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ABSTRACT

The double diffusive convection in a horizontal anisotropic porous layer saturated with a Boussinesq fluid, which is
heated and salted from below in the presence of Soret coefficient is studied analytically using linear stability
analysis based on the usual normal mode technique. The generalized Darcy model is employed for the momentum
equation. The effect of mechanical anisotropy parameter, thermal anisotropy parameter, Lewis number and Soret
parameter on stationary and oscillatory convection are shown graphically.
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INTRODUCTION

The problem of convection induced by temperatue @ncentration gradients or by concentration gnadiof two
species, known as double diffusive convection, &iicted considerable interest in the last sevdeahdes. If
gradients of two stratifying agencies having difar diffusivities are simultaneously present inl&df layer, a
variety of interesting convective phenomena canuotitat are not possible in single component fluidise double
diffusive convection in porous media has also bezamportant in recent years because of its manjicgions in

geophysics, particularly in saline geothermal felghere hot brines remain beneath less salineecapbund
waters. A comprehensive review of the literaturecewning double diffusive convection in a binanyidl saturated
porous medium may be found in the book by Nield Bejan [7]. Excellent review articles on doublefasive

convection in porous media include those by Mojtaid Charrier-Mojtabi ([3], [4]) and Mamou [12].

In a system where two diffusing properties are gmgsinstabilities can occur only if one of the gmment is
destabilizing. If the cross diffusion terms arelimled in the species transport equations, themithation will be
quite different. Due to the cross diffusion effezdch property gradient has a significant infleeon the flux of the
other property. A flux of salt caused by a spajiadient of temperature is called the Soret effect.

There are many studies available on the onset afldaiffusive convection in a porous medium wittd avithout
cross diffusion effects (see e.g. Nield and Bej@h, Thermal convection in a binary fluid driven bye Soret and
DuFour effects has been investigated by Knobloch e has shown that equations are identical to the
thermosolutal problem except for a relation betwdenthermal and solute Rayleigh numbers. The a@odiffusive
convection in a porous medium in the presence oftSmd DuFour coefficients has been analyzed trdRah and
Malashetty [15]. This work has been extended takwugonlinear analysis by Rudraiah and Siddhesh®@it [The
effect of temperature dependent viscosity on dodiffeisive convection in an anisotropic porous nuediin the
presence of Soret coefficient has been studied diif 8nd Subramanian [19]. Straughan and Huttgrhfve
investigated the double diffusive convection witbr& effect in a porous layer using Darcy-Brinkmaodel.

1611
Pelagia Research Library



S. N. Gaikwad et al Adv. Appl. Sci. Res,, 2012, 3(3):1611-1617

Bahloual et al. [1] have carried out an analytaradl numerical study of the double diffusive conigetin a shallow
horizontal porous layer under the influence of Bafect. Recently, Mansour et al. [2] have invgsted the
multiplicity of solutions induced by thermosolutabnvection in a square porous cavity heated frolovbend
subject to horizontal solute gradient in the presesf Soret effect.

Most of the studies have usually been concerneld dimogeneous isotropic porous structures. Howedugng
the last one decade, the effect of non-homogereity anisotropy of the porous medium have also Isagtied.
The geological and pedagogical processes rarety feotropic media as is usually assumed in trarisgiodies. In
geothermal system with a ground structure compasfednany strata of different permeabilities, the ralie
horizontal permeability may be up to ten timesagd as the vertical component. Process suchdamesgtation,
compaction, frost action, and reorientation of $béd matrix are responsible for the creation abatmopic natural
porous media. Anisotropy can also be a charatiten$ artificial porous material like pelleting @d in chemical
engineering process, fiber materials used in inisiggurposes.

There are many investigations available on thenthéconvection in a single component fluid satutaaisotropic
porous layer heated from below. A theoretical gsialof non-linear thermal convection in an anigpit porous
media is performed by Kvernvold and Tyvand [17].lsBh and Storesletten [22] have studied the probdd
natural convection in both isotropic and anisotcgmdrous channels. Tyvand and Storesletten [Mgsitigated the
problem concerning the onset of convection in aiscropic porous layer in which the principal axssre
obliquely oriented to the gravity vector. Natutlaérmal convection in horizontal anisotropic portayers heated
from below or in vertical cavities filled with amigotropic porous layer subjected to a constant Heg, as
described in the work of Degan et al. [10]. Saotteer studies reported the anisotropy and hetesmencharacter
of porous media, and a summary of these can bealfouthe book of Nield and Bejan [7].

