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INTRODUCTION
Aluminium (Al) is a lightweight silvery white metal of main Group 
13 (IIIa, or boron group) of the periodic table. It is the most wide-
spread metal on Earth, making up more than 8% of the Earth’s 
core mass, and also the third most common chemical element on 
our planet after oxygen and silicon. Al accumulates into the body 
through different routes, induces various neurotoxic effects, rep-
resents a risk factor in many neurodegenerative diseases, and its 
side effects may be mitigated by the use of some neuroprotective 
agents (Figure 1).

Aluminium as a Toxic Element
Al is widely spread in nature as a trivalent ion (Al+3) in silicates, 
oxides, and hydroxides, as well as in combination with chlorine, 
sulfur, fluorine, or organic matter [1]. Intake of Al is by air, water, 
food, additives, medicaments, vaccines, cosmetics, agrochemi-
cals, etc. It is in extensive human use in different products such 
as Al chloride, Al hydroxide, Al nitrate, Al phosphate, Al sulfate, 

and Al silicate [2]. Al ion has no physiological part in metabolic 
processes, but it accumulates in mammalian tissue and has toxic 
and pathologic effects [3,4]. Absorbed through the skin, intes-
tinal and alveolar mucosa, Al enters the brain across the blood 
brain barrier (BBB), the choroid plexuses, and the nasal cavity 
and remains for a long time since its removal from the brain tis-
sue is slow [5-8]. The distribution of Al in the brain is about 1% of 
the total body, in all regions with maximum accumulation in the 
hippocampus [9-11].
Al has multiple effects on cellular homeostasis and exhibits a 
pro-oxidant activity that results in oxidative stress, free radical 
attack, and oxidation of proteins and lipids [7]. It also induces 
pro-inflammatory and pro-apoptotic gene expression, and af-
fects enzyme activity, and adenosine triphosphate (ATP) energy 
metabolism. [12-14].

Aluminium Induced Oxidative Stress, Apoptosis 
and Inflammation
Oxidative stress and changes in energy metabolism and mito-
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chondrial function are the first events that make the brain sensi-
tive to Al accumulation [15]. In Al-loaded cells is observed loss of 
christie, chromatin condensation, and decreased number of mi-
tochondria [16]. Oxidative stress is associated with a significant 
reduction in antioxidant enzyme activity: superoxide dismutase, 

catalase, glutathione peroxidase, glutathione reductase, and glu-
tathione-S-transferase with enhanced activity of nitric oxide (NO) 
levels in some parts of the brain [17]. Induction of apoptosis in 
cells exposed to Al includes several mechanisms: mitochondrial 
pathway, p53, Bax, and caspase activation [18-20].

Figure 1. Schematic representation of the Al contamination routes, Al neurotoxicity and neuro protection, and Al-related diseases.

Different Al contractions affect the apoptosis of astrocytes (in-
duce or block selectively the process). On the one side, there is a 
change in cell cycle distribution and increased intracellular Ca2+ 
at a dose of 400 μM of Al, whereas the dose of 200 μM of Al 
blocks the apoptotic process [21]. As a result of these activities, 
oxidative injury occurs and triggers neuroinflammation and mi-
croglial activation. At the place of oxidative injury, the expression 
of pro-inflammatory cytokines IL-1β, IL-6, TNF-α, and MIP-1a is 
increased; while the expression of brain derived neurotrophic 
factor is significantly reduced [22,23]. Microglia activates the 
secretion of IL-1β and other substances typical for microgliosis 
inducing memory and learning dysfunction through modulation 
of prostaglandin E2 synthase-prostaglandin E2-prostaglandins re-
ceptors (PGES-PGE2-EPs) signaling pathway [24,25]. Particularly, 
oxidative stress dependent glial activation in the rat brain is also 
observed after Al exposure [26].
Al induces endoplasmic reticulum stress, which alters Ca2+ ho-
meostasis [27]. Given the role of the endoplasmic reticulum in 
Ca2+ handling, altered intracellular Ca2+ levels may be indicative 
of its dysfunction [28]. Due to toxic events, synaptic plasticity and 
transmission are reduced, as well as neurotrophin production. 
Synaptic dysfunction is a consequence of the inhibition of synap-
tic Na+/K+-ATPase activity and a decrease in nerve growth factor 
and brain derived neurotrophic factor expression [29, 30]. Axonal 
transport and perikaryal aggregation are altered in the cytoskele-
ton, which may lead to neurofibrillary degeneration [31].

