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ABSTRACT 
 
The double diffusive convection in a horizontal anisotropic porous layer saturated with a Boussinesq fluid, which is 
heated and salted from below in the presence of Soret coefficient is studied analytically using linear stability 
analysis based on the usual normal mode technique. The generalized Darcy model is employed for the momentum 
equation. The effect of mechanical anisotropy parameter, thermal anisotropy parameter, Lewis number and Soret 
parameter on stationary and oscillatory convection are shown graphically.  
 
Keywords: Double diffusive convection, Soret parameter, Anisotropic porous layer, Critical Rayleigh number, 
Lewis number. 
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INTRODUCTION 
 

The problem of convection induced by temperature and concentration gradients or by concentration gradients of two 
species, known as double diffusive convection, has attracted considerable interest in the last several decades. If 
gradients of two stratifying agencies having different diffusivities are simultaneously present in a fluid layer, a 
variety of interesting convective phenomena can occur that are not possible in single component fluids.  The double 
diffusive convection in porous media has also become important in recent years because of its many applications in 
geophysics, particularly in saline geothermal fields where hot brines remain beneath less saline, cooler ground 
waters. A comprehensive review of the literature concerning double diffusive convection in a binary fluid saturated 
porous medium may be found in the book by Nield and Bejan [7]. Excellent review articles on double diffusive 
convection in porous media include those by Mojtabi and Charrier-Mojtabi ([3], [4]) and Mamou [12].  
 
In a system where two diffusing properties are present, instabilities can occur only if one of the component is 
destabilizing.  If the cross diffusion terms are included in the species transport equations, then the situation will be 
quite different.  Due to the cross diffusion effect, each property gradient has a significant influence on the flux of the 
other property. A flux of salt caused by a spatial gradient of temperature is called the Soret effect. 
 
There are many studies available on the onset of double diffusive convection in a porous medium with and without 
cross diffusion effects (see e.g. Nield and Bejan, [7]. Thermal convection in a binary fluid driven by the Soret and 
DuFour effects has been investigated by Knobloch [8]. He has shown that equations are identical to the 
thermosolutal problem except for a relation between the thermal and solute Rayleigh numbers. The double diffusive 
convection in a porous medium in the presence of Soret and DuFour coefficients has been analyzed by Rudraiah and 
Malashetty [15].  This work has been extended to weak nonlinear analysis by Rudraiah and Siddheshwar [16]. The 
effect of temperature dependent viscosity on double diffusive convection in an anisotropic porous medium in the 
presence of Soret coefficient has been studied by Patil and Subramanian [19].  Straughan and Hutter [5] have 
investigated the double diffusive convection with Soret effect in a porous layer using Darcy-Brinkman model. 
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Bahloual et al. [1] have carried out an analytical and numerical study of the double diffusive convection in a shallow 
horizontal porous layer under the influence of Soret effect. Recently, Mansour et al. [2] have investigated the 
multiplicity of solutions induced by thermosolutal convection in a square porous cavity heated from below and 
subject to horizontal solute gradient in the presence of Soret effect. 
 
Most of the studies have usually been concerned with homogeneous isotropic porous structures.  However during 
the last one decade, the effect of non-homogeneity and anisotropy of the porous medium have also been studied.  
The geological and pedagogical processes rarely form isotropic media as is usually assumed in transport studies.  In 
geothermal system with a ground structure composed of many strata of different permeabilities, the overall 
horizontal permeability may be up to ten times as large as the vertical component.  Process such as sedimentation, 
compaction, frost action, and reorientation of the solid matrix are responsible for the creation of anisotropic natural 
porous media.  Anisotropy can also be a characteristic of artificial porous material like pelleting used in chemical 
engineering process, fiber materials used in insulating purposes.   
 
There are many investigations available on the thermal convection in a single component fluid saturated anisotropic 
porous layer heated from below.  A theoretical analysis of non-linear thermal convection in an anisotropic porous 
media is performed by Kvernvold and Tyvand [17].  Nilsen and Storesletten [22] have studied the problem of 
natural convection in both isotropic and anisotropic porous channels.  Tyvand and Storesletten [18] investigated the 
problem concerning the onset of convection in an anisotropic porous layer in which the principal axes were 
obliquely oriented to the gravity vector.  Natural thermal convection in horizontal anisotropic porous layers heated 
from below or in vertical cavities filled with an anisotropic porous layer subjected to a constant heat flux, as 
described in the work of Degan et al. [10].   Some other studies reported the anisotropy and heterogeneous character 
of porous media, and a summary of these can be found in the book of Nield and Bejan [7].  
 
