches. Experiments 
under varied conditions demonstrate the end-to-end validity of 
their system and the ability of VectorDot to efficiently remove 
overloads on server, switch and storage nodes.

They describe their system HARMONY that integrates server and 
storage virtualization in a real data center along with a dynamic 
end-to-end management layer. It tracks application computation 
(in the form of VMs) and application data (in the form of Virtual 
disks (V disks)) and continuously monitors the resource usages of 
servers, network switches, and storage nodes in the data center. 
It can also orchestrate live migrations of virtual machines and 
virtual disks in response to changing data center conditions [2]. 
Figure 3 shows the data center testbed.

Figure 2: Green architecture for energy efficient cloud environments. Figure 3: HARMONY testbed setup.
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Gupta S and Babu MR, compare the performance of a single-
core CPU, multi-core CPU and GPU using a Natural Language 
Processing application.

General Purpose GPU (GPGPU) is a combination between 
hardware components and software that allows the use of a 
traditional GPU to perform computing tasks that are extremely 
demanding in terms of processing power. Traditional CPU 
architectures available on the market cannot satisfy the 
processing demands for these specific tasks, and thus the market 
has moved on to GPGPU in order to achieve greater efficiency is 
shown in Figure 4.

NVIDIA has developed Compute Unified Device Architecture 
(CUDA) which allows the use of the C programming language 
to code algorithms to execute on the GPU. CUDA enabled GPUs 
include data parallel cache. Besides the flexible interface for 
programming, it also supports memory scatter bringing more 
flexibilities to GPU.

CUDA provides a C-like syntax for executing on the GPU and 
compiles offline. CUDA exposes two levels of parallelism, data 
parallel and multithreading. CUDA also exposes multiple levels 
of memory hierarchy: per-thread registers, fast shared memory 
between threads in a block, board memory, and host memory. 

Kernels in CUDA allow the use of pointers, general load/store to 
memory allowing the user to scatter data from within a kernel, 
and synchronization between threads in a thread block. However, 
all of this flexibility and potential performance gain comes with 
the cost of requiring the user to understand more of the low-
level details of the hardware, notably register usage, thread 
and thread block scheduling, and behaviour of access patterns 
through memory. All of these systems allow developers to more 
easily build large applications [8].

Dabbagh M et al. propose an efficient resource allocation 
framework for overcommitted clouds that makes great energy 
savings by 1) minimizing PM overloads via resource usage 
prediction, and 2) reducing the number of active PMs via efficient 
VM placement and migration. Using real Google traces collected 
from a cluster containing more than 12K PMs, they show that their 
proposed techniques outperform existing ones by minimizing 
migration overhead, increasing resource utilization, and reducing 
energy consumption.

Their proposed framework is suited for heterogeneous cloud 
clusters who’s PMs may or may not have different resource 
capacities. They consider in this work two cloud resources: CPU 
and memory, although their framework can easily be extended 
to any number of resources. Their framework is made up of five 
modules:

• VM utilization predictor

• PM aggregator

• PM overload predictor

• Energy-aware VM migration

• PM allocation

Flowchart of the proposed framework is shown in Figure 5.

In memory overcommitment, more memory is allocated to the 
virtual machines (VMs) than is physically present in hardware. This 
is possible because hypervisors allocate memory to the virtual 
machines on demand. KVM-QEMU treats all the running VMs as 
processes of the host system and uses malloc to allocate memory 
for a VM’s RAM. Linux uses demand paging for its processes, so a 
VM on boot up will allocate only the amount of memory required 
by it for booting up, and not its whole capacity.

On demand memory allocation in itself is not enough to make 
memory over commitment a viable option. There is no way for 

Figure 4: GPU architecture.

Figure 5: Flowchart of the proposed framework.

processes many elements in parallel using the same program.
Each element is independent from the other elements, and in
the base programming model, elements cannot communicate
with each other. All GPU programs must be structured in this
way: many parallel elements each processed in parallel by a
single program.

gaining  maturity  as  a  powerful  engine  for  computationally
demanding applications. The GPU’s performance and potential
will be the future of computing systems.