Recently many authors have studied the effect motmopy on the onset of convection in a porougilggee e.g.,
Govinder [20], [21]: Malashetty and Swamy [13]; Mshetty and Heera [14]). Although some work on dmub
diffusive convection in an isotropic porous mediigravailable (Malashetty and Heera [14], attentias not been
given to the study of double diffusive convectionan anisotropic porous medium with Soret effe¢te Thain
objective of this study is therefore to investigtie effect of Soret coefficient, mechanical anerthal anisotropy
on the double diffusive convection in a fluid sated porous layer using linear analysis.

MATHEMATICAL FORMULATION

A horizontal porous layer held between two wallZat 0 and Z = d saturated with a Boussinesq fluid, which is
heated and salted from below, is considered. Dneys medium is assumed to possess isotropy iadrddl plane
in both thermal and mechanical properties. A aamtsgradient of temperatu®T and salinity/AS is maintained
between the two walls. The generalized Darcy mhdslbeen employed for the momentum equation. iébe
assumptions the basic governing equations of meatien

0.q=0, 1)
d
&_q: -Up-uK.g+pg, (2)
€ ot
yo+@O)T=0(0,07), @
£E+(q.D)S—£D2D S+&D, 0T, 4)
P=p,[1- B (T -T)+ Bs(S-Sy) |. (5)

Where, ( is the velocity vectofU,V,W) , P is the density, t is time, p is pressugk,is the dynamic viscosity, K
is permeability tensor, g is gravitational accefiera Y is specific heat ratio,I is temperature, AT is
temperature difference between the wallS is salinity difference between the walld), is thermal diffusivity,&
is the porosity, S is solute concentratid, is solute diffusivity, D, is cross diffusion due td component, ,Br

is thermal expansion coefficienf3s is solute expansion coefficient, is the temperature of hot wall3,, is the
temperature of cold walls.
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2.1 Basic state

The basic state of the fluid is assumed to be qaigsand is given by,

4,=(0,0,9 , p=p,(2) . T=T,(2) .S=S,(2) .0=p,(2). (6)
Using equation (6), equations (1) to (5) yield

d d°T, d?

d—pzb = - 0,9, ?2'[’ =0, dZS;’ =0, ,ob=,00[1—,3r (Tb—TO)+,BS(SO—SO)] @)

2.2 Perturbed state
On the basic state we superpose perturbationgifotm

a=q,+q'(x y,zt), T=T,(2)+T'(x,y.zt) ,S=S @)+ S(xy zt) .

, , (8)
p = pb(z) + p (X! y,Z,t) !10 =10b (Z)+p (X,y,Z,t)
where primes indicate perturbations.
We consider only two dimensional disturbances aafihd stream function/ by
(U"V\/) = (a_w’ —_ a_wj (9)
0z 0x
Introducing (8) in equations (1) - (5) and usingibatate equations (7) and the transformations
o X Z . t .Y T S
(X,Z):_,_, t = 5 , [//:_,T*:—,S:—, (20)
d'd d?/D, D, AT AS

where, D, s the effective thermal diffusivity in verticadirection. To render the resulting equations

dimensionless, we obtain (after dropping the agiterand& and )/ are set equal to unity for simplicity).

10 _, (0° 10° aT S
—P+| —+=— = -R, — —, 11

| Pry, ot +(0x2 +£azzﬂw R ox s 0X -
B 2 2

0 _ 6_+0_ T = - oy + 6((//,T), (12)
ot x> 0z° ox  9(x2)
{2 —iDZ} s-g P gor- - %, 00.5) (13)
ot Le Ry ox 0(x2)

. vd?e
where , Pry is the Darcy Prandtl numbgr
z—1

j, ¢ is the mechanical anisotropy parametir,(/ K, ), R, is

BrgATdK,
vD,

B 9ASIK,

Darcy Rayleigh numbe( j R is the solute Rayleigh numb{r D
Vi 1

], n is thermal

D D D
anisotropy parameteEExj, Le is the Lewis numbe(D—Zj, S is the Soret parameteE’ZiD3 j Y is the

z 1

X
stream function.