Recently many authors have studied the effect of anisotropy on the onset of convection in a porous layer (see e.g., 
Govinder [20], [21]: Malashetty and Swamy [13]; Malashetty and Heera [14]). Although some work on double 
diffusive convection in an isotropic porous medium is available (Malashetty and Heera [14], attention has not been 
given to the study of double diffusive convection in an anisotropic porous medium with Soret effect. The main 
objective of this study is therefore to investigate the effect of Soret coefficient, mechanical and thermal anisotropy 
on the double diffusive convection in a fluid saturated porous layer using linear analysis.   
 
MATHEMATICAL FORMULATION 
 A horizontal porous layer held between two walls at 0z =  and z d=  saturated with a Boussinesq fluid, which is 
heated and salted from below, is considered.  The porous medium is assumed to possess isotropy in horizontal plane 
in both thermal and mechanical properties.  A constant gradient of temperature T∆  and salinity S∆  is maintained 
between the two walls.  The generalized Darcy model has been employed for the momentum equation.  With these 
assumptions the basic governing equations of motion are  
 

. 0q∇ = ,                                                       (1) 

0 .p
t

ρ ∂ = − ∇ − µ + ρ
ε ∂

q
K q g ,                                                                                (2) 

1( . ) ( . ),
T

T D T
t

γ ∂ + ∇ = ∇ ∇
∂

q                                                      (3) 

2 2
2 3( . )
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t
ε ε ε∂ + ∇ = ∇ + ∇

∂
q ,                                                                        (4) 

( ) ( )0 0 01 T ST T S Sρ ρ β β = − − + −  ,                                                    (5) 

 
Where, q  is the velocity vector( , , )u v w  ,  ρ  is the density, t is time, p is pressure, µ  is the dynamic viscosity, K 

is permeability tensor, g is gravitational acceleration,  γ  is specific heat ratio, T  is temperature,  T∆  is 

temperature difference between the walls, S∆  is salinity difference between the walls, 1D  is thermal diffusivity, ε  

is the porosity, S is solute concentration, 2D  is solute diffusivity, 3D  is cross diffusion due to T  component,  Tβ  

is thermal expansion coefficient, Sβ  is solute expansion coefficient, bT  is the temperature of hot walls, 0T  is the 

temperature of cold walls. 
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2.1 Basic state 
The basic state of the fluid is assumed to be quiescent and is given by, 

( ) ( ) ( ) ( ) ( )0,0,0 , , , ,qb b b b bp p z T T z S S z z= = = = =ρ ρ .                                    (6) 

 
Using equation (6), equations (1) to (5) yield 

2 2

2 2
, 0, 0,b b b

b

dp d T d S
g

dz dz dz
ρ= − = = ( ) ( )0 0 01b T b S bT T S Sρ ρ β β = − − + −  .       (7)   

 
2.2 Perturbed state 
On the basic state we superpose perturbations in the form 

( ) ( ) ( )
( ) ( )

, , , , ( ) , , , , ( ) , , , ,

( ) , , , , ( ) , , ,

b b b

b b

x y z t T T z T x y z t S S z S x y z t

p p z p x y z t z x y z tρ ρ ρ

′ ′ ′= + = + = +

′ ′= + = +

q q q
               (8)         

                        
where primes indicate perturbations.   
We consider only two dimensional disturbances and define stream function  ψ  by 

( ), ,u w
z x

ψ ψ∂ ∂ ′ ′ = − ∂ ∂ 
                                                      (9) 

 
Introducing (8) in equations (1) - (5) and using basic state equations (7) and the transformations  

( )* * * * *
2

, , , , , , ,
/ zz

x z t T S
x z t T S

d d D T Sd D

ψψ∗ ′ ′ = = = = =  ∆ ∆ 
                   (10) 

 

where,  zD   is the effective thermal diffusivity in vertical direction. To render the resulting equations 

dimensionless, we obtain (after dropping the asterisks and ε  and γ  are set equal to unity for simplicity).  

