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ABSTRACT

In this paper, we present an optimal fourth ordestinod for finding multiple roots of a nonlinear edjon f(x)=0.
In terms of computational cost, the method uses exaduation of the function and two evaluationsitsffirst
derivative per iteration. Therefore, the method lbasimal order with efficiency index 1.587 whichbistter than
efficiency indices 1.414 of Newton method, 1.443atfey’s method and 1.414 of Neta-Johnson metNoenerical
examples are given to support that the method dhtsined is competitive with other similar robustthods. The
basins of attraction of the proposed method ares@néed and compared with other existing methods.

Keywords: Rootfinding, Newton method, Multiple root, Orddramnvergence, Efficiency, Basins of attraction
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INTRODUCTION

In this study, we apply iterative methods to findhaltiple roota of multiplicity m>1, i.e.f(j)(a)zo,j:O,l,...m—l

and f(m)(a);to, of a nonlinear equatiof(x)=0, wheref(x) be the continuously differentiable real or comple
function. Modified Newton method sch is an impottand basic method for finding multiple roots

f(x,)
Xpes1=X,M W (1)

which converges quadratically and requires the kadge of multiplicitym of roota.

In order to improve the order of convergence of @veral higher-order methods have been propasdtei
literature with known multiplicitym, for example, [2-19].

Through this work, we contribute a little more hettheory of iterative methods by developing a wethf optimal
order [20] four for computing multiple roots. Th&gorithm is based on the composition of two wesghtewton
steps and uses three function evaluations, nanmedyf @and twof' per iteration. The paper is organized in five
sections. In section 2, the method is developeditarmbnvergence behavior is analyzed. In sectigche8presented
method is compared with closest competitors in rieseof numerical examples. The basins of attractb the
presented optimal method and other existing mettawdsgiven in section 4. Section 5 contains theckming
remarks.

2 Development of the M ethod
Let us consider the two-step weighted-Newton metifdtie type
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f(xk)

Px) PO fx) K K Ty @
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whereA, B, C andf are some constants which are to be determinedtdral question arises: Is it possible to find
A,B,C and® such that the iterative method (2) has maximunewood convergence? The answer to this question is
affirmative and is proved in the following theorem.

Theorem 1 Let a be a multiple root of multiplicity m of a suffinidy smooth real or complex function f(x) in some
neighborhood 1. Ifa/1 and % is sufficiently close tar, then the scheme defined by (2) has fourth order

convergence provided

m -m
__ 1 3.2 _1 m 1a/_m_ 2m
A=- 4m(m +3m~+2m-4), B= gm ( m+2) (m+2) =gm ( m+2> and & mto

Proof Let & be the error akth iteration, thenek:xk—a. Expandingf(xk) and f'(xk) in a Taylor series about,
we have
Ma) m

f(xk): m S [1+A ek+A2ek+A3ek eﬁ+0(ek)] 3)
and

f'(xk)— (#—Ig_l km_1[1+B ek 2ek+83ei+B 4e:<1+0(e§)], 4)

where

() (i)
A= m!f (a) B.= (m=)'f (0()’ i=1.23...
P iy f M) (mwi—1) M)

From (3) and (4), we get

2
f(xk) & A e
7 (Xk)_ e ?+ $ [(rr&l)Ai—ZmAZ]e%O(eﬁ). (5)

Taking ék:yk—a, Whereyk:xk—ef(xk)/f'(xk) and using (5), we can get

S [do+d1 6 deicHdy ek+o(ek)] (6)
0 0
wheredo—l— oot d 2A1’ d,= m [(mfl)Al 2mA2]

and d,= % [(m+1) Al—m(3m+4)A1A2+3m2A3].

Expansion off'(yk) abouta yields

. 3 4 5
f(yk)_ (m—l)' 1 k*czek+Csek+C4ek+o(ek)]- (7)

Using (4), (5) and (7) in (2), one gets the ermuiaion

€r17D1&* Zek+D3ek+D4ek+O(ek) (8)
where
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Bul_m Cu_1+m

a
D=1 m m
-m 3, nnd 2.2 4
2= 2 SIMB(-5+6)8°+B6 " -m 0 (2B(-4+6)+u (-A+Cu))+m (B
m(m-6)

