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ABSTRACT 
 
The interpretation process has been a major problem in geophysical investigation of the subsurface of the earth in 
terms of lithological variations with depth. The resistivity kernel function performs as an intermediary in the process 
of interpreting apparent measurements in terms of lithological variations with depth. The kernel function cannot be 
measured in the field but must be obtained from a transformation of measured electric potentials or apparent 
resistivities. The function is more traceable mathematically than the apparent resistivity function, it has become the 
basis of a method of quantitative interpretation. In this work, some literature based on kernel function with their 
peculiar problems were highlighted. The theoretical derivation where the necessary information about the 
configuration of the earth were fully explained. The Schlumberger electrode configuration was adopted for data 
collection in the field. The field data obtained from Ughelli in Delta State, Nigeria were matched with theoretical 
curves from kernel function. The results obtained from kernel function agreed very well with well logs interpretation 
in Ughelli. 
_____________________________________________________________________________________________ 

INTRODUCTION 
 

The resistivity kernel function performs as an intermediary in the process of interpreting apparent measurements in 
terms of lithological variations with depth. It depends solely on the resistivities and thickness of an earth which is 
considered to be locally stratified in homogeneous and isotropic layers. It is independent of the electrode 
configuration unlike the apparent resistivity function. The kernel function cannot be measured in the field but must 
be obtained from a transformation of measured electric potentials or apparent resistivities. The interpretation process 
involves matching practical field curves with theoretically generated curves from resistivity kernel functions (Egbai, 
1997). 
 
The resistivity kernel function has undergone a series of modifications. It has developed into the resistivity 
transform function which is similar in shape and magnitude to the apparent resistivity function from which it is 
derived. This transform function has been used as the basis for an analogy with electric filter theory which permits 
data to be exchanged readily between the apparent resistivity and transform domains. 
 
The natural kernel function method has been the linear filter which is able to exchange data efficiently between the 
apparent resistivity and resistivity transform domains. 
 
Linear filter theory provides a rapid means of calculating resistivity transforms and apparent resistivities, thereby 
facilitating resistivity sounding interpretation. The coefficients associaited with the method previously was 
inadequate for reflection coefficient approaching minus one. The new coefficient of Schlumberger electrode 
configuration significantly reduce the inadequacy thereby rendering the linear method an accurate and rapid means 
of calculating apparent resistivity computations (Neil,1975). 
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It has been found that the wiener-Hoft least squares method is a very successful tool for the determination of 
resistivity sounding filters. The values of the individual filter coefficients differs quite appreciably from those 
obtained by the Ghosh procedure. These differences in the filter coefficients, however , have only a negligible effect 
on the output of the filter. It seems that these differences in the coefficient correspond to a filter function of a rather 
narrow frequency band around the Nyquist frequency, which is only very weakly present in the input functions 
(Koefoed and Dirks, 1979). 
 
The ‘raised’ kernel function in an intermediate function in the interpretation of resistivity sounding data and the 
methods have been described both for the determination of the raised kernel function from the apparent resistivity 
function, and the determination of the layer distribution from the raised kernel function (Koefoed, 2006). 
 
The procedure is described by which the second step in the interpretation method result in the determination of layer 
distribution of layer distribution from the raised kernel function is considerably accelerated. 
 
A power series expansion can be used to obtained the kernel from apparent resistivities for an arbitrary electrode 
configuration. Three types of function are most appropriate for this purpose. The expansion coefficient can be by a 
least-square method. In this case, orthonomalization of the functions is of great advantage. ( Kohlbeck,2006). 
 
The linear filter method has, in fact, revolutionized the interpretation of resistivity soundings. It provides a simple, 
rapid and accurate means of calculating theoretical resistivity sounding curves for any assumed earth model 
comprising homogeneous and electrically isotropic horizontal layers (Egbai, 1997). 
 
Electrical prospecting is an active component of geophysical exploration, and its scope is constantly widening and 
now encompasses surface measurements, single-borehole measurements, crosshole measurements, sea-button, 
tunnel, or gallery measurements (Straub, 1995a). The kernel function, as a function of the depth coordinate, is the 
solution of a 1-d differential equation. The conventional procedure for the calculation of the kernel function consists 
in applying a recursive scheme. This procedure according to Straub is effective from a computational point of view 
but becomes cumbersome from an analytical point of view, especially in the case of an arbitrary number of layers 
for arbitrary positions of the source and measurement points. 
 
The kernel function plays an important role in the 1-D problem because of the spectral representation of the electric 
potential for a stratified model with a point source (Sraub, 1995b). 
 
