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ABSTRACT 
 
In this paper, we present an optimal fourth order method for finding multiple roots of a nonlinear equation f(x)=0. 
In terms of computational cost, the method uses one evaluation of the function and two evaluations of its first 
derivative per iteration. Therefore, the method has optimal order with efficiency index 1.587 which is better than 
efficiency indices 1.414 of Newton method, 1.442 of Halley’s method and 1.414 of Neta-Johnson method. Numerical 
examples are given to support that the method thus obtained is competitive with other similar robust methods. The 
basins of attraction of the proposed method are presented and compared with other existing methods.  
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INTRODUCTION 
 

In this study, we apply iterative methods to find a multiple root α of multiplicity m>1, i.e. f(j)(α)=0, j=0,1,....m−1 

and f(m)(α)≠0, of a nonlinear equation f(x)=0, where f(x) be the continuously differentiable real or complex 
function. Modified Newton method sch is an important and basic method for finding multiple roots  
 

xk+1=xk-m 
f(xk)

f'(xk),    (1) 

 
which converges quadratically and requires the knowledge of multiplicity m of root α. 
 
In order to improve the order of convergence of (1), several higher-order methods have been proposed in the 
literature with known multiplicity m, for example, [2-19]. 
 
Through this work, we contribute a little more in the theory of iterative methods by developing a method of optimal 
order [20]  four for computing multiple roots. The algorithm is based on the composition of two weighted-Newton 
steps and uses three function evaluations, namely one f and two f' per iteration. The paper is organized in five 
sections. In section 2, the method is developed and its convergence behavior is analyzed. In section 3, the presented 
method is compared with closest competitors in a series of numerical examples. The basins of attraction of the 
presented optimal method and other existing methods are given in section 4. Section 5 contains the concluding 
remarks. 
 
2  Development of the Method 
Let us consider the two-step weighted-Newton method of the type  
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



 
yk=xk−θ 

f(xk)

f'(xk);

xk+1=xk− 








A+B 
f'(xk)

f'(yk)+C 
f'(yk)

f'(xk)  
f(xk)

f'(xk);
   (2) 

 
where A, B, C and θ are some constants which are to be determined. A natural question arises: Is it possible to find 
A,B,C and θ such that the iterative method (2) has maximum order of convergence?  The answer to this question is 
affirmative and is proved in the following theorem. 
 
Theorem 1  Let α be a multiple root of multiplicity m of a sufficiently smooth real or complex function f(x) in some 
neighborhood I. If α∈I and x0 is sufficiently close to α, then the scheme defined by (2) has fourth order 

convergence provided 
 

A=− 
1
4m(m3+3m2+2m−4),  B= 

1
8m 



 

m
m+2

m

(m+2)3, C= 
1
8m4 



 

m
m+2

−m

 and θ= 
2m

m+2.  

 

Proof  Let ek be the error at kth iteration, then ek=xk−α. Expanding f(xk) and f'(xk) in a Taylor series about α, 

we have  
 

f(xk)= 
fm(α)

m! e
m
k [1+A1ek+A2e

2
k+A3e

3
k+A4e

4
k+O(e

5
k)]  (3) 

and 
 

f'(xk)= 
fm(α)
(m−1)!

e
m−1
k [1+B1ek+B2e

2
k+B3e

3
k+B4e

4
k+O(e

5
k)],   (4) 

where 
 

Ai= 
m!f(m+i)(α)

(m+i)!f(m)(α)
,Bi= 

(m−1)!f(m+i)(α)

(m+i−1)!f(m)(α)
,    i=1,2,3,…  

From (3) and (4), we get 
 

f(xk)

f'(xk)= 
ek
m− 

A1e
2
k

m2 + 
1

m3 



(m+1)A

2
1−2mA2 e

3
k+O(e

4
k).  (5) 

Taking e $k=yk−α,  where yk=xk−θf(xk)/f'(xk) and using (5), we can get 

 

ek 
$=ek 



d0+d1ek+d2e

2
k+d3e

3
k+O(e

4
k) ,     (6) 

where d0=1− 
θ
m, d1= 

θ

m2A1, d2= 
−θ

m3 



(m+1)A

2
1−2mA2  

and d3= 
θ

m4 



(m+1)2A

3
1−m(3m+4)A1A2+3m2A3 . 