The  programming  over  a  GPU  follows  a  Single  Instruction
Multiple-Data (SIMD) programming model. For efficiency, GPU

The Graphics Processing Units (GPU) are highly parallel rapidly
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the hypervisor to free a memory page that has been freed by the 
guest OS. Hence a page once allocated to a VM always remains 
allocated. The hypervisor should be able to reclaim free memory 
from the guest machines, otherwise the memory consumption of 
guest machines will always keep on increasing till they use up all 
their memory capacity. If the memory is overcommitted, all the 
guests trying to use their maximum capacity will lead to swapping 
and very poor performance.

There exists a mechanism called memory ballooning to reclaim 
free memory from guest machines. This is possible through a 
device driver that exists in guest operating system and a backend 
virtual device in the hypervisor which talks to that device driver. 
The balloon driver takes a target memory from the balloon device. 
If the target memory is less than the current memory of the VM, it 
allocates (current-target) pages from the machine and gives them 
back to the hypervisor. This process is called balloon inflation. If 
the target memory is more than the current memory, the balloon 
driver frees required pages from the balloon. This process is 
called balloon deflation. Memory ballooning is an opportunistic 
reclamation technique and does not guarantee reclamation. The 
hypervisor has limited control over the success of reclamation and 
the amount of memory reclaimed, as it depends on the balloon 
driver which is loaded inside the guest operating system [9]. Jin 
K and Miller EL propose the use of deduplication to both reduce 
the total storage required for VM disk images and increase the 
ability of VMs to share disk blocks. To test the effectiveness of 
deduplication, they conducted extensive evaluations on different 
sets of virtual machine disk images with different chunking 
strategies. Their experiments found that the amount of stored 
data grows very slowly after the first few virtual disk images if 
only the locale or software configuration is changed, with the rate 
of compression suffering when different versions of an operating 
system or different operating systems are included. They also 
show that fixed length chunks work well, achieving nearly the 
same compression rate as variable-length chunks. Finally, they 
show that simply identifying zero-filled blocks, even in ready-
to-use virtual machine disk images available online can provide 
significant savings in storage [10].

Methodology
In a virtualization environment, consolidation of virtual machines 
is one of the techniques used to save the operational costs of 
data centers. Hence, virtual machine consolidation refers to 
the use of a physical server to accommodate more than one 
virtual machine for the efficient use of resources. Co-locating 
(consolidating) VMs reduces the number of physical servers and 
reduce server sprawl, a situation in which multiple, underutilized 
servers take up more space and consume more resources than 
can be justified by their workload. In addition, VM consolidation 
reduces the power consumption, since power consumption 
and the number of servers is directly related. VM consolidation 
can be performed in three ways: a) static, in which the virtual 
machine monitor (hypervisor) allocates the resource (physical 
resource such as memory, CPU and the likes) once and VMs 
will stay for long time period (such as months and years) on 
one physical machine. That means there will be no adjustment 

to the variation of workloads; b) Semi-static, in which VMs are 
place based on daily or weekly bases; c) Dynamic, by adjusting 
depending on the workload characteristics (Peak and off-peak 
utilization of resources) and make adjustment in hours and needs 
run-time placement algorithms. Dynamic VM consolidation helps 
in the efficient use of data centers. In order to consolidate VMs 
there are several processes that must be undertaken. These are 
VM selection, VM placement and VM migration.

VM selection is one of the challenges of VM consolidation 
process. It deals with migrating VMs until the physical machine is 
considered to be not overloaded. In VM selection process there 
are several policies to be followed for effective accomplishment 
of the process. These policies are: a) The minimum Migration 
Time Policy; b) The Maximum Correlation Policy; c) The Random 
Choice Policy and; d) Highest Potential Growth (HPG). Moreover, 
it is also described as: a) Local Regression b) Interquartile Range 
c) Median Absolute deviation.

The process of selecting the most suitable host for the virtual 
machine, when a virtual machine is deployed on a host, is known 
as virtual machine placement, or simply placement. During 
placement, hosts are rated based on the virtual machine’s 
hardware and resource requirements and the anticipated 
usage of resources. Host ratings also take into consideration the 
placement goal either resource maximization on individual hosts 
or load balancing among hosts. The administrator selects a host 
for the virtual machine based on the host ratings.