The kernel function deals with theoretical thickness and theoretical resistivities of earth layers for the aim of 
drawing theoretical apparent resistivity curves. For purpose of interpretation, these curves are matched with actual 
field data (Egbai, 1997). 
 

Slichter (1993) and Langer (1993) arrived at a solution to the problem of using surface potential data, (((( ))))rV , to give 

directly the conductivity variation with depth, (((( ))))zσσσσ . Assuming conductivity to be continuous and analytic function 
of depth only, they derive the solution by applying Ohms law and Laplace’s equation as: 
 

(((( )))) (((( )))) (((( ))))∫∫∫∫
∞∞∞∞

====
0

0
1

r drJk
2
I

V λλλλλλλλλλλλ
ππππ
ρρρρ

         (1) 

 

where (((( ))))λλλλk  is the Slichiter kernel, 0J  is the zero-order Bessel function of the first kind, r  is distance and 

====





====






====

2
1

t

l
2

1

l

t
σσσσ

σσσσ
ρρρρ

ρρρρλλλλ anisotropy, ρρρρ  is resistivity while ====σσσσ conductivity. The subscript l  means 

parallel to the layers while t  means tangential to the layers. The integral was inverted by a Hankel transform to 

define the kernel, (((( ))))λλλλk , in terms of the measured potentials. 
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(((( )))) (((( )))) (((( ))))∫∫∫∫
∞∞∞∞

====
0

0r
1

rdrrJV
I
2

k λλλλ
ρρρρ
πλπλπλπλλλλλ          (2) 

 
Koefoed (1965a) worked on the resistivity kernel function by removing two particular deficiencies in previous 
kernel investigations. 
 
(i) The kernel had always been defined in terms of observed potentials, and 
(ii)  The kernel had been computed by numerical integration. He applied Hankel inversion to the apparent resistivity 
formula of Stefanesco et al, (1930) to define the kernel function in terms of observed apparent resistivities. 
 

(((( )))) (((( )))) }}}} (((( )))){{{{∫∫∫∫
∞∞∞∞

−−−−====
0

11
1

drrJr
r
1

2
1 λλλλρρρρρρρρ
ρρρρ

λλλλθθθθ αααα        (3) 

 

where ====1J first order Bessel function of the second kind. 

 
Koefoed observed that numerical integration could be made more efficient by redefining the kernel as: 
 

(((( )))) (((( )))){{{{ }}}} (((( ))))∫∫∫∫
∞∞∞∞

−−−−++++
−−−−====

0
1n

11

1n drrJr
r
1

2
1

2
λλλλρρρρρρρρ

ρρρρρρρρ
ρρρρρρρρλλλλθθθθ αααα       (4) 

 
As r  increases, the intgrand approaches zero. 
 
Koefoed (1965b) subsequently abandoned curve-matching in the kernel domain in favour of the graphical method of 
Perkeris which he restated in terms of a “modified kernel function”. 
 

(((( )))) (((( ))))
(((( ))))λλλλθθθθ

λλλλθθθθλλλλ
++++

====
1

G           (5) 

 

(((( ))))λλλλG  is asymptotic to (((( ))))11 h2expk λλλλ−−−−  at large λλλλ . A plot on log-linear graph paper gives the layer thickness h  

and the reflection coefficient 1k . The top layer is removed and a reduced (((( ))))λλλλG  is calculated by recursion to give 

the parameter of the next layer. 
 
Koefoed, on the significance of kernel function in resistivity interpretation introduced a “raised kernel function” 
shown as 
 

(((( )))) (((( )))) (((( ))))∑∑∑∑====++++==== λλλλθθθθ∆∆∆∆λλλλθθθθλλλλ 2
1*H         (6) 

This he defined by: 

(((( )))) (((( )))) (((( ))))∫∫∫∫
∞∞∞∞

====
0

1
1

drrJr
r
1

2
1

*H λλλλρρρρ
ρρρρ

λλλλ αααα         (7) 

 
Koefoed (1970) adopted the “resistivity transform function” as a supplement for the “raised kernel function.” The 
function is shown 
 

(((( )))) (((( ))))λλλλρρρρλλλλ *H2T 1====           (8) 

 
This he defined recursively for an assumed earth model. It also depends only on the thickness and resistivities of 
subsurface layers and is independent of the electrode array used in the field. 
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It should be stated clearly that no universally accepted kernel function has been fully identified to date. 
Interpretation are made by matching field curves with one type of kernel function curve or the other. 
 
In this work, the field curves were compared with well log data and a very high positive correlation were achieved. 
 