2 2
2
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D S
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,                                     (13) 

 

where , DPr  is the Darcy Prandtl number 
2

1z

vd

K D
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, Sr  is the Soret parameter  3
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β
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, ψ  is the 

stream function. 
 
Equations (1) - (13) are solved for stress-free, isothermal, isohaline boundary conditions, namely, 
 

0T Sψ = = =    at   0,1z = .                                                                                                  (14) 
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3   LINEAR STABILITY ANALYSIS 
In this section, we discuss the linear stability analysis, which is very useful in the local non-linear stability analysis 
discussed in the next section.  To make this study we neglect the Jacobian in equations (11) and (13) and assume the 
solutions to be periodic waves of the form  

sin

cos sin

cos

t

x

T e x z

S x

σ

ψ π α
π α π
π α

Ψ   
   = Θ   
   Φ   

.                                                                                        (15) 

Substituting equations (15) into the linearized version of equations (11) – (13), we get 
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D

a a R R
Pr
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 
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,                                                                (16) 
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 

,                                                                (18) 

              
where ,  σ  is growth rate, α  is wave number, Ψ is the dimensionless amplitude of stream function, Φ  is 

dimensionless amplitude of concentration perturbation, Θ  is dimensionless amplitude of temperature perturbation, 

( )2 2 2 2 2 2
1

1
1 ,a aπ α π α

ξ
 

= + = + 
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 and  ( )2 2 2
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For non-trivial solution of ,Ψ Θ  and Φ , we require 
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 

 

                                                                                                                                                     (19)    
3.1 Stationary state 
 For the validity of principle of exchange of stabilities (i.e., steady case), we have 0σ =  at the margin of 
stability. Then the Rayleigh number at which marginally stable steady mode exists becomes 
 

( ) ( )( )
( )( )

2 2 2 2 1 2

2 2

1 1

1 1

Sst
D

R Le
R

Sr Le

η α π α α ξ α

α α

− + + + + =
+ +

.                                                 (20) 

The minimum value of the Rayleigh number st
DR  occurs at the critical wave number cα α=  where 2

c xα =  

satisfies the equation 

( )4 3 2
2

1 2 1
2 1 0SR Le

x x x xη η η η
ξ π ξ ξ

 + + − + − − − = 
 

.                                 (21) 

 

It is important to note that the critical wavenumber cα depends on the solute Rayleigh number apart from its 

dependence on Lewis number and anisotropic properties.  This result is in contrast to the case of thermally isotropic 
porous medium. 
 
In the absence of Soret effect, the stationary Rayleigh number given by equation (20) reduces to  



S. N. Gaikwad et al                                                Adv. Appl. Sci. Res., 2012, 3(3):1611-1617     
 _____________________________________________________________________________ 

1615 
Pelagia Research Library 

( ) ( )( )
( )

2 2 2 2 1 2
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1 1

1

Sst
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η α π α α ξ α

α α

− + + + + =
+

.                                                 (22) 

Equation (22) coincides with the results of Malashetty and Swamy [22]. In case of single component fluid saturated 

porous layer, that is, when 0,SR =  the stationary Rayleigh number given by equation (22) reduces to 

( ) ( )( )
( )

2 2 2 2 1

2 2

1 1

1
st
DR

η α π α α ξ

α α

− + + + =
+

.                                                               (23) 

Equation (23) coincides with that of Storesletten [17] for the case of single component fluid saturated anisotropic 
porous layer.   Further for isotropic porous medium, , 1ξ η = ,  the equation (23) reduces to the classical result  

( )
2

22
2

1st
DR

π α
α

= + ,                                                                                             (24) 

 

which has the critical value 24st
DcR π=  for 2 1c =α  obtained by Horton and Rogers [24] and Lapwood [25].  The 

critical Rayleigh number st
DcR  for marginal state is computed from equation (20) for different values of the 

parameters and the results are discussed in section 4. 
 