Equations (1) - (13) are solved for stress-fregthisrmal, isohaline boundary conditions, namely,

Y=T=S=0 at z=0,1 [14
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3 LINEAR STABILITY ANALYSIS

In this section, we discuss the linear stabilitglgsis, which is very useful in the local non-linagability analysis
discussed in the next section. To make this stuglyeglect the Jacobian in equations (11) andd@8)assume the
solutions to be periodic waves of the form

17/ Wsinmra x
T |=¢e”| Ocosmax | siviz. (15)
S ®d cosra x

Substituting equations (15) into the linearizedsian of equations (11) — (13), we get

(%a%af]w = -R,ma®+Rynra®d, (16)

D

(0+a})© = ~maw, (17)

(a+ia2jd>+8ri a0 = -maV¥, (18)
Le Ry

where , O is growth rate,a@ is wave number, W is the dimensionless amplitude of stream functi@d, is
dimensionless amplitude of concentration pertudsat©® is dimensionless amplitude of temperature pertioba

a’ =n2(az+1), a’= ﬂ2(0'2+%j and & = 772(/70'2+1) :
For non-trivial solution oft¢, © and @, we require

2 4 2 52 2,2 4, 2
R I aZ+ L aa1+a12a22+ aa, +1a ¥R -R)) |0
Pry LePr, Pry Le Le Pry

Le
(19)

2 4242
1288 ﬁiea? +a22nzazRS—RDﬂzaza2(Sr +ij =0.

3.1 Stationary state
For the validity of principle of exchange of stétids (i.e., steady case), we hage= 0 at the margin of
stability. Then the Rayleigh number at which maafjinstable steady mode exists becomes

(/70'2 +1)[n2(a2+1)(a2+f‘1)}+ R.ale
a*(a®+1)(s Le+1) '

RS =

20}

The minimum value of the Rayleigh numb&S occurs at the critical wave number = @, where azc =X
satisfies the equation

nx*+2n x3+(/7—%+RSLe(/7—1)]x2—Ex—%:0. (21)

772

It is important to note that the critical wavenumb®_ depends on the solute Rayleigh number apart frem it

dependence on Lewis number and anisotropic pr@seriThis result is in contrast to the case ofrtiadly isotropic
porous medium.

In the absence of Soret effect, the stationary &glylnumber given by equation (20) reduces to
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. (/m2 +1)[n2(a2+1)(a2+5‘ﬂ+ R.a’Le

Ro = :
a’® (a2 +1)

Equation (22) coincides with the results of Maldaghand Swamy [22]. In case of single componeridfeaturated

porous layer, that is, wheRg = 0, the stationary Rayleigh number given by equatif) ¢educes to

(/70'2 +1)[n2(a2+1)(az+f‘1)} |
az(a2+1)

Equation (23) coincides with that of Storeslettéid][for the case of single component fluid satutadaisotropic
porous layer. Further for isotropic porous medidiyyy =1, the equation (23) reduces to the classical resul

%= oo, 28

22)

RS =

(23)

which has the critical vaIuRStc = 477 for acz =1 obtained by Horton and Rogers [24] and Lapwood.[ZFhe

critical Rayleigh numberRStC for marginal state is computed from equation (&) different values of the
parameters and the results are discussed in sektion

3.2 Oscillatory state

We put g =iw (w is real) in equation (19) and rearrange the temget the oscillatory Rayleigh numbEi‘gSC
at the margin of stability, in the form

- Pr,a’  a° 1 1
Ro :RS{ ;231 +E} Pr a1 ¥ Pr
7 'D* +8.2 Sra 7720'[ Dai
a2 a2

+a2 Sra] (25)

+31a2+

Proa’  Proaja; 2a’aja; a‘a’ a‘a, . a&;
Le a’ Le Le’*  Le*Pr, Le Pry,

with the non-dimensional frequen(v;o2 in the form

a)z:{ 41 _ (aa1a2+a2]]'2a R, - Rgscﬂzazaz(S-FLieD' (26)
o+ }

a  aa Le
Le Pr, Pry

The critical Rayleigh numbeRgscC for oscillatory state is computed from equatioB)(for different values of the
parameters and the results are discussed in sekction