+uM(arcp)+m6(B(-5+6)-uM(2A+C(-1+6)u M)A,

D

2
Dy=mArmoA,, ©)

-m

m —4mB(-4+8)8°-286%-2m?Be%(24-120+6%) +m63(B(70

1_2m6(m—9)3[

—556+809)+2uM(A-2cu™)-2m’ B+uM(A+Cu™) -m 6B
(52-640+1382)+2uM(-A(=3+8)+C(~-5+48)u™)-mP(B
(2-140+302) - A(=2+60)+C(~2-26+309) ™)) +m>6(B
(18-410+1082) - T(6A(-1+8)+C(6-150+469)u™)],

-m

mz——rr{:.)‘(lrn_—e)z[—mB(—10+6)64—2865+m263(B(—22+56)+2Cu2m)
+2mP B+ M(A+Cu™)-m362(B(-24+78) - T(2A+C(-6
+8)u™)+m’e(3B(-4+0)-uM(4A+C(-4+38)u™M)],

m-0
and p= “m

For fourth order convergence, the coefficieth D2 and D3 must vanish. ThereforeDl:O yields

1-m -1+m
A=—m (—1+ B“m + C“m ) (10)

and D2:0 with the use of (10) implies

_ mPuM=m3+2mPe+co?uMme(-2cu™+a(-1+cu™))

(M-6)26(m(-2+6)+6)
On substituting the value &in (10), we get

B (11)

A 1
" (m-6)8(m(-2+8)+6)

—mee2-acuM+20(-2+CuM))1. (12)

[m(m°+m2(-4+8)8-62(8+2cu™)

Using the values oA andB in the expressions oﬁl and m, and simplifying, we obtain
~ 1

o (m-8)3(m(=2+6)+6)
+m2(~6+13-462)+m8(26-320+769)-2m6%(-8Cp™+62(10
—6Cu™)+63(-1+cu™)+60(-3+2cu™)-2m2e3(L2c™+6(7
—12cu™)+0%(—2+3cu™)-2me%(-6cu™+a(-1+3cu™)],

m, [m’ (~2+6)-2C0°u M m02(~44+370-669)

__ (m=6)(m(-2+6)+26)

 m2m(=2+9)+0)
F0|D3, to vanish, botrm1 and m, should vanish. On taking12=0, we find
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2m
0= o (62m) (13)
On using the value df obtained in (13)m1=0 implies

1 m
=g () o
Also, using the values &andC in (11) and (12), the parameté&s&ndB are finally given by

2

A= _T:Lm(m3+3m +2m-4), (15)
1 m
m 3
B= gm (m) (m+2)~. (16)
With these values, the error equation (8) turnsoe
4 5
& +1=D 4ek+O(ek), a7
where
3
(M+6m*+1am>+Lan’+12me 16, AA,  MA,
1 71
D4: - + (18)

3m(m2)2 m " me2)?

Thus equation (17) establishes the fourth ordevexence for the iterative method (2). This congdgiroof of the
theorem 1.
[m]
Hence, the method (2) for obtaining a multiple robinultiplicity mis given by
(%)
__m 3.2 _m_ 3_K
X+ 17X 8[—2(m +3m~+2m-4)+ ( nH-Z) (m+2) fl(yk)

My fx)
3 m K. Vk
o (wa) o) P (19)

ey o 2m 1%
WRETENENT mr2 Pk

It is clear that the presented method requiresetienealuations per iteration and therefore, it isopfimal order.
Since, the scheme is based on weighted Newton, stepsall the method (19) as the weighted Newtomhot
(WNM).

Remark Obviously, the proposed iterative method defingd19) requires one evaluation of the function amd
evaluations of its first derivative per iterationdaachieves fourth order convergence. We considedéfinition of

1/n

efficiency index [21] ap™  wherep is the order of the method ands the number of function evaluations per

iteration required by the method. Thus the preskemethod has the efficiency index equalzxsy'(z_izl.587, which is

better tham/2=1.414 of modified Newton methog/§=1.442 of third order methods [5,7,10,22] aﬁ@zl.414
of fourth order method [11]. This value, howeversame as that of the fourth order method introdlucg¢23] by
Li et al.

