
American Journal of Computer Science and Engineering Survey www.pubicon.co.in

 Original Article

An Interactive System for Modeling,
Animating and Rendering of Functionally
Defined Objects

Sergey I. Vyatkin*

Institute of Automation and Electrometry, SB RAS, Novosibirsk, Russian Federation

ABSTRACT

This paper describes interactive shape modeling of geometric objects
defined by perturbation functions. 3D objects based on the
perturbation functions have an advantage of spline representation of
surfaces, that is, a high degree of smoothness, and an advantage of
arbitrary form for a small number of perturbation functions.
Interactive modification of the function-based model with fast
visualization allows us to provide both the interactivity and any
required level of detail leading to a photo-realistic appearance of the
resulting shapes. An interactive system modeling is presented.

Keywords: Animating, Rendering, Modules, Modeling.

INTRODUCTION

Several representations of geometric
objects are currently used in computer
graphics. Each of the objects, according to
its properties, is used in different fields,
beginning from 3-D simulation and CAD
systems up to real-time visualization
systems. The functional representation
describes most accurately the object
geometry and has the smallest size of the
required data. Procedures of functional
representation demonstrate compact and
flexible representation of surfaces and
objects that are the results of logical
operations on volumes.

The creation of complex models for
such applications as movie special effects,
graphic art, and computer-aided design can
be a time-consuming, tedious and error-

prone process. Most geometric modeling
systems expect the user to manipulate
control points of NURBS, individual mesh
vertices and polygons, or use conventional,
higher-level operations such as volume
deformations and Boolean operations. In an
image processing system, vertex and control
point manipulations would be equivalent to
painting an image pixel-by-pixel. The
process of 3-D object production is also
tedious and requires a variety of different
techniques. While it may be useful to have
access to such low-level operations in
certain cases, most image manipulations are
done using higher-level tools. Recently,
computer graphics associated with
interactive modeling and editing of 3-D
objects has been developing. Well-known

Address for

Correspondence

Institute of
Automation and
Electrometry, SB RAS,
Novosibirsk, Russian
Federation

E-mail:
sivser@mail.ru

 Vyatkin ___ ISSN 2349 – 7238

AJCSES[2][3][2014] 102-108

commercial systems such as Softimage,
Alias Wavefront (Maya), 3DstudioMax,
LightWave 3D, Modo 3D offer an
interactive editing of polygonal models.
There are interactive systems based on
implicits1, triangle meshes2, images3,
volumes4, function-based models5.

For interactive mode, many function-
based systems use polygonization
algorithms. This leads to a loss of accuracy
calculations. As well as modeling system is
complicated. This paper describes an
interactive system modeling based on
perturbation functions6,7. The system
modeling supports a great variety of
different interaction techniques to alter
shape, including sculpting, carving,
texturing, etc. The system reads, processes,
and writes models without intermediate
tesselation. This paper extends the work7,
where an application of perturbation
functions in computer graphics was
presented.

AN INTERACTIVE SYSTEM
MODELING

Shape modeling seen as a process of
creating the final object by gradual local
shape deformations. Under local
deformation is meant that the area of each
individual shape deformation is significantly
smaller than the overall size of the shape.
Perturbation functions and set-theoretic
operations to represent shapes and their
properties have been used.

Common description

An algorithms and a set of C++
classes for system modeling have been
developed: recursive multilevel ray casting 7
(hereinafter RMLRC) for scenes containing
functionally defined objects (including
OpenGL color/depth buffers compatibility);
С++ classes for functionally defined objects
representation; С++ classes for rendering of
functionally defined objects; С++ classes

interface, these classes provided to make the
whole system to be easily extended to
incorporate new algorithms and features.
Thus, the resulting is designed as collection
of classes (hereinafter VxFramework) to
facilitate the development of system
modeling applications.

Modules overview

These modules are subdivided other
tasks of the projects into independent parts
that use the classes of VXFramework and are
integrated into the system through
inheritance of interface classes. The VxDll
module is responsible for Base classes for
rendering and objects representation. The
VxSceneBuilder.dll module is responsible
for scene parsing/saving. An interactive
system modeling stuff is grouped in
VxManipulator class.

Geometric objects and recursive multilevel
ray casting algorithm overview

It is proposed to describe complex
geometric objects by defining the function
of deviation (of the second order) from the
basic quadric in the form:

F(x,y,z) = A11x2 + A22y2 + A33z2 +

A12xy +A13 xz + A23yz + A14x + A24y +
A34z + A44  0 ……….……… (1)

The freeform is a composition of the

base surface and the perturbation functions





N

i
i zyxRzyxFzyxF

1

),,(),,(),,(
.… (2)

where the perturbation function R(x,
y, z) is found as follows










0),,(,0

0),,(),,,(
),,(

3

zyxQif

zyxQifzyxQ
zyxR

i

i

ii

 ..(3)

Herein, Q(x, y, z) is the perturbing

quadric.