3.2 Oscillatory state  

We put iσ ω= (ω  is real) in equation (19) and rearrange the terms to get the oscillatory Rayleigh number osc
DR  

at the margin of stability, in the form 

2 2
1

2 2 2
2 21 2 2 2 21
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4 4 2 2 2 2 4 2 6 2 4 4
2 41 1 2 1 2 1 2 2
1 22 2 2

1 1
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Pr a Pr a a a a a a a a a a a
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  
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 
+ + + + + + 

 

      (25) 

with the non-dimensional frequency 2ω  in the form 
2 2 2

2 2 2 2 2 2 21 2
22 24

2 2
1

1 1
.osc

S D

D D

a a a
a R R a Sr

Le Lea aa
a

Le Pr Pr

ω π α π α  = + − +  
    + + 
 

 (26) 

The critical Rayleigh number osc
DcR  for oscillatory state is computed from equation (25) for different values of the 

parameters and the results are discussed in section 4.  
 

RESULTS AND DISCUSSION 
 

The double diffusive convection in a horizontal anisotropic porous layer saturated with Boussinesq fluid, which is 
heated and salted from below in the presence of Soret effect is studied analytically using linear stability analyses. 
The effect of mechanical anisotropy parameter, thermal anisotropy parameter, Lewis number and Soret parameter on 
stationary and oscillatory convection are shown graphically and the results are discussed in this section. 
 

The variation of the critical stationary and oscillatory Rayleigh number DcR  with solute Rayleigh number SR  for 

different values of the governing parameters is depicted in Figs.1 – 4. The effect of the mechanical anisotropy 
parameter ξ  on the stationary and oscillatory convection is shown in Fig.1. We observe from this figure that an 

increase in the value of  ξ  decreases the critical Rayleigh number for both the stationary and oscillatory modes 

implying that the effect is destabilizing. Further we observe that the effect of anisotropy parameter is insignificant 
for large solute Rayleigh number.  
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Fig 1: Variation of stationary and oscillatory critical 

Rayleigh number DcR with solute Rayleigh number 

SR for different values of mechanical anisotropy 

parameter ξ . 

1 2 3 4 5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0.5

0.1

0.05

η=0.01

...... oscillatory

stationary

η=(0.5, 0.1, 0.05, 0.01)

ξ=0.5, Sr=0.005, Le=3.

R
S

 

 

R
Dc

 
Fig. 2: Fig 1: Variation of stationary and oscillatory 

critical Rayleigh number DcR with solute Rayleigh 

number SR for different values of thermal anisotropy 

parameter η . 
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Fig. 3: Variation of stationary and oscillatory critical 

Rayleigh number DcR with solute Rayleigh number 

SR for different values of Lewis number Le . 
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Fig 4: Variation of stationary and oscillatory critical 

Rayleigh number DcR with solute Rayleigh number 

SR for different values of Soret parameter Sr . 

 
Fig. 2 displays the effect of thermal anisotropy parameter η  on both the stationary and oscillatory convection. It is 

apparent that an increase in the value of thermal anisotropy parameter η   increases the critical Rayleigh number for 
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both the stationary and oscillatory modes. Thus the effect of increasing the thermal anisotropy parameter is to 
stabilize the system. 
 
 The effect of Lewis number Le  on the stationary and oscillatory convection is shown in Fig. 3. We find that 

increase in the value of Lewis number Le  increases the critical Rayleigh number for stationary and oscillatory 
modes. Thus the effect of Lewis number is to stabilize the system in the stationary and oscillatory modes 
 
Fig.4 depicts the effect of Soret parameter Sr on the stationary and oscillatory convection. We observe that the 
negative Soret parameter stabilizes the system while positive Soret parameter destabilizes in the stationary mode. In 
the oscillatory mode, the negative Soret coefficient has destabilizing effect where as the positive Soret coefficient 
has a stabilizing effect.  

 
CONCLUSION 

 
An analytical study of double diffusive convection in a fluid saturated anisotropic porous layer with Soret effect is 
studied using a linear stability analysis. We observe from this study that the value of critical Rayleigh number 

increases asymptotically with SR  to indicate the stabilizing effect of the solute Rayleigh number on the system in 

stationary and oscillatory modes. The effect of anisotropic properties is felt only for small values of SR . In each 

mode the effect of the mechanical anisotropy parameter ξ  is to destabilize the system while the effect of thermal 

anisotropy parameter η  is to stabilize the system. The effect of Le  is to stabilize the system in the stationary mode 

while in the oscillatory mode the trend reverses. The negative Soret parameter stabilizes the system while positive 
Soret parameter destabilizes in case of stationary mode while its effect reverses in case of oscillatory mode. 
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