

COMMENTARY

Advances in Organ Preservation for Pancreas Surgery Outcomes

Helena Duarte*

Department of Clinical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil

DESCRIPTION

The preservation of organs before surgical placement has always been an essential factor influencing outcomes in pancreas procedures. While therapies and surgical approaches have developed over time, the manner in which an organ is maintained from the moment of retrieval until it reaches the operating room remains a decisive element. Even slight variations in preservation conditions can affect tissue stability, enzyme activity and long-term graft function. Therefore, discussions about improvements in preservation strategies continue to shape the field, as they contribute directly to patient outcomes and surgical success rates. Historically, static cold storage has been widely accepted for maintaining pancreas integrity before surgery. This technique relies on cooling the organ using specialized solutions that slow down cellular activity. Cooling reduces metabolic demands and limits the accumulation of harmful by-products that could arise when blood supply is temporarily absent. Although effective for decades, static cold storage has some limitations, particularly regarding extended storage times and the variability of cellular responses to prolonged cooling. Each organ behaves differently depending on the donor's age, condition and the duration between retrieval and implantation, making it essential for clinicians to continuously examine alternative approaches.

In recent years, new preservation solutions have gained attention for their ability to enhance cellular stability during storage. These solutions focus on maintaining osmotic balance, reducing cell swelling and promoting better energy management within pancreatic tissues. Organ specialists have noted that balanced electrolytes, buffers and protective compounds inside these solutions create an environment that helps the pancreas maintain structural integrity. Although these formulas differ, their main purpose is consistent: To keep pancreatic tissue in a functional state for as long as possible without introducing risks during rewarming.

Received: 01-Dec-2025, Manuscript No IPP-25-23035; **Editor**
Assigned: 03-Dec-2025, PreQC No IPP-25-23035 (PQ); **Reviewed:**
17-Dec-2025, QC No IPP-25-23035; **Revised:** 23-Dec-2025, Manuscript
No IPP-25-23035 (R); **Published:** 31-Dec-2025, DOI: 10.36648/1590-
8577.26.6.945

Correspondence Marcus Ellwood
Department of Medical Therapeutics, University of Leeds, Leeds, United
Kingdom
E-mail marcus.ellwood@leedsmedresearch.uk

Another area that has seen significant improvement is transportation method refinement. Ensuring stable temperature control during transit is a critical element of organ care. Earlier methods depended heavily on ice-filled containers, which sometimes caused unpredictable temperature fluctuations. Today, insulated devices with digital monitoring systems help medical teams maintain a steady temperature from the moment the organ leaves the donor facility until the receiving center accepts it. These devices can send alerts when temperature variations occur, allowing teams to intervene quickly if needed. The introduction of these technologies has contributed to higher confidence in organ transport logistics.

Some centers are also exploring machine perfusion as an alternative strategy. This technique allows the pancreas to be maintained using controlled perfusion at low temperatures, enabling continuous flow of protective solution through the organ. While machine perfusion has been widely studied for other organs such as the liver and kidney, its application to the pancreas is still developing. Early studies suggest that perfusion may help maintain cellular structure better than passive cold storage, especially when dealing with extended criteria donors. Although more evaluation is needed before widespread adoption, this method could help reduce organ discard rates in the future. Increasing awareness of oxygenation levels has also influenced preservation. Deprivation of oxygen remains one of the major sources of tissue stress during storage. Solutions enriched with compounds capable of supporting limited oxygen availability may assist in stabilizing mitochondrial activity. This has led scientists to experiment with additives that temporarily support cellular energy production while the pancreas remains outside the body. The goal is not to completely restore normal activity but to reduce the intensity of stress signals that appear during the cold phase. Each small improvement contributes to better overall organ performance after surgery.

Another important factor in preservation success is minimizing physical trauma during organ handling. Even with optimal chemical solutions, mishandling can cause cellular damage that may manifest only after the organ is placed in the recipient. Training programs now emphasize delicate retrieval methods, careful packaging and controlled movement during transport. Coordinated communication between retrieval teams and surgical teams also helps reduce time intervals, lowering the likelihood of preservation-related deterioration. Ongoing

Citation: Duarte H (2025) Advances in Organ Preservation for Pancreas Surgery Outcomes. J Pancreas. 26:945.

evaluation tools have also advanced. Surgeons no longer rely solely on visual inspection to determine organ suitability. New biomarkers and biochemical assessments allow teams to examine pancreatic condition more precisely while the organ is still being preserved. These tests provide insights into enzyme stability, tissue swelling and inflammatory markers, helping surgeons make informed decisions before proceeding with surgery. Predictive evaluations reduce uncertainty and promote better patient outcomes by ensuring only suitable organs are used.

The collective progress in preservation reflects the

medical community's commitment to improving every stage of pancreas surgery preparation. As clinicians continue refining solutions, transportation devices and assessment tools outcomes will continue to improve for recipients around the world. Although challenges remain, the advances already achieved show that even subtle refinements in preservation can bring meaningful improvements in long-term pancreatic function after surgery. The future methods will likely focus on enhancing energy balance, prolonging stable storage periods and reducing tissue injury, ultimately giving more patients access to successful surgical outcomes.