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ABSTRACT

We compared the accuracies of two genomic-selegiiediction methods as affected by marker density a
quantitative trait locus (QTL) number. Methods usedlerive genomic estimated breeding values (GEB&fe
random regression best linear unbiased predictiBR{BLUP) and a Bayesian LASSO (Least Absolute Kagén
and Selection Operator). In this study the genoomaprised four chromosomes of 250 cM each. Alsoiderisg

the number of markers 1000, 2000 and 5000 and tineber of QTLs 4, 10, 20 and 40 and heritabilityppl0 and

25 percent were compared.. In all scenarios BayesiASSO was more accurate than RR-BLUP, also isanga
the number of QTLs, the evaluation accuracy dea®adightly which this reduction is greater in thmaver
heritability. The correlation between true breedimglue and the genomic estimated breeding valugaiget
generations applying RR-BLUP and Bayesian LASSQCredsed from 0.918 to 0.807 and 0.933 to 0.847
respectively.
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INTRODUCTION

Genomic selection is a form of marker-dssisselection in which genetic markers cowgrithe whole
genome are used so that all quantitative ttadi (QTL) are in linkage disequilibrium witlat least one
marker. The major limitation to the implementatiohgenomic selection has been the large number avkens
required and the cost of genotyping these markResently both these limitations have been overcommost
livestock species following the sequencing of tivedtock genomes, the subsequent availability ofdneds of
thousands of single nucleotide polymorphisms (SKRY dramatic developments in SNP genotyping tdolygo

[1].

the availability of many thousands of SN§pread acrossthe genome for different lbokstspecies opens
up possibilities to include genome-wide markafoimation in prediction of total breeding valués,perform
genomic selection. Compared to traditional bneggiractice, including genomic information yieldsansiderable
increase in selection responses for juvenilénals that do not have phenotypic records [2] audentially can
reduce the costs of a breeding program up % [B). As a result of these developments therensany livestock
breeding companies planning to implement genomliecten in the near future. The purpose of thisquap to
review the requirements for maximum benefits talbgved from genomic selection.
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Under a SNPs markers whole-genome scans approactly, markers are likely to be located in regiong #re not

involved in the determination of traits of intere®n the other hand, some markers may be in linkisggguilibrium

with some QTL, or in regions harboring genes inedhn the infinitesimal component of the trait. Flsiuggests
that differential shrinkage of marker effects slibbe a feature of the model, then an alternativihésuse of
LASSO (Least Absolute Shrinkage and Selection Qperaegression, which provide good features ofsstib
selection (i.e., variable selection) with the skaige theory. de los Campos et al. [4] proposedye8an approach
of LASSO regression in genome-wide selection(GWABY ever since, the success of this methodologybbas

reported by several authors [5].

MATERIALS AND METHODS

Statistical models

Two methods were used to estimate SNP effects:oranggression BLUP (RR-BLUP) and Bayesian LASSO
(Least Absolute Shrinkage and Selection Operataession Other than the requirement that markersoaated
across the genome, no additional information, sagcmarker location or pedigree, is required byniethods. The
basic model can be denoted as:

yi=9X;) +e

Wherey; is the Estimated breeding value (EBY),s a 1 x p vector of SNP genotypg§X;) is a function relating
genotypes to EBVs ang] is a residual term. The SNP genotypes are codedréstes according to the number of
copies of one SNP Allele, i.e. 0, 1 or 2. We denwith X the matrix containing the column vectdfg of SNP
genotypes at locus(k =1, 2, ...p).

RR-BLUP
In this method, SNP effects are assumed randonwjftj,g(x;) having the form:

p

90D = ) %

k=1

Wherep, the effect associated with SNP k g, is set up as described above for additive effélite. regression
coefficients are found by solving the normal equiagi

B=XX+I)"Xy

Wherel is constant for all SNPs. Differences in shrinkbgéveen SNP still arise as a result of variatioallale
frequency. Meuwissen et al. [2] and Habier et&]. fiave calculated for their simulated data from known genetic
and residual variances. With no knowledge of theseance components and analyzing EBV data, anoappate
value for the shrinkage parameter can be obtaigentdss-validation. When EBV have a variety ofabllities then
the regression can be weighted accordingly so that

B=XR'X+ID'XR 'y
WhereR is a diagonal matrix of Weights. they were treatsdiomogeneous, ile.= I.