THEORY 
The theory on kernel function is based on the work of Egbai (1997). The potential at the surface of an n-layer earth 
having arbitrary resistivities and thickness could be obtained by applying separation of variables to Laplace’s 
equation in cylindrical coordinates written as: 
 

(((( )))) (((( )))) (((( )))) 







++++==== ∫∫∫∫

∞∞∞∞

λλλλλλλλλλλλθθθθ
ππππ
ρρρρ

dJ2
r
1

2
I

rV r0
0

n
1         (9) 

 
The apparent resistivity for a horizontally stratified homogeneous and isotropic layer earth could be written in terms 
of Bessel function as 
 

(((( )))) (((( )))) (((( )))) 























++++==== ∫∫∫∫
∞∞∞∞

−−−−

0
r0n

2
1

n1a drJ
2
1

r41r λλλλλλλλλλλλθθθθλλλλθθθθρρρρρρρρ       (10) 

 
where (((( )))) ====rJ 0 λλλλ Bessel function of zero order and first kind 

 

(((( )))) ====λλλλθθθθn kernel function. 

====n number of layers. 
 
By differentiating equation (9), the Schlumberger apparent resistivity over an n-layer earth becomes: 
 

(((( )))) (((( )))) (((( ))))








++++==== ∫∫∫∫
∞∞∞∞

λλλλλλλλλλλλλθλθλθλθρρρρρρρρ drJr21r 1
0

n
2

1a        (11) 

 

where ====1J first order Bessel function of the first kind 

 
Equation (10) could be analyzed or evaluated by writing the kernel function as a ratio of polynomials 
 

(((( )))) (((( ))))
(((( )))) (((( ))))λλλλλλλλ

λλλλρρρρλλλλθθθθ
nn

n
n PH −−−−

====          (12) 

 
 

Recursively, with λλλλ2eU −−−−==== , we have 
 

(((( )))) (((( ))))
(((( )))) (((( )))) 1UHUH

0UPUP
1

11

1
11

========

========
−−−−

−−−−
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(((( )))) (((( )))) (((( ))))
(((( )))) (((( )))) (((( )))) (((( )))){{{{ }}}}
(((( )))) (((( )))) (((( ))))
(((( )))) (((( )))) (((( ))))1

j
Zj

jj1j

1
j

Zj
jj1j

1
1m

1
1m1m1mm

1
1m1m1mm

UPUkUHUH

1n,...,2,1j,UHUkUPUP

n,...2m,UHUPUkUPUP

UHUkUHUH
1m

1m

−−−−
++++

−−−−
++++

−−−−
−−−−

−−−−
−−−−−−−−−−−−

−−−−
−−−−−−−−−−−−

++++====

−−−−====++++====

====++++++++====

−−−−====
−−−−

−−−−

λλλλ

λλλλ

 

 
For 2n ==== , we have explicitly 
 

(((( )))) λλλλ

λλλλ

λλλλθθθθ
1

1

h2
1

h2
1

2 ek1
ek

−−−−

−−−−

−−−−
====           (13) 

 
and 3n ==== , we have 
 

(((( )))) (((( ))))λλλλλλλλ

λλλλλλλλ

λλλλθθθθ
121

21

hh2
21

h2
1

h2
2

h2
1

3 ekkek1

ekek
−−−−−−−−

−−−−−−−−

++++−−−−
++++====

        (14) 
 
where ====k reflection factor, ====h depth 
 
If (((( ))))raρρρρ  is known, the kernel function (((( ))))λλλλθθθθ n  could be obtained from equation (10). Introducing the functions 

(((( )))) (((( )))) 






−−−−==== λλλλθθθθλλλλθθθθλλλλ 2
1

2
1f nn          (15) 

 
and  
 

(((( )))) (((( )))){{{{ }}}}1f4C 1 ++++==== λλλλρρρρλλλλ          (16) 

 
 
From equation (10), we have 
 

(((( )))) (((( )))) (((( ))))∫∫∫∫
∞∞∞∞

====
0

0a drJCr λλλλλλλλλλλλρρρρ          (17) 

 
Applying Fourier –Bessel integral (Bowman, 1958) 
 

(((( )))) (((( )))) (((( )))) (((( )))) (((( ))))∫∫∫∫ ∫∫∫∫
∞∞∞∞ ∞∞∞∞









====
0

0
0

0 tdtstxdxJxtxtJxFsF        (18) 

If we multiply equation (17) by (((( ))))rJ 0 λλλλ  and integrating over r , we have 

 

(((( )))) (((( )))) (((( )))) (((( )))) (((( )))) (((( ))))
∫∫∫∫ ∫∫∫∫∫∫∫∫
∞∞∞∞ ∞∞∞∞∞∞∞∞