Migration of VM’s can be accomplished by two methods: offline 
migration, which has downtime because of suspend and resume 
of operation and; live migration, which is widely used in cloud 
computing and uses copying before migrating to avoid downtime. 
One of the most remarkable features of virtualization is live 
migration of VMs. In live migration active VM is transferred from 
one physical machine to other keeping the current working status 
of a VM while running. Such actions are a de facto in KVM and 
Xen. Live migration of virtual machines is shown in Figure 6.

Fault Tolerant Migration migrates the VMs even-if system failure 
occurs during migration. It was assumed to minimize performance 
degradation of applications and improve availability.

Load Balancing Migration distributes load across the physical 
servers to improve the scalability of physical servers. It helps 
in minimizing the resource consumption, implementation of 
fail-over, enhancing scalability, avoiding bottlenecks and over 
provisioning of resources etc.

The Energy Efficient Migration conserves the energy of servers 
by optimum resource utilization, since the power consumption of 

Figure 6: Live migration of virtual machines.
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data center is mainly based on the utilization of the servers and 
their cooling systems [11].

Micro services are a style of software architecture that involves 
delivering systems as a set of very small, granular, independent 
collaborating services. The micro service architectural style is an 
approach to developing a single application as a suite of small 
services, each running in its own process and communicating 
with lightweight mechanisms, often an HTTP resource API.

In micro services pattern, a software system is comprised of a 
number of independently deployable services, each with a 
limited scope of responsibility. Less frequently, micro services 
may rely on lower level services. Here each micro service can be 
developed, managed and scaled independently throughout its 
life-cycle. A well implemented micro services architecture also 
ensures that the overall system is able to gracefully degrade its 
functionality when one or more services are offline.

Containerization is also known as Operating System Virtualization. 
As the name implies, the abstraction is the operating system 
itself, instead of the platform. It is an approach to virtualization 
in which the virtualization layer runs as an application within the 
Operating System (OS). Here, the operating systems kernel runs 
on the hardware with several isolated guest Virtual Machines 
(VMs) installed above it. The isolated guest virtual machines are 
called containers.

Here the operating system provides a set of user-spaces that are 
isolated from one another, but offers the abstraction necessary 
such that applications believe that they are part of the singular 
user-space on the host. With container-based virtualization, the 
overhead associated with having each guest run a completely 
installed operating system is not there. Here there is just one 
operating system taking care of hardware calls, thus it improves 
performance. However, each guest must use the same operating 
system the host uses, which results in restriction for user [12]. 
Containerization is shown in Figure 7 [4].

Kubernetes is a framework designed to manage containerized 
workloads on clusters. The basic building block in Kubernetes is a 
pod. A pod encapsulates one or more tightly coupled containers 
that are co-located and share the same set of resources. Pods 
also encapsulate storage resources, a network IP, and a set of 
options that govern how the pod’s container(s) should run. A pod 

is designed to run a single instance of an application; in this way 
multiple pods can be used to scale an application horizontally for 
example. The amount of CPU, memory, and ephemeral storage 
a container needs can be specified when creating a pod. This 
information can then be used by the scheduler to make decisions 
on pod placement. These computer resources can be specified 
both as a requested amount and as a limit on the amount the 
container is allowed to consumer.

The default Kubernetes scheduler ensures that the total amount 
of compute resource requests of all pods placed in a node does 
not exceed the capacity of the node. This even if the actual 
resource consumption is very low. The reason behind this is to 
protect applications against a resource shortage on a node when 
resource usage later increases (e.g., during a daily peak). If a 
container exceeds its memory limit, it may be terminated and 
may be later restarted. If it exceeds its memory request, it may 
be terminated when the node runs out of memory. Regarding the 
CPU usage, containers may or may not be allowed to exceed their 
limits for periods of time, but they will not be killed for this. On 
the other hand, containers and pods that exceed their storage 
limit will be evicted [13].

Architecture for deploying applications to Kubernetes clusters 
running in a public cloud is shown in Figure 8 [14].