Expansion of f'(yk) about α yields 

 

f'(yk)= 
fm(α)
(m−1)!

e $
m−1
k [1+C1e $k+C2e $

2
k+C3e $

3
k+C4e $

4
k+O( e $

5
k)].  (7) 

 
Using (4), (5) and (7) in (2), one gets the error equation 
 

ek+1=D1ek+D2e
2
k+D3e

3
k+D4e

4
k+O(e

5
k),    (8) 

where 
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D1=1− 
α
m− 

Bµ1−m

m − 
Cµ−1+m

m , 

 

D2=
µ−m

m4(m−θ)2
[mB(−5+θ)θ3+Bθ4−m2θ2(2B(−4+θ)+µm(−A+Cµm))+m4(B 

+µm(A+Cµm))+m3θ(B(−5+θ)−µm(2A+C(−1+θ)µm))]A1, 

 

D3=m1A
2
1+m2A2,    (9) 

 

m1=
µ−m

2m6(m−θ)3
[−4mB(−4+θ)θ5−2Bθ6−2m2Bθ4(24−12θ+θ2)+m3θ3(B(70 

−55θ+8θ2)+2µm(A−2Cµm))−2m7(B+µm(A+Cµm))−m4θ2(B 

(52−64θ+13θ2)+2µm(−A(−3+θ)+C(−5+4θ)µm))−m6(B 

(2−14θ+3θ2)−µm(A(−2+6θ)+C(−2−2θ+3θ2)µm))+m5θ(B 

(18−41θ+10θ2)−µm(6A(−1+θ)+C(6−15θ+4θ2)µm))],  
 

m2=
µ−m

m5(m−θ)2
[−mB(−10+θ)θ4−2Bθ5+m2θ3(B(−22+5θ)+2Cµ2m) 

+2m5(B+µm(A+Cµm))−m3θ2(B(−24+7θ)−µm(2A+C(−6 

+θ)µm))+m4θ(3B(−4+θ)−µm(4A+C(−4+3θ)µm))],  

and  µ= 
m−θ
m . 

For fourth order convergence, the coefficients D1, D2 and D3 must vanish. Therefore, D1=0 yields 

 

A=−m 







−1+ 
Bµ1−m

m + 
Cµ−1+m

m ,   (10) 

and D2=0 with the use of (10) implies 

 

B= 
m2µm(−m3+2m2θ+Cθ2µm+mθ(−2Cµm+θ(−1+Cµm)))

(m−θ)2θ(m(−2+θ)+θ)
  (11) 

On substituting the value of B in (10), we get 
 

A=
1

(m−θ)θ(m(−2+θ)+θ)
[m(m3+m2(−4+θ)θ−θ2(θ+2Cµm) 

 −mθ(θ2−4Cµm+2θ(−2+Cµm)))].                                                 (12) 
 
Using the values of A and B in the expressions of m1 and m2 and simplifying, we obtain 

m1= 
1

2m4(m−θ)3(m(−2+θ)+θ)
[m7(−2+θ)−2Cθ5µm+m4θ2(−44+37θ−6θ2) 

+m6(−6+13θ−4θ2)+m5θ(26−32θ+7θ2)−2m3θ2(−8Cµm+θ2(10 

−6Cµm)+θ3(−1+Cµm)+6θ(−3+2Cµm))−2m2θ3(12Cµm+θ(7 

−12Cµm)+θ2(−2+3Cµm))−2mθ4(−6Cµm+θ(−1+3Cµm))],  
 

m2=− 
(m−θ)(m(−2+θ)+2θ)

m2(m(−2+θ)+θ)
. 