====








====
0

0
0

0
0

0a

C
drrJdttrJtCrdrrJr

λλλλ
λλλλλλλλλλλλρρρρ      (19) 

 
Thus, 
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(((( )))) (((( )))) (((( )))) (((( ))))∫∫∫∫∫∫∫∫
∞∞∞∞∞∞∞∞








========
0

0a
0

0a dttJ
t

drrJrC
λλλλ

ρρρρλλλλρρρρλλλλλλλλ        (20) 

 
From equation (16), we have 
 

(((( )))) (((( ))))
1

1

4
C

f
ρρρρ

ρρρρλλλλλλλλ −−−−====           (21) 

 

Hence (((( ))))λλλλf  can be calculated from equations (20) and (21). From equation (15), (((( ))))λλλλθθθθ n  can be derived as 

 

(((( )))) ∑∑∑∑
∞∞∞∞

====
====

0k
kkn 2

1
f

2
1λλλλθθθθ           (22) 

(((( )))) (((( )))) 






++++====∴∴∴∴
22

1
f nn

λλλλθθθθλλλλλλλλθθθθ  








++++






====








42
1

2
f

2 nn

λλλλθθθθλλλλλλλλθθθθ          (23) 

Thus, 

(((( )))) (((( )))) (((( )))) (((( )))) (((( )))) (((( ))))44
1

2f
2
1

f
42

1
2f

2
1

f nnn
λλλλθθθθλλλλλλλλλλλλθθθθλλλλλλλλλλλλθθθθ ++++++++====
















++++++++====    (24) 

 

and so on. The series in equation (22) is convergent since (((( )))) →→→→λλλλf  constant when 0→→→→λλλλ . The value for (((( ))))λλλλC  

is given by equation (20). For a two layer earth, we have 
 
 

(((( )))) (((( )))) (((( ))))∫∫∫∫ ∫∫∫∫
∞∞∞∞ ∞∞∞∞








++++















−−−−






====
0 0

0end0enda dttJ
t

dttJ
tt

C
λλλλ

ρρρρ
λλλλ

ρρρρ
λλλλ

ρρρρλλλλ      (25) 

 

where (((( ))))rendρρρρ  is the apparent resistivity curve at the end for a two-layer earth 

 

(((( )))) (((( )))) (((( ))))∫∫∫∫
∞∞∞∞







 ++++







−−−−====






====
0

endendend0endend 1
22

1
4dttJ

t
C

λλλλθθθθλλλλθθθθρρρρ
λλλλ

ρρρρλλλλ     (26) 

where 

(((( )))) λλλλ

λλλλ

λλλλθθθθ
end

end

h2
end

h2
end

end ek1

ek
−−−−

−−−−

−−−−
====          (27) 

 
 
From equation (25), we have 

(((( )))) (((( )))) (((( ))))∫∫∫∫
∞∞∞∞

++++















−−−−






====
0

end0enda CdttJ
tt

C λλλλ
λλλλ

ρρρρ
λλλλ

ρρρρλλλλ       (28) 

 
(((( )))) (((( )))) 0tt enda ====−−−− ρρρρρρρρ  for endrt ≥≥≥≥  
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For equation (28), we can put 
 

(((( )))) (((( )))) (((( ))))∫∫∫∫ ∑∑∑∑
∞∞∞∞ ∞∞∞∞

====

====















−−−−






====
0 0j

j0enda TdttJ
tt

T λλλλ
λλλλ

ρρρρ
λλλλ

ρρρρλλλλ       (29) 

 
where  

(((( )))) (((( ))))∫∫∫∫
++++
















−−−−
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( ====jZ the thj zero order of (((( )))),tJ 0  0Z 0 ==== ) 

 
 
The series in equation (29) will form an alternating series with decreasing terms. Applying Euler transformation to 
speed up the convergence. For equation (28), (((( )))) (((( ))))λλλλλλλλ endCC ====  for small values of λλλλ . If we assumed 

 

(((( )))) (((( ))))λλλλλλλλ endCC ====  for 1λλλλλλλλ ≤≤≤≤          (31) 

 

Calculation of kernel function (((( ))))λλλλθθθθ n  for 1λλλλλλλλ ≤≤≤≤ . 

 
Applying equations (21, 22 and 31), we have 
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Applying equation (26) and knowing that 
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we have 
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Calculation of kernel function (((( ))))λλλλθθθθ n  for ∞∞∞∞→→→→λλλλ  

When (((( )))) 0f, →→→→∞∞∞∞→→→→ λλλλλλλλ . We find a value 0λλλλλλλλ ====  such that (((( )))) 1f ≤∈≤∈≤∈≤∈λλλλ for 0λλλλλλλλ ≥≥≥≥  
 
We then calculate 
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until 
0
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Let 0kk ==== , then applying equation (32), we obtain the value of 
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From equation (22) we obtain 
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The theoretical apparent resistivity curves could be computed with equation (32) for 1λλλλλλλλ ≤≤≤≤  and equation (33) for 

∞∞∞∞→→→→λλλλ . 
 