DISCUSSION

Aluminium-Induced Changes in Neurotansmis-
sion
The central nervous system is the most susceptible to Al toxic-
ity and absorption and accumulation of Al in different brain re-
gions have an impact on glutamatergic, GABAergic, serotonergic, 
cholinergic, and dopaminergic neurotransmission [32, 33]. It 
has been shown that Al reduces N-methyl-D-aspartate (NMDA) 
and alpha-amino-3-hydroxy-5-methylisoxazole-4-proprionic acid 
(AMPA) expression, glutamate receptors playing an important 
role in learning and memory, and fast excitatory glutamatergic 
neurotransmission, respectively [34-36]. It also increases glu-
tamate levels in the cerebrum, thalamus, hippocampus, and 
cerebellum, while as a response to the increased glutamater-
gic transmission, GABAergic inhibitory effect is stimulated [37]. 
Under conditions of Al exposure, the cholinergic system shows 
a marked reduction in acetylcholinesterase (AChE) activity, mus-
carinic receptor binding, and nicotinic acetylcholine receptors 
activity and gene expression [38, 39]. Finally, Al exposure signifi-
cantly inhibits dopaminergic transmission and affects serotonin 
levels differently due to a complex network of serotonin receptor 
subtypes [40, 41].

Animal Models of Aluminium Neurotoxicity 

Al is a neurotoxic element implicated in several neurochemical, 
neuropathological, electrophysiological, and behavioral changes 
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associated with cognitive impairment [42]. For investigation of Al 
neurotoxicity, different animal models are used. The most repre-
sentative is the animal model in rats, which mimics some diseas-
es occurring due to Al exposure. The neurotoxic properties of Al 
exposure depend on several factors including dose, duration and 
route of exposure, chemical forms, metabolism, accumulation, 
detoxification and distribution, and elimination. Al application is 
followed by differences in tissue distribution between the blood 
and the target site [43]. Parenteral administration of Al exhibits 
higher toxicity than oral application [44]. Also, young pups are 
more sensitive than adults to Al exposure [45]. Cognitive decline 
can be behaviorally tested on sensory, motor, and learning abili-
ties. The behavioral tests in animals include visual, motor, senso-
rimotor, gross motor, and fine motor performances and reflexes, 
coordination and locomotion [46].
According to our previous studies, spectral and fractal analysis 
of the electrical activity in the brain has proven to be a reliable 
tool for qualitative and quantitative assessment of changes in 
the central nervous system in an animal model of intoxication 
with Al [45, 47-50]. So, a higher presence of power spectra in the 
delta range of parietal electrocortical activity, a lower presence 
in the theta range, and increased values of the parameter DT as 
the ratio of delta to theta range were observed in pups indirectly 
exposed to Al (whose mothers were drinking a 0.5% water solu-
tion of Al chloride during the gestation and lactation periods), 
compared to controls [45]. In adult male rats, the average fractal 
dimension of electrocortical activity in chronically Al-treated an-
imals was lower than in the control rats, at cerebral but not at 
cerebellar level [45-47].