3 Numerical Resultsand Discussions

We employ the present method (WNM) to solve somelinear equations, which not only illustrate thetios
practically but also serve to check the validitytldoretical results we have derived. To checklieeretical order
of convergence, we obtain the computational ordlepovergenceq) using the formula [24]
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In|(xk + 1—cx)l(xk—0()|
P Nl —o)/(x o)l

The performance is compared with modified Newtorihoé (MNM) defined by equation (1), Osada’s [10hird

order method (OM) expressed as

f(x) f(x)
1 kK 1 2 Vk
X 1% Em(mrl) @+ E(m—l) @

one of third order methods due to Homeier [25] deddy HM and defined by

m-1 f(x,) f(x,)

—y 1| k K

Xer1 XM (rrH-l) oy ™ML gy
f (Xk_ m+1 f'(xk)j

the third order method due to Victory and Neta [@gnoted by VN and which is given by

f(Xk)
' @,

() +AKy,) f(y))
Kr17Yk f(x)*Bf(y,) FOq)

where

om 1 (i)m(m—z)(m—l)ﬂ

- (%) - (%) B = (m-1)2 el

and fourth order method due to Li et al. [23] dewdby LM, which is given by

2m %)

N me2 Tl

2
FM2) () M- 504 106

Pl

Xk =Xk_ _
i )~ M)

Table 1. Test functions

f(x) o m
fl(x):x5 -8 X+24 ¥-34 X+23%-61.0 3
fZ(X):><2ex—sir|><+x 0.0 2
f309=(,3_1y? 10,-1/2[32 2
(9= o2 ax2) 0.25753028543986075
fe= (1+cos)(@-2)2 0.69314718055994532
f (0= - 3.0 4
67 1n2x-2) (" 3 1)sin &
()= 0.78539816339744832
7% (sirx- 322)2(x+1)

4.15259073675715831

f8()()=In (x2+x+2)—x+1

Pelagia Research Library

51



Ashu Bahl and Rajni Sharma Adv. Appl. Sci. Res., 2016, 7(4):47-54

Test functions along with roet correct up to 16 decimal places and multiplicityare displayed in Table 1. Table 2
shows the values of initial approximatioxbx chosen from both sides to the root, values ofetrer ek|=|xk—a|

calculated by costing the same total number oftfancevaluations (NFE) for each method and the agatpnal
order of convergence). The NFE is counted as sum of the number of eximins of the function plus the number
of evaluations of the derivatives. In calculatiotie NFE used for all the methods is 12. That méanMNM, the
error lek| is calculated in the sixth iteration, whereas tfeg remaining methods this is calculated at thetio

iteration. It is quite understood that increasihg brder of the method leads us to obtain moreigioecwidening
the mantissa. For this reason and for better casgaras well, in Table 2 all computations are devith
multiprecision arithmetic using 600 significant itkg

Results in table 2 show that the computational madeconvergence is in accordance with the thecaktrder of
convergence. Moreover, it is quite clear that Irtle considered problems accuracy of WNM is highan MNM,
HM, OM and VN. However, the accuracy is almost savhen compared with LM as expected from the metludds
similar character. It should be noted that Osadaéthod reduces to Newton method whenl, therefore, in
example 8 computational order of convergence Eh2. Victory-Neta method is not defined in last epéerbecause
herem=1.

In the next section, we give the comparison ofeligerative methods in the complex plane.

Table 2. Performance of the methods

0 e =kl P
X0 MNM HM OM VN LM WNM  MNMHM OM VNLM WNM
flo 4.16¢33) 2.97¢36)6.31(-29)7.24¢39) 2.43¢101).12¢101)2 3 3 3 4 4
14 1.02¢35) 1.54¢32) div 4.07¢41) 1.16¢69) 6.01¢69) 2 3 - 3 4 4
f2—0.5 6.68(27) 6.59¢29) 4.88(6) 7.03(-41) 2.34¢56) 7.70¢56) 2 3 3 3 4 4
1 3.64(25) 1.04¢30) 1.03¢19)1.23¢32) 5.62¢94) 2.55¢89) 2 3 29943 4 4
f32 1.55¢16) 5.00¢18) 7.77¢12)3.71¢21) 1.08¢59) 5.17¢53) 2 29973 3 4 4
-0.4+0.55.85¢-21) 2.43¢14) 3.37{6) 5.11(32) 4.32¢(45) 9.30¢60) 2 3 3 3 4 4
f4—2 1.55¢37) 1.30¢42) 1.45¢40)3.44¢43) 1.36¢112) 1.32¢111)2 3 3 3 4 4
15 1.06¢(57) 2.44¢50) 5.15¢50)4.14¢41) 4.81¢114) 1.06¢114Q 3 3 3 4 4
f50 9.75¢35) 3.73¢35) nconv 1.66(43) 9.60¢85) 3.49¢83) 2 3 - 3 4 4
15 1.91¢55) 7.77¢50) 2.41¢34)5.61¢49) 2.95¢192) 9.38¢189) 3 3 3 4 4
f62.25 3.53¢47) 7.81¢68) 2.05¢70)1.09¢41) 1.70¢144) 6.17¢154)2 3 3 3 4 4
4.5 3.97¢40) 5.04¢43) 1.06(¢22)2.38¢42) 3.19¢81) 1.13¢82) 2 3 3 3 4 4
f70 8.81¢32) 1.22¢32) nconv 3.56(35) 1.45¢(41) 5.51¢41) 2 3 3 3.9993.998
125  4.87¢51) 3.62¢38) nconv 1.60(43) 1.10¢85) 3.03¢85) 2 3 - 3 4 4
f86 4.47¢68) 3.88(59) 4.47¢68)ndef 1.58(229) 7.81¢221) 3 2 - 4 4
2+4i 3.91634) 1.15¢17) 3.91¢34)ndef 6.21¢92) 4.51¢91) 2 3 2 - 4 4
Here a(-b)=ax1,div=divergent, nconv=not converges to requiredtrawef=not defined