 Vyatkin ___ ISSN 2349 – 7238

AJCSES[2][3][2014] 102-108

Since max[Q + R] max[Q] +
max[R], for estimating the maximum Q on
some interval we have to calculate the
maximum perturbation function on the same
interval. The obtained surfaces are smooth
(see Fig. 1), and creation of complex surface
forms requires a few perturbation functions.

The multilevel ray casting
algorithm7, which performs efficient search
for volume elements - voxels which
participate in image generation was used.

Before rendering could start the
renderer should be initialized or
“announced”. The main steps of the process
are following ():

Renderer::Init (_flags)
{
 //initializing m_vxXi - space

subdivision description structure
 m_vxXi.Init(given_quatro_le

vel, given_binary_level, _flags);
 m_vxXi.S=

given_camera_matrix;
 m_vxXi.P=

given_perspective_matrix;
 pGeometryToRender-

>Announce(m_vxXi);
}
For rendering to be correct the scene

should be announced too. This recursive
process is done by virtual ‘Announce’
method to guarantees the tree traversal
including perturbation. While the
implementation of this function by VxOp –
operations class simply send calls to its
content, the VxQuadr initializes special
internal structure encapsulated quadric
representation by 10 coefficients and their
changes.

Within the proposed paradigm it is
possible to derive your own subclass with
new rendering properties (e.g. with special
shading or texturing) simply by overriding
the virtual Get Material() and Get Normal()
methods of any functionally defined object

class or even Calculate Color method of
Renderer itself.

This main space traversing cycle is
performed after checking that context and
buffer(s) are presented and valid by
Renderer like following:

Init(_flags);// Initialization of rendering
setting, scene preparation
Render (Scene);

Base classes, reference counting, smart
pointers

All VxFramework classes (such as
buffers, geometry, light sources, etc.) are
reference counted. To provide certain
functionality they are inherited from one or
more Object-derived classes along with
using DECLARE/IMPLEMENT macros in
MFC fashion to provide runtime type
functionality. However some hacks allow
using multiple inheritances for your classes,
so you need not to stick to single inheritance
like if you're using MFC.

The reference-counter is incremented
through Add Ref() and decremented through
Release() and if it’s zero, the object is
deleted to recover memory. To guarantee
that object is deleting from the same heap it
was created in all the destructors are made
private.

There were some kind of smart
pointers – vx_ptr template, to store pointers
to dynamically allocated objects. They
behave much like built-in C++ pointers
except that they automatically delete the
object pointed to at the appropriate time.
They can also be used to keep track of
dynamically allocated objects shared by
multiple owners. One of the advantages of
use vx_ptr is that they are objects which
could be created at the stack while
encapsulating all dynamic memory
management stuff. Another advantage is that
the operator = of vx_ptr decrements counter
of previously stored object before as well as

 Vyatkin ___ ISSN 2349 – 7238

AJCSES[2][3][2014] 102-108

its constructors increments reference
counter.

Rendering classes

The set of classes are used to create
and setup different attributes of the renderer,
its context, buffers manipulations and etc.
VxRender Context is the most important
class for the rendering control. Like in all
3D rendering, we need the concept of a
virtual camera. This is set up with the
following calls:

void SetCameraMatrix(Matr4);
void SetProjectionMatrix(Matr4);
VxFramework supports the Phong

light model as class 'LightModel’ with the
ability to control light sources as exemplars
of 'LightSource' class.

The context is send to appropriate
renderer to perform render. It is shareable
amongst different renderers. For UI
applications it is common practice that
context user currently working with is
become globally available for all kind of
plug-ins and etc.

This is done through
gGetCurrentRenderContext() and gSet-
CurrentRenderContext() methods
correspondingly.

Depth/Normal and Color Renderers

You could use one the two renderers
(depth/normal and color) or both for scene
rendering by filling appropriate buffers.
Also it is possible to derive your own
renderer subclass simply by overriding
VxBaseRenderer pure-virtual prototypes.
Most of rendering settings are controlled
through assigning of the rendering context.
Each of renders has its own implementation
of the following pure virtual function
(inherited from VxBaseRenderer).
Depth/Normal and Color Buffers are
presented as implementations of Render
Data ptototype. These renderers always ask
their buffers (set by Set Buffer) that they are

valid for requested rendering by calling
IsValidFor method. All memory allocation,
clearing, data access and etc. are done by
flags specifying what the data is used for. As
mentioned above, buffers are reference-
counted and therefore are shareable. The
sample of using buffers for rendering as well
as OpenGL-compatibility issue.

Objects

Objects are the building blocks of the
scene. The following paragraphs describe
the existing types of objects.

Functionally defined objects types
corresponding to base quadric types:

‘ell’, ‘seat’, ‘ellpar’, ‘unihyp’,
‘duahyp’, ‘cone’, ‘cylinder’, ‘layer’, ’plane’,
’clin’, ’parabola’, ’hyperbola’.