Aluminium Related Diseases
Acute exposure to Al can cause clinical neurotoxicity. Encepha-
lopathy occurs among workers in the Al industry, and the main 
symptoms are cognitive deficit, in-coordination, tremor, and 
spinocerebellar degeneration [51]. Al in vaccines can cause neu-
roinflammation, cell loss, and memory deficit [52]. Sporadic cas-
es include a seizure disorder, ataxia, and dysarthria. Al levels in 
the brain are increasing with age, which may lead to neurode-
generative diseases [53]. Alzheimer’s and Parkinson’s disease are 
the most common Al-related diseases. Alzheimer’s disease de-
velops in the areas where the Al concentration in drinking water 
is higher, and the main symptoms are dementia, development 
of amyloid plaques consisting of aggregated β-amyloid proteins 
and neurofibrillary tangles consisting of aggregated tau proteins, 
production of reactive oxygen species, reactive microglia, and 
the production of pro-inflammatory cytokines and macrophage 
activity [54]. Al exposure may induce the disorder in dopamine 
related brain regions, mostly the striatum, and together with in-
flammation and microglial activation lead to Parkinson’s disease 
[55, 56]. In rat spinal cord, Al treatment causes severe motor 
neuron damage resembling amyotrophic lateral sclerosis [57]. 
Acting as a pro-oxidant or as adjuvant inducing autoimmunity, [7] 
Al may be involved in myelin loss and axonal degeneration that 
occurs in multiple sclerosis [58]. The presence of Al in inflamma-
tory cells in the meninges, vasculature, grey, and white matter 
could implicate Al in the etiology of autism [59].

Neuroprotection against Aluminium Toxicity
A novel investigation is focused on the mechanisms of neuro pro-

tection and many substances have been tested on animal models 
of diseases but potential drugs have not yet been found. Shortly 
we report some of these studies [60]. It is known that Alzhei-
mer’s disease in the initial phase is characterized by changes in 
mood and behavior, aggression, confusion, avoidance of social 
connections, and memory loss, while oxidative stress, inflamma-
tion, and apoptosis are dysregulated and implicated in the pro-
gression of the disease [61]. Ononin extract in an animal model 
of Alzheimer’s disease suppresses oxidative stress and neuroin-
flammation, activates apoptosis, prevents Al accumulation in the 
brain, and stimulates cognitive impairment [62]. Hammada sco-
paria extracts can be used for the treatment of Al neurotoxicity 
due to the inhibitory effect on AChE activity and recovery from 
oxidative damage induced by free radicals [63]. Bacopa monniera 
and L-deprenyl also show neuroprotective efficiency through the 
prevention of Al-induced oxidative damage and oxidative stress 
[64]. Protein 14-3-3ζ combing with tau can prevent over phos-
phorylation of tau, so it has a neuroprotective effect, which has 
been experimentally proved in the hippocampus of rats [65]. An-
other study in rats examined the protective effects of memantine 
and artesunate in Al chloride-induced toxicity [66]. Both sub-
stances reduce the cerebral level of TNF-α and IL-1β. Memantine, 
as an NMDA receptor antagonist, reduces AChE activity, while 
artesunate improves cognition, has an anti-inflammatory effect, 
and attenuates oxidative stress. Cardamom oil has been report-
ed to have AChE inhibitory, antioxidant, and anti-anxiety effects 
[67]. Also, similar activity has juniper oil and clove oil [68]. Allium 
cepa L. has neuroprotective effects on Al chloride-induced neu-
rotoxicity by improving muscle coordination and memory deficits 
[69]. It reduces oxidative stress, AChE activity, and Al deposition 
in the brain.

CONCLUSION
This work is focused on the consequences of contamination with 
Al, as a highly neurotoxic element, on the central nervous system 
and provides insight into the main damages caused by Al in the 
brain, cognitive and motor diseases associated with exposure to 
Al, and possible mechanisms of neuroprotective action of various 
agents in conditions of Al intoxication. It summarizes the current 
state of knowledge on the topic and represents a basis for future 
research and predictions of Al neurotoxicity and neuroprotec-
tion. 
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