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ABSTRACT

Soewono and Supriatna [9] studied a simple SIR dendisease transmission model with vaccinationthim
present paper we have modified the model with aggamthat a random fraction of the recovered hospulation
can loses the immunity and becomes susceptiblenagjae dynamics of the disease is studied by a admental
model involving ordinary differential equations fthe human and the mosquito populations. Restgctime
dynamics for the constant host and vector poputatithe model is reduced to a three-dimensionalgi@quation.

Two states of equilibrium are studied, one diseese-and other endemic. The basic reproduction remtB , is

obtained. In this model the disease-free equiliristate is stable ifL]; <1 and if L, >1,the stable endemic
equilibrium appears. Numerical simulation and gnégal presentation are also provided to justify giability.
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INTRODUCTION

Dengue fever is high on the list of mosquito-bodigeases that may worsen with global warming. & gfobally
reemerging viral disease transmitted to humanséyite of an infected Aedes Aegypti mosquitoe exidts in two
forms: the Dengue Fever (DF) and the Dengue Hadragit Fever (DHF). The symptoms of the diseasaudel
high fever, rash, and severe headache with aclingd; joints, and muscles. Dengue and its deadhplications,
dengue hemorrhagic fever and dengue shock syndrbmes increased over the past several decadesalGlob
warming could substantially increase the numberemiple at risk of dengue epidemics, as warmer teatyres and
changing rainfall conditions expand both the angitable for the mosquito vectors and the lengthhef dengue
transmission season in temperate areas.

Dengue fever is caused by a member of the samdyfafmiiruses that cause yellow fever, West Nile dapanese
encephalitis. It is possible to become infected depngue multiple times because the virus has fofferdnt
serotypes known as DEN1, DEN2, DEN3 and DEN4. Asperinfected by one of the four serotypes will mdwe
infected again by the same serotype, but he lgseainity to the other three serotypes in about 18kaend then
becomes more susceptible to developing dengue haemgac fever. The strategies of mosquito contrgl b
insecticides or similar techniques proved to béficient.

A standard program used in many countries to cotite spread of the disease is the control of thérdisease
vector by fuming or fogging. Many studies show ttia$ program was not fully effective. A simple Shivodelfor
dengue disease transmission has been studied by ms@archers [2, 3, 4, 6, 12]. Now a day’s researcare
going on towards the invention of vaccine for denglisease. The effects of vaccination on the tr&éssom of
infectious disease are studied by some of the relsewss [1, 9, 10].
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In the recent communication Soewono and Suprid@@hadnsidered two types of vaccination in a hash$mission
model for dengue fever. In the model consideredhieyn it has been assumed that the vaccine prevaotinated
people by all types of dengue viruses but it is petfect. Even after vaccination the host may suffem the
disease with certain probability. In the presemnigrawe have modified the model of Soewono and &tri[9]
with assumption that a random fraction of the reced host population can loses the immunity andines
susceptible again.

2. Formulation of the Model for Dengue Disease Trasmission
Let H and V be the host and vector population sirespectively. It is assumed that the host andovgampulation

has constant size with birth and death rate equgll,f andll,, . The host population is subdivided into the
susceptibleS,, , the infectivel ; and the recovered (immurig), . The vector population, due to a short life period

is subdivided into the susceptibfg, and the infectivel,,. We consider here two types of vaccination in atho
vector model for the dengue disease transmissioe. i® being administered to a portion of new boosthand

another one is being administered to a portiorus€sptible host.

Let a portionp, 0< p <1, of newborn host be vaccinated. Assume that tleeina is not perfect and let the
effectiveness of the vaccine $s then (1—ps)pHH newborns remain susceptible, apsil,, Hdirectly being
removed toR,,. On the other hand when a portion0< 0 <1, of susceptibleS, are vaccinated, then the

dynamics of bothS, and |, are affected. Another assumption for this modethia a random fraction of the

recovered host population can loses the immunitlmtomes susceptible again. The interaction nmedglverned
by the following mathematical equations.

For human population the equations are

ds, _ (1—ps)H—pr LS (1-0o9)

W =Hy H - HHSH +o, R,
dl, _bp,1,S (1-09 _ _
e H Mty — ¥y (2.1)
dR
dtH =pypsH+YL —p Ry — @4 R,
and for vector population
d_s/ = HVV ——bp/ L' S’ —HVSV
dt H 22)
dIv — bpleS/
__—_uvlv
dt H

where b is the biting rate of the vectqy, is the transmission rate from infected vector tecgptible hostp, is the
transmission rate from infected host to susceptikletor, Yis the recovery rate of the host populatiéh,, is the

loss of immunity rate in the host population. Usisg + I, + R, = H and S, + |, =V , the systems (2.1) and
(2.2) become

T s 'VS‘*H(l_GS) “WS, + @ (H-S - 1)

dt
di, _bp,1,S, (1-09
= v - + V)| .
it H Ky +Y)1y (2.3)
di, _bpl,(V-1,) s
dt H
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Writing the dynamics (2.3) in population proportion
I,
Sh:i,lh— and | =, we have

H
ds, _ :
E— My (1—ps) -bp v, S (1-09) M S +0, -9, (§+ |
dl
dh‘ bp,v1,S (1-09) — @y + V)l (2.4)
dl
—~=bp,I,A-1,) -
gt PP A=) —
whereV =% is the ratio of host and vector population.
Setting§, = X, |, =V, |, = z,and rescaling t byop, ; these equations can be simplified to
dx
a—u(l r)—aX—NXz+@-@y
—n=nxz-By (2.5)
dl
~=y(1-z) -0z
q Yd-2)
where [l ZH—H, r=ps,(p:&, o =He T ,N= Py (1-0s) ,B= MY g o=t
bp, bp, bp, Py bp, bp,