ForD3, to vanish, both m1 and m2 should vanish. On taking m2=0,  we find 
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θ= 
2m
m+2,(θ≠m)   (13) 

On using the value of θ obtained in (13), m1=0 implies 

 

C= 
1
8m4 



 

m
m+2

−m

   (14) 

Also, using the values of θ and C in (11) and (12), the parameters A and B are finally given by 
 

A= 
−1
4 m(m3+3m2+2m−4),    (15) 

B= 
1
8m 



 

m
m+2

m

(m+2)3.   (16) 

With these values, the error equation (8) turns out to be 
 

ek+1=D4e
4
k+O(e

5
k),    (17) 

where 
 

D4= 
(m5+6m4+14m3+14m2+12m+16)A

3
1

3m4(m+2)2
− 

A1A2
m + 

mA3

(m+2)2
.  (18) 

 
Thus equation (17) establishes the fourth order convergence for the iterative method (2). This completes proof of the 
theorem 1. 
□ 
Hence, the method (2) for obtaining a multiple root of multiplicity m is given by 

xk+1=xk− 
m
8[−2(m3+3m2+2m−4)+ 



 

m
m+2

m

(m+2)3 
f'(xk)

f'(yk) 

 +m3 



 

m
m+2

−m

 
f'(yk)

f'(xk)] 
f(xk)

f'(xk),  (19) 

where yk=xk− 
2m
m+2 

f(xk)

f'(xk). 

 
It is clear that the presented method requires three evaluations per iteration and therefore, it is of optimal order. 
Since, the scheme is based on weighted Newton steps, we call the method (19) as the weighted Newton method 
(WNM). 
 
Remark Obviously, the proposed iterative method defined by (19) requires one evaluation of the function and two 
evaluations of its first derivative per iteration and achieves fourth order convergence. We consider the definition of 

efficiency index [21] as p1/n where p is the order of the method and n is the number of function evaluations per 

iteration required by the method. Thus the presented method has the efficiency index equal to 
3

4≈1.587, which is 

better than 2≈1.414 of modified Newton method, 
3

3≈1.442 of third order methods [5,7,10,22] and 
4

4≈1.414 
of fourth order method [11]. This value, however, is same as that of the fourth order method introduced in [23]  by 
Li et al. 
 
3  Numerical Results and Discussions 
We employ the present method (WNM) to solve some nonlinear equations, which not only illustrate the method 
practically but also serve to check the validity of theoretical results we have derived. To check the theoretical order 
of convergence, we obtain the computational order of convergence (ρ) using the formula [24] 
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ρ≈ 
ln|(xk+1−α)/(xk−α)|

ln|(xk−α)/(xk−1−α)|
. 

 
The performance is compared with modified Newton method (MNM) defined by equation (1), Osada’s [10]  third 
order method (OM) expressed as  
 

xk+1=xk− 
1
2m(m+1) 

f(xk)

f'(xk)+ 
1
2(m−1)2 

f'(xk)

f''(xk), 

 
one of third order methods due to Homeier [25] denoted by HM and defined by  
 

xk+1=xk−m2 



 

m
m+1

m−1

 
f(xk)

f' 








xk− 
m

m+1 
f(xk)

f'(xk)

+m(m−1) 
f(xk)

f'(xk), 

 
the third order method due to Victory and Neta [7]  denoted by VN and which is given by  
 

yk=xk− 
f(xk)

f'(xk), 

 
 

xk+1=yk− 
f(xk)+Af(yk)

f(xk)+Bf(yk) 
f(yk)

f'(xk), 

where 

A= 




 

m
m−1

2m
− 




 

m
m−1

m+1
,B=− 

 




 

m
m−1

m
(m−2)(m−1)+1

(m−1)2
, m≠1 

 
and fourth order method due to Li et al. [23] denoted by LM, which is given by 
 

yk=xk− 
2m
m+2 

f(xk)

f'(xk), 

 

xk+1=xk− 
 
1
2m(m−2)( 

m
m+2)−mf'(yk)− 

m2

2 f'(xk)

f'(xk)−( 
m

m+2)−mf'(yk)
 
f(xk)

f'(xk). 