The Docker platform was released in March 2013 as an open-
source project based on Linux containers (LXC) and a year later, 
the environment was moved from LXC to lib container. Docker 
is based on the principles of containerization, allowing for an 
easy deployment of applications within software containers 
as a result of its innovative and unique architecture. Docker 
implements certain features that were missing from OS-level 
virtualization. It bundles the application and all its dependencies 
into a single object, which can then be executed in another 
Docker enabled machine. This assures an identical execution 
environment regardless of the underlying hardware or OS. The 
creation of applications in Docker is firmly rooted in the concept 
of versioning. Modifications of an application are committed 
as deltas, which allows roll backs to be supported and the 
differences to previous application versions to be inspected. This 
is an exceptional method of providing a reliable environment 

Figure 7: Containerization.

Figure 8: Architecture for deploying applications to Kubernetes 
clusters running in a public cloud.
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for developers. Furthermore, Docker promotes the concept of 
reusability, since any object that is developed can be re-used 
and serve as a “base image” to create some other component. 
Another essential aspect of Docker is that it provides developers 
with a tool to automatically build a container from their source 
code.

The main difference between a Docker container and a VM is that 
while each VM has its own OS, dependencies and applications 
running within it, a Docker container can share an OS image 
across multiple containers. In essence, a container only holds the 
dependencies and applications that have to be run within them. 
For example, assuming a group of containers were making use of 
the same OS image, the OS would be common to all containers 
and not be duplicated contrary to the case of a VM topology.

Docker has become the flagship in the containerization technology 
arena since its release. This open-source project has gained much 
notoriety in the field of cloud computing, where major cloud 
platforms and companies (e.g., Google, IBM, Microsoft, AWS, 
Rackspace, RedHat, VMware) are backing it up. These companies 
are integrating Docker into their own infrastructures and they 
are collaborating in Docker’s development. Recently, a few 
alternatives to Docker have cropped up, such as Rocket, Flockport 
and Spoonium [15]. Figure 9 shows Docker Architecture [16]. 
An adequate monitoring of the pool of resources is an essential 
aspect of a cloud computing infrastructure. The monitoring 
of resources leads to improved scalability, better placement of 
resources, failure detection and prevention, and maintenance of 
architectural consistency, among others. This is relevant for VMs, 
and it is just as applicable to OS-level virtualization [15].

Storage efficiency is the process of storing and managing data 
while consuming the least space possible and ensuring optimal 
performance. This means solving problems while consuming less 
storage.

For many years, Storage Area Networks (SAN) and Network 
Attached Storage (NAS) were at the core of different parts of the 
data center. SANs are primarily used to make storage devices, 
such as disk arrays accessible to servers so that the devices 
appear like locally attached devices to the operating system. NAS 
was introduced to the market in the 1990’s to accommodate the 
growing demand for file sharing via the IP network.

Thin provisioning is the act of using virtualization technology to 

give the appearance of more physical resource than is actually 
available. Traditional block storage requires all blocks to be 
assigned up front. This means large pools of storage are allocated 
to servers and remain unused. Thin provisioning allows disk to 
be added as needed. This means the initial acquisition costs can 
be reduced and further, because of the price of disk goes down 
over time, the long-term costs are also reduced as compared to 
tradition arrays that utilize thick provisioning.

Deduplication is a technology that can be used to reduce the 
amount of storage required for a set of files by identifying 
duplicate “chunks” of data in a set of files and storing only one 
copy of each chunk [10].

It is the method of reducing storage needs by eliminating 
duplicate data. Only one instance of the data resides on the disk 
and duplicate or redundant data is replaced with a pointer to the 
original.

Most think of single instance storage when it comes to dedupe 
but focusing there would only be part of the equation. To illustrate 
single instance storage or file level deduplication think of email. 
A user sends a spreadsheet to 10 different people. Those people 
all save the file on the file share and we have 10 copies in both 
the email system and the file server. All copies are exact copies, 
even down to the file name, so file level deduplication stores the 
file only once and replaces the duplicate copies with pointers to 
the original.

A more advanced and useful form of deduplication is block 
level or sub file level deduplication. Block deduplication looks 
within a file and saves unique iterations of each block. Think 
of a PowerPoint with a common corporate format. There are 
hundreds of presentations on the file share, all with the same 
slide design and graphics but each with their own unique content. 
Block level deduplication removes all the duplicate pieces of each 
and replaces with a pointer to the original.