3. Stability Analysis of the Equilibrium Points
Equilibrium points of system (2.5) are obtained d®tting time derivatives of X, y, z to zero. Thesteyn of

1-1)+
equations (2.3) possess two equilibrium points; @neisease-free equilibriunk; :(M,O,Oj and
a
other is endemic equilibriurke, = (X, Y,Z,) where

y _BRA-N)+o+(B+9)3] _ (1, +V)[bp{a L -PS)+ @3+ (1 +V+ @M, ]

° n(B+o)+ap bp, [bpv -0 )1, +y+@, W [, +@, )@, +Y)]
y _n[u@-r+e]-apd _b’p,pvE-osfp, (Ep Sk~ KT @ M tY I
¢ n(B+)+ap bp, [bp,v -0 s)(a, +y+@, W (1, + @, ), +y)]

L _ N[n{A-r)+e[-aBd _b’p,pv (-0 sfu, (p SFQ ]~ Myt Mty
n[u(I-r)+o+(B+9)8] bpyv(@a-os] bp{u, (Ep sFa}+ i +y+a, D, ]

2 1- +
This provides a reproduction numbier, = bp RV(V ( +0 S)EUH f )p i (pH] .
My T @)Ky TY)H,

The endemic equilibriunk, is stable whem [p. (1— r) + (p] -apdé>0

o 2 PPpv@-osfu, (e ska] o
° (K + 0L (Hy + VM,

Now we shall discuss the local stability of the iégtum points.

The variation matrix of the system (2.5) is givgn b
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-a-nz -¢ -nNx
J=| nz -B nx
0 1-z -y-9

1-r+
For the disease-free equilibrium poibt, = (M 0,

O) , the variation matrix will be
a

_n[r(E-n+e]

@ o :
1_

sE)| 0 p AEEZD*e
0 1 -0

Its characteristic equation will be

(A +0)| A2+ (B+B)A +36—n{“(1_ JAL .
a

By looking at eigen values, one can easily seert tfiaease-free equilibriumE, is locally stable if

L AL

a

>0 ie [, <1. Now we can turn to an endemic equilibrium andigtabout its stability.

For the endemic equilibrium poirt, = (Xe’ ye;e), the variation matrix will be
-a—-nz, —@ —NX,
J&)= nz B nx |,
0 1-z -y-3

_(n+a)[u(1-r)+o]-ade . _nB[H(L-r)+o+(B+9)d]
[u(1-1)+o+(B+9)3] P n(B+¢)+aB

| n[mr@E-r)+e]-aps _ nB[K(L-1)+¢+(B+¢)d]
Y& -0 er (B 9)o) P 1B+ @)+ ap

0 nN(B+¢)5+aBs n[u(-r+e+(B+¢)3]
n[u(@-r)+oe+(B+9)3d] n(B+e)+ap

Its characteristic equation will be

aN +aN + g+ g= |

where
a,=[B(n+a)+ne][p(1- 1) +e(1+35)+p5]> 0
a, 5 B{B(n+a)+ng +n{u(1- ) +o(1+3)+p} |[u(1- )+@( +5)+B3]

+[B(n+a)+ne][(n+a){u(1-r)+¢ +ade]
>0,
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a = [n{ <p} 0(86][[3{ (1= N+ 1+6)+[36}+<p{[3(r]+a)+r]qﬂ+
+[(r]+o({ (1-1) q}+0(6<p][ {B(r]+o()+r]q}+r]{p(1— r)+(p(1+6)+[36}],
3, =[n{u(1- 1)+ ¢ -ap3]
O B(n+a){u(2-r)+qg +pade+ne{u(1-r)+¢(1+3) + B3} +B8(n+a) .
We see thata, , a, > (if [r]{u(l— r) +(p} —O(B6] >0 i.e.ld, >1. Hence, the endemic equilibriuppint

E, is locally stable ifC], >1. We conclude this in the following theorem:

Theorem 3.1:1f [, <1, then the disease-free equilibriufs, is locally stable; if(], =1, E is stable and if

U, >1, the stable endemic equilibriufa, will appears.

4. Numerical simulation
In this section, we give an example to illustrdie tnain theoretical results presented above. Itesy$2.5), let

i =0.0016,r =0.08,a =1.0016,n =0.276,¢0=0.8, =0.013€ andd =1.Computation gives the
following value for the basic reproduction number, =16.23918> ’and system (2.5) has a unique endemic
equilibrium point E, = (x = 0.09222,y= 0.871562,Z 0.46568 By theorem 3.1, we see that endemic
equilibrium E,of system (2.5) is globally asymptotically stableli, >1. Numerical simulation illustrates the
above result (see figure 1).

Stability graph for the point(x=0.092222, y=0.87158 z=0.465687)

0.9 oS eGEp e a» a» ar ar o o

0.8 Ve
0.7

0.6 / X
0.5 . --— =Y
0.4
0.3
0.2
0.1

Population
L]
L]
L]
L]
(]

0 50 100 150 200 250

Time

Figure 1
CONCLUSION

In this paper we have discussed the effects of imation strategies on the dynamic of the dengueadis
transmission model with assumption that a rand@ttifsn of the recovered host population can losesrhmunity
and becomes susceptible again. Dynamic of the misdmmpletely determines by the basic reproductiomber

U, . We have proved that the model has a diseasefeibrium E; if the reproduction numbell, is less than
or equal one and has a unique positive endemidilequin E, if the reproduction numbel] , is greater than one.

Stability conditions are given which would be a fubéool for the disease control strategi€ar @, =0, the
model coincides with that of Soewono and Supri§@ha
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