5. Dynamical Aspects. The study of the rational functions associatednaiterative method, using the theory of
complex dynamics gives important information aboutnerical features of the method as its convergemze
stability [26].

The idea of analysing complex dynamics of iteraBohemes was first introduced by Vrscay and Gil[#f}. Later
many researchers followed this idea in their woftisexample, (see [28-32] and references therein).

To start with, let us recall some basic ideas anchinology of iteration.

Let SC-C be a rational map on the complex plane. FaAfC, we define its orbit as the set

orb(z):{z,S(z),Sz(z),-~-}

A point ZODC is called periodic point with minimal periad if Sm(zo):zo, wherem is the smallest integer with
this property. A periodic point with minimal periddis called fixed point. Moreover, a fixed poizB is called
attracting if S(zo)|<1, repelling if $(zo)|>1, and neutral otherwise. In addition,Sf(z(O)|=0, the fixed

point is super attracting.
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The Julia set of a nonlinear m&x), denoted by)(S), is the closure of the set of its repelling pditopoints. The
complement of(S) is the Fatou se&¥(S), where the basins of attraction of the diffenerts lie.

Various researchers have used basins of attrati@ompare iteration schemes, for example, [33-Bb]lowing
[36], we generate basins of attraction for the clempube roots of unity with multiplicity 2, to sty the dynamical
behaviour. We take a square2[2]x[-2,2] (OC) of 10241024 points, which contains all roots of concerned
nonlinear equation and we apply the iterative metbiarting in everyg, in the square. We assign a color to each

point Z according to the multiple root to which the copmsding orbit of the iterative method, startingn‘rao,
converges. If the corresponding orbit does not lreaigy root of the polynomial, with toIerana»:elO_3 in
maximum of 25 iterations, we mark those poizBswith black color.

a

For the test problerp(z):(23—1)2, Fig.1 clearly shows that the proposed method WRN. 1(f)) seems to produce
larger basins of attraction than LM (Fig. 1(e))nabkt competitive basins of attraction as HM (Fi@n)Land smaller
basins of attraction than MNM (Fig. 1(a)), OM (Fidc)) and VN (Fig. 1(d)).

2.7 2

1 H 1

0. 1

[y

2

2. oL o 1 2.

MNM
2

1.H

0. H

2 o L 2
LM WNM

2. N 0. 1 2.
Figure 1: Basinsof attraction for f(z)=(z3—1)2 for various methods
CONCLUSION

In this work, we have proposed a fourth order metfar finding multiple roots. The algorithm is basen the
composition of two weighted-Newton steps. Hencerilime weighted Newton method. An important charatie

of the WNM is that it does not use of second deiwed". This feature makes the present method morailisethe
problems wheré" is difficult to evaluate. The superiority is alsorroborated by numerical results displayed & th
table 2. A reasonably close starting value is resmgsfor the method to converge. This conditionyéneer,
practically applies to all iterative methods fotviiog equations. Since the present approach usilaeef and twof'
per iteration, therefore, the newly developed metisovery useful in the applications in which treridativef' can
be rapidly evaluated compared ftitself. Example of this kind occurs whéris defined by a polynomial or an
integral.
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