An even more powerful example is block level deduplication 
within a virtualized server environment. Imagine a virtualized 
server environment with 100 VMs all with MS Windows Server 
2008 R2 as the operating system. Let’s say that operating system 
is 8 GB for each instance. That is 800 GB of operating system data, 
each basically a duplicate of the other. Block level deduplication 
replaces each block of duplicate data with a pointer and reduces 
the data footprint just associated to the operating system by 90% 
[17].

Findings
Gul B et al. results show that proposed energy-aware and SLA-
aware schemes outperform the existing energy-aware and SLA-
aware schemes. Improvement in results is due to improving 
energy efficiency which is made possible by decreasing the 
number of active servers. Moreover, proposed schemes monitor 
resource utilization to gather updated information while the 
existing schemes consider only maximum energy consumption 
for initial host selection. In their study, capacity of CPU is 
considered during VM placement. The server that provides 
maximum RAM and CPU capacities per watt power is selected 

Figure 9: Docker architecture.
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for VM placement. In this way, energy consumption is improved 
as compared to existing Cloud Resilience for Windows (CREW). 
For instance, Maximum Capacity and Power Technique (MaxCap) 
consumes 37% less energy than CREW and Remaining Capacity 
and Power (RemCap) consumes 32% less energy than CREW. The 
proposed SLA-aware version SMaxCap consumes 35% less energy 
than SCREW and SRemCap consumes 31% less energy than the 
SLA-aware versions SCREW [7].

Figures 10 and 11 presents the comparison of energy consumption 
for various PlanetLab workloads. Comparisons of their proposed 
energy-aware schemes (MaxCap and RemCap) and SLA-aware 
schemes (SMaxCap and SRemCap) are performed with existing 
energy-aware and SLA-aware techniques, namely: CREW and 
SCREW, respectively [7].

Singh A et al. for end-to-end validation of HARMONY in a real 
data center setup, created four scenarios in their testbed that 
caused overloads on multiple dimensions of servers, storage and 
switches. When any of the overloads are detected by HARMONY 
Performance Manager, it uses VectorDot to determine virtual 
resources that can be migrated and their destinations. It then uses 
the HARMONY Virtualization Orchestrator to execute suggested 
server and/or storage migrations by VectorDot. The description 
of all resources including virtual machines to host and storage 

Figure 10: Energy consumption by various energy-aware and SLA 
aware technique.

Figure 11: Consolidated average energy consumption on different 
workloads.

mappings are shown in Figure 12 [2].

As a first scenario, they overloaded Server-2 on the CPU 
dimension by creating a high CPU workload on VM-4. Figure 13 
shows the CPU and memory utilizations for all three servers with 
elapsed time.

In the second scenario they created a CPU overload on Server-2 
and a memory overload on Server-1 by increasing usages of VM-4 
and VM-6 respectively. Figure 14 shows utilizations with elapsed 
time.

In the third scenario, they generated a high I/O workload on VM-5 
which accesses Vdisk1 (from Vol-1 on STG-1). They also added a 

Figure 12: Testbed resource description.

Figure 13: Single server overload resolution.

Figure 14: Multiple server overload resolution.



2020
Vol. 8 No.2:8

9

ARCHIVOS DE MEDICINA
ISSN 1698-9465

This article is available in:  https://www.imedpub.com/computer-science-and-engineering-survey/

American Journal of Computer Science and Engineering Survey
ISSN 2476-2105

memory workload to create an overload on VM-5’s host server 
Server-1. To show utilizations for multiple resource types, they 
tabulated the CPU and memory utilization of servers, and storage 
I/O utilization of storage controllers in Figure 15.

In the fourth scenario, they fixed the capacity of Switch-2 to 
50 MBps. They then generated an I/O workload on VM-4 (that 
uses Vdisk2 virtualized from Vol-2 on STG1) at the rate of 20 
MBps. Since Switch-2 receives I/O from both Server-2 and the 
virtualization appliance (it is both above and under the appliance) 

the workload generates 40 MBps on Switch-2. Figure 
16 shows the actual performance monitor screenshot from the 
switch management interface (Y-axis on log scale).