Sample of the scene:
ell
{
}
cone
VxBuilder will automatically made

union of these objects by default. The
following complex objects were added to
standard library:

Torus (defined by ‘torus’ keyword);

Cube (defined by ‘cube’ keyword).
Also as mentioned above, you could

use objects simply by referencing to its file
name using ‘object’ keyword. Please note
that feature doesn’t supported for file
saving. It always saved to one file through
traversal saving of all object regardless to
their own paths.

Sample of the scene:
//x.scene
cube
torus
//y.scn
object x

 Vyatkin ___ ISSN 2349 – 7238

AJCSES[2][3][2014] 102-108

In addition the primitive types
described above, you can also combine
multiple objects of any type into complex
one by Constructive Solid Geometry (CSG).
Two basic types of CSG operations
supported through keywords: ‘union’,
‘intersection’ (‘inter’).

Sample of the scene containing
intersection of the two primitive objects:

inter
{
 ell
 cone
}
The following items may be applied

to object of any type. It is often useful to
invert an object using ‘inverse’, for example
use of ‘inverse’ for union changes it to
intersection. Transformations: ‘move’,
‘rotate’, ‘scale’, ‘skewx’, ‘skewx’, ‘skewy’,
‘skewz’, use ‘matrix’ keyword.
Specification of the color uses ‘color’
keyword. Colors consist of three values for
each of color components.

Interface concept

All Vx manipulations are object(s)-
oriented thus you apply commands by first
selecting the object and then selecting the
command (a noun-verb interface). You
select object (s) directly by left mouse
button clicking in the render window (you
could see the list of their name(s) objects at
the top of the window) or through scene tree
control using context menu. The selected
object (if it is not perturbation) is marked
with red and remains red until you change
the selected object. The three-color tripod
(with corresponding axes highlighted) is
visible for each selected object in order to
help you understand the direction of the
movement or other manipulations (see Fig.
2). The area of perturbation if it is selected is
outlined by blue line and its perturbation
factor is shown after its name.

Proposed interface for design system
provides 4 basic manipulations: Move,
Rotate, Scale and Deform. Objects are
selected by left mouse button clicking. If
‘Ctrl’ is pressed then only perturbations
could be selected. By choosing the action
you could transform selected objects. When
the rendering of the scene is completed you
could see the name(s) of the object(s) under
cursor in Info mode (when Shift is pressed).
You also could apply modifications to
object(s) selected during Info mode after
you turned it off (by releasing the Shift -
key). The Scene control is the tree view
window that displays a hierarchical list of
objects, such as operations (union/
intersection), quadrics and perturbations.
The drag-n-drop operations are supported.
Each item consists of a label that names
object. User is able to add/ delete objects,
change the properties of the selected item
(e.g. type of quadric or operation,
perturbation factor value etc.) through
property sheet at the bottom of the control.
The context menu allows user to
cut/copy/paste/delete/create objects.

CONCLUSION

In this article, interactive shape
modeling of geometric objects defined by
perturbation functions. Gradual modification
of an initial shape with interactive
modifications is the central concept of
system modeling. To ensure interactivity,
the efficient acceleration methods for
function evaluation have been proposed. A
system modeling allowing for
implementation of different functionally
defined interactive shape modeling
applications was considered.

REFERENCES

1. R.N. Perry and S.F. Frisken. Kizami: A
System for Sculpting Digital Characters, in
SIGGRAPH’01, 2001, pp. 47-56.

 Vyatkin ___ ISSN 2349 – 7238

AJCSES[2][3][2014] 102-108

2. M. Agrawala, A.C. Beers and M. Levoy, M.
In Proceedings, Symposium on Interactive 3D
Graphics, 1995, pp. 145-150.

3. B.M. Oh, M. Chen, J. Dorsey and F. Durand.
Image-based modeling and photo editing, in
SIGGRAPH’01, 2001, pp. 433-442.

4. S. Wang and A. Kaufman, Volume Sculpting,
Symposium on Interactive 3D Graphics, ACM
Press, 1995, pp.151-156.

5. K. Levinski and A. Sourin. Interactive
function-based artistic shape modeling//
International Symposium Cyber Worlds:

Theory and Practice, Tokyo, Japan 6-8
November, 2002 pp.521-528.

6. S.I. Vyatkin, Complex Surface Modeling
Using Perturbation Functions, Opto-
electronics, Instrumentation and Data
Processing, Volume 43, Number 3, 2007,
pp. 226-231.

7. Vyatkin Sergey I., Dolgovesov Boris S.,
Gorodilov Mikhail A. Perturbation Functions
In Computer Graphics//Modern
 Instrumentation, 2013, vol. 2, № 2. pp. 26-
32.

Figure 1. Functionally defined object with perturbation
functions.

 Vyatkin ___ ISSN 2349 – 7238

AJCSES[2][3][2014] 102-108

Figure 2. Main window of the program.