Table 1. Test functions 
 

f(x)   α m 
_ 

f
1
(x)=x5 -8 x4+24 x3-34 x2+23x-61.0 3 

f
2
(x)=

x
2
e
x−sinx+x 

0.0 2 

f
3
(x)=

(x
3−1)

2
 1.0, −1/2± 3/2i 2 

f
4
(x)=

(x
2−e

x−3x+2)
5
 

0.25753028543986075 

f
5
(x)=

(1+cosx)(e
x−2)

2
 

0.69314718055994532 

f
6
(x)=

ln
2
(x−2)(e

x−3−1)sin 
πx
3  

3.0 4 

f
7
(x)=

(sinx− 
 2
2 )

2
(x+1) 

0.78539816339744832 

f
8
(x)=

ln(x
2
+x+2)−x+1 

4.15259073675715831 
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Test functions along with root α correct up to 16 decimal places and multiplicity m are displayed in Table 1. Table 2 
shows the values of initial approximation (x0) chosen from both sides to the root, values of the error |ek|=|xk−α| 

calculated by costing the same total number of function evaluations (NFE) for each method and the computational 
order of convergence (ρ). The NFE is counted as sum of the number of evaluations of the function plus the number 
of evaluations of the derivatives. In calculations, the NFE used for all the methods is 12. That means for MNM, the 
error |ek| is calculated in the sixth iteration, whereas for the remaining methods this is calculated at the fourth 

iteration. It is quite understood that increasing the order of the method leads us to obtain more precision widening 
the mantissa. For this reason and for better comparison as well, in Table 2 all computations are done with 
multiprecision arithmetic using 600 significant digits. 
 
Results in table 2 show that the computational order of convergence is in accordance with the theoretical order of 
convergence. Moreover, it is quite clear that in all the considered problems accuracy of WNM is higher than MNM, 
HM, OM and VN. However, the accuracy is almost same when compared with LM as expected from the methods of 
similar character. It should be noted that Osada’s method reduces to Newton method when m=1, therefore, in 
example 8 computational order of convergence is 2. The Victory-Neta method is not defined in last example because 
here m=1. 
 
In the next section, we give the comparison of these iterative methods in the complex plane. 
 

Table 2. Performance of the methods 
 

f(x)  |e
k
|=|x

k
−r|  ρ 

 x
0
 MNM            HM OM VN            LM WNM  MNMHM OM VN  LM WNM

f
1
0 4.16(−33)     2.97(−36) 6.31(−29)7.24(−39)   2.43(−101) 4.12(−101) 2 3 3 3 4 4 

 1.4 1.02(−35) 1.54(−32) div 4.07(−41) 1.16(−69) 6.01(−69)  2 3 - 3 4 4 
f
2−0.5 6.68(−27) 6.59(−29) 4.88(−6) 7.03(−41) 2.34(−56) 7.70(−56)  2 3 3 3 4 4 

 1 3.64(−25) 1.04(−30) 1.03(−19)1.23(−32) 5.62(−94) 2.55(−89)  2 3 2.9943 4 4 
f
3
2 1.55(−16) 5.00(−18) 7.77(−12)3.71(−21) 1.08(−59) 5.17(−53)  2 2.9973 3 4 4 

 −0.4±0.5i5.85(−21) 2.43(−14) 3.37(−6) 5.11(−32) 4.32(−45) 9.30(−60)  2 3 3 3 4 4 
f
4−2 1.55(−37) 1.30(−42) 1.45(−40)3.44(−43) 1.36(−112) 1.32(−111) 2 3 3 3 4 4 

 1.5 1.06(−57) 2.44(−50) 5.15(−50)4.14(−41) 4.81(−114) 1.06(−114) 2 3 3 3 4 4 
f
5
0 9.75(−35) 3.73(−35) nconv 1.66(−43) 9.60(−85) 3.49(−83)  2 3 - 3 4 4 

 1.5 1.91(−55) 7.77(−50) 2.41(−34)5.61(−49) 2.95(−192) 9.38(−189) 2 3 3 3 4 4 
f
6
2.25 3.53(−47) 7.81(−68) 2.05(−70)1.09(−41) 1.70(−144) 6.17(−154) 2 3 3 3 4 4 

 4.5 3.97(−40) 5.04(−43) 1.06(−22)2.38(−42) 3.19(−81) 1.13(−82)  2 3 3 3 4 4 
f
7
0 8.81(−32) 1.22(−32) nconv 3.56(−35) 1.45(−41) 5.51(−41)  2 3 - 3 3.9993.998 

 1.25 4.87(−51) 3.62(−38) nconv 1.60(−43) 1.10(−85) 3.03(−85)  2 3 - 3 4 4 
f
8
6 4.47(−68) 3.88(−59) 4.47(−68)ndef 1.58(−229) 7.81(−221) 2 3 2 - 4 4 

 2+4i 3.91(−34) 1.15(−17) 3.91(−34)ndef 6.21(−92) 4.51(−91)  2 3 2 - 4 4 
Here a(-b)=a×10-b,div=divergent, nconv=not converges to required root, ndef=not defined 

 
5. Dynamical Aspects. The study of the rational functions associated to an iterative method, using the theory of 
complex dynamics gives important information about numerical features of the method as its convergence and 
stability [26]. 
 