Their validation experiments demonstrate the feasibility of their 
integrated load balancing approach in a real deployment [2].

Gupta S and Babu MR, for their evaluation, in comparing the 
performance of GPU and CPU (single-core and multi-core) using 
an NLP application, used the following platforms.

• NVIDIA GeForce G210M 1024MB (800MHz GDDR3, 16 cores)

• CUDA version 2.1

• Open MP

• Intel Core 2 Duo CPU P8600 (2.40 GHz, 2CPUs) 

• Intel C++ Compiler 10.0

As per their algorithm used, for some particular size of file (in 
terms of number of words in a file) their system processes the 
input file (performs lexical analysis and shallow parsing) and 
finally provides the number of matches and number of parts of 
speech in the provided input file [8]. The graph generated on 
some of the data generated on the implementation of algorithm 
used is displayed in Figure 17 [8].

Dabbagh M et al. experiments presented in this section are based 
on real traces of the VM requests submitted to a Google cluster 
that is made up of more than 12K PMs. Since the size of the traces 
is huge, they limit their analysis to a chunk spanning a 24 hours 
period.

Resource utilization over one-day snapshot of Google traces is 
shown in Figure 18.

Number of predicted and unpredicted overloads over time is 
shown in Figure 19.

Figure 20 plots the total migration energy overhead (including 
both VM moving and PM switching overheads) incurred by the 

Figure 15:  Integrated server and storage overload resolution.

Figure 16:   Switch overloads (Y-axis on log scale).

Figure 17:  Performance comparison graph.

Figure 18:  Resource utilization over one-day snapshot of Google 
traces.

Figure 19:  Number of predicted and unpredicted overloads over time.

(Figure 3)
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migration decisions of their proposed heuristic to avoid/handle 

overhead associated with the migration decisions of the two 
existing heuristics: Largest First and Sandpiper. Both of these 
heuristics handle multi-dimensional resources by considering the 
product metrics, and both select the PM with the largest slack as 
a destination for each migrated VM.

Since the energy consumed by ON PMs constitutes a significant 
amount, they analyze in Figure 21 the number of ON PMs when 
running our framework on the Google traces under each of the 
three studied migration heuristics.

Figure 22 shows the total energy savings when the Google cluster 
adapts their integrated framework (the proposed prediction 
approach and the proposed migration heuristic) compared to no 
overcommitment.

It is clear from Figure 22 that although their framework incurs 
migration energy overheads (due to both VM moving and PM 
switching energy overheads) that would not otherwise be present 
when no overcommitment is applied, the amount of energy saved 
due to the reduction of the number of ON PMs is much higher 
than the amount of energy incurred due to migration energy, 
leading, at the end, to greater energy savings [9].

Figure 20:  Total migration energy overhead under each of the three 
heuristics.

Figure 21:  Number of PMs needed to host the workload.

Figure 22:  Energy savings our resource allocation framework 
achieves when compared to allocation without overcommitment.

Conclusion
Gul B et al. observed that techniques perform better with dynamic 
threshold as compared to static threshold, and the dynamic 
threshold has a positive impact on minimizing SLA violations.

Singh A et al. developed a novel VectorDot scheme to address 
the complexity introduced by the data center topology and 
the multidimensional nature of the loads on resources. Their 
evaluations on a range of synthetic and real data center testbeds 
demonstrate the validity of their system and the ability of 
VectorDot to effectively address the overloads on servers, 
switches, and storage nodes.

Gupta S and Babu MR compared the performance of a GPU 
with single-core and multi-core CPU (2 cores) for a basic NLP 
application (lexical analysis and shallow parsing). Their results 
show that a multi-core CPU has better performance than the 
single-core CPU but a GPU system has clearly overtaken them 
with much better performance.

Dabbagh M et al. propose an integrated energy-efficient, 
prediction-based VM placement and migration framework for 
cloud resource allocation with overcommitment. They show that 
their proposed framework reduces the number of PMs needed 
to be ON and decreases migration overheads, thereby making 
significant energy savings. All of their findings are supported by 
evaluations conducted on real traces from a Google cluster.
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