RESULTSAND DISCUSSION

The double diffusive convection in a horizontalsmtiopic porous layer saturated with Boussinesigl,fiwhich is
heated and salted from below in the presence adtSdfect is studied analytically using linear giabanalyses.
The effect of mechanical anisotropy parametermiaanisotropy parameter, Lewis number and Soretnpater on
stationary and oscillatory convection are showmphigally and the results are discussed in this@ect

The variation of the critical stationary and ostitiry Rayleigh numbeR . with solute Rayleigh numbeR for
different values of the governing parameters isiaeg in Figs.1 — 4. The effect of the mechaniaaiketropy
parameteré on the stationary and oscillatory convection isveh in Fig.1. We observe from this figure that an
increase in the value of decreases the critical Rayleigh number for both gtationary and oscillatory modes

implying that the effect is destabilizing. Furthee observe that the effect of anisotropy paramisténsignificant
for large solute Rayleigh number.
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Fig 1: Variation of stationary and oscillatory critical Fig. 2: Fig 1: Variation of stationary and oscillatory
Rayleigh number R, with solute Rayleigh number critical Rayleigh number R,_with solute Rayleigh
R, for different values of mechanical anisotropy number R for different values of ther mal anisotropy
parameter & . parameter I.
5.0 5.0
£=0.5, Sr=0.005, n=0.5. - £=0.5, Le=3.0, n=0.5.
a5t 45t
— stationary
4.0+ 4.0 |-
4/ L IS oscillatory
[ Le=(2.5,2.0,1.5,1.0) /7
R.. 3.5} :.'.l'.j-" R, 35F
3ol 30t
2.5 2.5 Sr=(0.1, 0.005, 0.02,
Le=(2.5,2.0, 1.5, 1.0) ©0.01,-0.1)
20F 2.0 b<
—— stationary h
sl oscillatory 15 | Sr=(-0.1,-0.01, 0.005, 0.02, 0.1)
1 é é Lll 5 1 2 3 4 5
Rs Rs
Fig. 3: Variation of stationary and oscillatory critical Fig 4: Variation of stationary and oscillatory critical
Rayleigh number R,_with solute Rayleigh number Rayleigh number R,_with solute Rayleigh number
R, for different values of L ewis number Le. R, for different values of Soret parameter S .

Fig. 2 displays the effect of thermal anisotropyapaeter/] on both the stationary and oscillatory convectibis
apparent that an increase in the value of thermiab&ropy parametef] increases the critical Rayleigh number for
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both the stationary and oscillatory modes. Thuséfiect of increasing the thermal anisotropy partemés to
stabilize the system.

The effect of Lewis numbete on the stationary and oscillatory convection isvah in Fig. 3. We find that

increase in the value of Lewis numbke increases the critical Rayleigh number for statignand oscillatory
modes. Thus the effect of Lewis number is to sitabihe system in the stationary and oscillatoryleso

Fig.4 depicts the effect of Soret paramef@ron the stationary and oscillatory convection. Weesbe that the
negative Soret parameter stabilizes the systenevgoisitive Soret parameter destabilizes in théosiaty mode. In
the oscillatory mode, the negative Soret coefficieas destabilizing effect where as the positiveeSooefficient
has a stabilizing effect.

CONCLUSION

An analytical study of double diffusive convectiona fluid saturated anisotropic porous layer v8itret effect is
studied using a linear stability analysis. We obserom this study that the value of critical Ragte number

increases asymptotically witRg to indicate the stabilizing effect of the solutayfeigh number on the system in
stationary and oscillatory modes. The effect ofatmbpic properties is felt only for small valuels 8. In each

mode the effect of the mechanical anisotropy patame is to destabilize the system while the effectharal

anisotropy parametef is to stabilize the system. The effectlo€ is to stabilize the system in the stationary mode

while in the oscillatory mode the trend reversdse Tiegative Soret parameter stabilizes the systeite wositive
Soret parameter destabilizes in case of statiomaige while its effect reverses in case of oscillatoode.
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