The idea of analysing complex dynamics of iteration schemes was first introduced by Vrscay and Gilbert [27]. Later 
many researchers followed this idea in their works, for example, (see [28-32] and references therein). 
 
To start with, let us recall some basic ideas and terminology of iteration. 
 
Let S:C→C  be a rational map on the complex plane. For z∈C, we define its orbit as the set 

orb(z)={z,S(z),S2(z),L}.  
 

A point z0∈C is called periodic point with minimal period m if Sm(z0)=z0, where m is the smallest integer with 

this property. A periodic point with minimal period 1 is called fixed point. Moreover, a fixed point z0 is called 

attracting if |S'(z0)|<1,  repelling if |S'(z0)|>1,  and neutral otherwise. In addition, if |S'(z0)|=0, the fixed 

point is super attracting. 
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The Julia set of a nonlinear map S(z), denoted by J(S), is the closure of the set of its repelling periodic points. The 
complement of J(S) is the Fatou set F(S), where the basins of attraction of the different roots lie. 
 
Various researchers have used basins of attraction to compare iteration schemes, for example, [33-35]. Following 
[36], we generate basins of attraction for the complex cube roots of unity with multiplicity 2, to study the dynamical 
behaviour. We take a square [−2,2]×[−2,2] (⊆C) of 1024×1024 points, which contains all roots of concerned 
nonlinear equation and we apply the iterative method starting in every z0 in the square. We assign a color to each 

point z0 according to the multiple root to which the corresponding orbit of the iterative method, starting from z0, 

converges. If the corresponding orbit does not reach any root of the polynomial, with tolerance ε=10−3 in a 
maximum of 25 iterations, we mark those points z0 with black color. 

 

For the test problem p(z)=(z3−1)2, Fig.1 clearly shows that the proposed method WNM (Fig. 1(f)) seems to produce 
larger basins of attraction than LM (Fig. 1(e)), almost competitive basins of attraction as HM (Fig. 1(b)) and smaller 
basins of attraction than MNM (Fig. 1(a)), OM (Fig. 1(c)) and VN (Fig. 1(d)). 
 

�2. �1. 0. 1. 2.

2.

1.

0.

�1.

�2.

      �2. �1. 0. 1. 2.

2.

1.

0.

�1.

�2.

 
                    MNM                         HM 

�2. �1. 0. 1. 2.

2.

1.

0.

�1.

�2.

    �2. �1. 0. 1. 2.

2.

1.

0.

�1.

�2.

  
                               OM                      VN 

 
 

�2. �1. 0. 1. 2.

2.

1.

0.

�1.

�2.

  �2. �1. 0. 1. 2.

2.

1.

0.

�1.

�2.

 
                               LM                    WNM 

Figure 1: Basins of attraction for f(z)=(z
3−1)

2
 for various methods 

 
CONCLUSION 

 
In this work, we have proposed a fourth order method for finding multiple roots. The algorithm is based on the 
composition of two weighted-Newton steps. Hence the name weighted Newton method. An important characteristic 
of the WNM is that it does not use of second derivative f''. This feature makes the present method more useful in the 
problems where f'' is difficult to evaluate. The superiority is also corroborated by numerical results displayed in the 
table 2. A reasonably close starting value is necessary for the method to converge. This condition, however, 
practically applies to all iterative methods for solving equations. Since the present approach utilizes one f and two f' 
per iteration, therefore, the newly developed method is very useful in the applications in which the derivative f' can 
be rapidly evaluated compared to f itself. Example of this kind occurs when f is defined by a polynomial or an 
integral.   
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