METHODOLOGY 
 

Ughelli, an oil town of Delta State, Nigeria lies between latitude N'305o and N'485o and longitudes E'485o  

and E'056o and covers an area of about 150 square kilometers. The vegetation is of the Mangrove and Rain forest. 
The town is drained by a river which flows from North to South and crosses the centre of the town. The area is made 
of top white sand, clay followed by alluvial sand, sandstone and clay. 
 
The Schlumberger electrode configuration was utilized for the purpose of data acquisition. The geophysical 
instrument used was the Abem Terrameter SAS 300B. The current electrode spacing reach a maximum of 400m 
while the potential electrode spacing were varied as the need arose. A total of 84 vertical electrical soundings were 
carried out in the six locations. The six locations are as follows: 
 
Location 
A – Market square 
B – Along Ughelli Patani Road 
C – Government College Site 
D – Post Office Road 
E – Catholic Church area 
F – Olori Road, Ughelli. 
 
The apparent resistivity equation for field data is given by 
 

(((( ))))
a

al
I4
V 22

a

−−−−====
ππππρρρρ           (34) 

 
If we incorporate equation (32) and (33) into a computer program (Egbai and Ekpekpo, 2003) in line with the basic 
language for generating automatic field curves and matching it with equation (34), theoretical kernel curves will be 
obtained. 
 

RESULTS AND DISCUSSION 
 

Quantitative interpretation was done firstly by curve fitting and matching. Curves of logarithms  of apparent 

resistivities (((( ))))ααααρρρρ  are normally plotted on the Y-axis against the logarithms of 2AB  on X-axis. The results of 

curve fitting and matching showed a rough estimate of layer resistivities and thickness of the aquifer. 
 
The computer assisted interpretation is based on the algorithm which employ digital linear filters for the fast 
computation of the resistivity function for a given set of layer parameters (Egbai, 1997). Typical smoothened field 
curves were used for the iteration data. The six curves obtained are respectively shown in figures 1, 2, 3, 4, 5 and 6.  
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Fig. 8. Contour map of the study Area 
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Fig. 1: VES Curve for Loc. 1 Fig. 2: VES Curve for Loc. 2 

Fig. 3: VES Curve for Loc. 3 Fig. 4: VES Curve for Loc. 4 

Fig. 6: VES Curve for Loc. 6 Fig. 5: VES Curve for Loc. 5 
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The six curves are H-type. The shapes of the curves help in formulating the model parameters got from the 
theoretical curves using the kernel function. The summary of the results are shown in Table 1. The depth of the 
aquifers are located within the second layer of the various formations and is within the range of 10 to 20m. The 
various resistivities, thickness and depth all locations show in the model parameters of the Table 1. The curves of all 
location have low percentage errors as shows in Table1 and figure 1 to 6. 
 
The driller’s log results and hand-dug wells in these six locations at Ughelli confirm the results of surface vertical 
resistivity sounding (VES) in terms of aquifer depth and thickness. 
 
The driller’s log results are as shown in fig. 7 and 8 respectively. Fig. 7  shows the driller’s log for locations A, B 
and C while fig. 8 is for locations D, E and F. 
 

Table 1: Summary of Results (Model Parameter) 
 

LOCATIONS 1 2 3 4 5 6 

1st Layer model ααααl  742.50Ωm 940.00 Ωm 892.1Ωm 717.6.00Ωm 545.7Ωm 579.3Ωm 

2nd Layer model ααααl  358.10Ωm 291.5Ωm 407.4Ωm 312.0Ωm 150.7Ωm 161.2Ωm 

3rd Layer model ααααl  2102.7Ωm 1121.3Ωm 1634.4Ωm 731.6Ωm 298.7Ωm 534.4Ωm 

 
1st Layer model thickness 2.0m 7.6m 4.8m 1.8m 2.1m 2.6m 
2nd Layer model thickness 42.00m 39.3m 68.5m 43.4m 46.5m 25.6m 
 
Percentage error between field data curves and 
theoretical curves RMS (%) 

3.6 2.5 4.0 4.6 3.5 3.3 

 
CONCLUSION 

 
The field data got from the work has good impression with the kernel function. The result obtained from the kernel 
function are in agreement with well logs interpretation in Ughelli with low percentage error. 
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