Bayesian Lasso Regression

Given phonotypical measurements and genotype irgtom, we could obtain the preconditioned respofidemsed
on the generic form of linear regression. Howevelgénome-wide association studies, a number ofridea,

which are either discrete or continuous, may beswea for each subject. In order to estimate gereffects

precisely by adjusting for these covariates, a GW#A&del that takes into account the effects of irtguar
covariates would be more appropriate. Thereforedeseribe the preconditioned valyie of a quantitative trait for
subject i as

Ji=u+Xla+ ZT+ & a+ {fd+e€;, i=1,.,n
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Where p is the overall mean, Xi is tH&-dimensionalvector of discrete covariates for subjectad, = (al,---
,ad1)T is the vector of regression coefficients for diger covariates, Zi is the d2 -dimensional vector of
continuous covariates for subjéci = (81, --,8d2)T is the vector of regression coefficients for dmmbus
covariates,

a = (al,--,ap)T andd = (d1,--,dp)T are the p-dimensional vectors of the additive aodninant
effects of SNPs, respectivel§, and{; are the indicator vectors of the additive and damt effects of SNPs for
subject i, and i is the residual error assumetblfow a N (0, 52) distribution. Thg-th elements of; and(; are
defined as

1,if the genotype of SNP jis AA
§ij = 1 0,if the genotype of SNP j is Aa
—1,if the genotype of SNP jis aa

_ { 1,if the genotype of SNP j is Aa
Gij = 0,if the genotype of SNP jis AA or aa

The Bayesian lasso is implemented with a hibieal model, in which scale mixtures of normede used as
prior distributions for the genetic effects arekponential priors are considered for their vare and then
solved by using the Markov chain Monte CENG&CMC) algorithm. Our approach obviates tloloice of

the lasso parameter by imposing a diffuse hyper on it and estimating it along with othearameters and is
particularly powerful for selecting the most relat SNPs for GWASs where the number of predictexceeds
the number of observations[7].

Tablel. The parameters of the simulated genetic medi

Numberof chromosomes 4
Mutation rate 2.5x 107
Distribution of additive mutationaéffects Gamma(1.660.4)

Dominanceof QTL effects
Population structure

Generationd—-1000 Idear, N = 100
Generationl001 Ideal’, N= 200
Generationl002 20 half-sib families, N= 2000
Generationl003 and later Idear, N =2000

Marker genotyping Generationd 001 andlater
Phenotypic recording Generationd 001 and 1002

* Ideal denotes populationstructure where the effective size equals the &gtopulationsize. Thisstructureis simulatedby giving
every male(female)in generatiort-1 an equal probability obecominghe sire(dam)of animal i in generationt, which implies no
selection andrandommating of males andemales [2].

The data Simulation: Data sets with heritability of 5, 10 and 25 peicat different marker densities were
simulated to allow comparison of the different misdén terms of accuracy of predicted breeding &aluAn
effective population size of 100 animals was siredaof which half of the animals were female ama other half
male. This structure was kept constant for 100Cg@ions. Mating was performed by drawing the paref an
animal randomly from the animals of the previousegation. The considered genome comprised foumehsomes
of 250 cM each. The number of segregating QTL &figcthe trait was set at 4, 10, 20 and 40 andchtimaber of
markers was 1000, 2000 and 5000 for the traits \Wwithtability of 0.05 and 0.25. QTL loci were ramcly
determined, with all possible positions on the geadaving equal chance Simulating a whole All keafoci
with a minor allele frequency in generations 10003 of 0.02 were discarded. Different marker désiwere
created for each simulated data set. To arrive miutation-drift balance, populations were simulated 1000
generations at an effective size of 100. After ¢hd900 generations, the actual size of the populsitivas
increased, to 200 (100 males and100 females) iargéan 1001, and to 2000 (20 half-sib familiesiaé 100 each)
in generations 1002 and 1003. The animals in génasal001 and 1002 were marker genotyped and deddior
the trait. Phenotypic records were obtained byragldinormally distributed error term with variaricto the genetic
value of the individuals. The 2000 animals of gatien 1003 are assumed to be juveniles that didyet) have
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phenotypic records and their breeding values wstienated using marker information only. The bregdialue of
each animal was the sum of the effects of the Qllidles that it carried. To obtain the phenotype, adeled a
normal error deviate with variance calculated tbiewe the desired heritability. The statistical hogts will be
compared for their accuracy of predicting the geaetic values of the animals in generation 1003 [2

RESULTS AND DISCUSSION

The correlation between the actual and the estunbteeding values in the generation of 1003, camsid the
number of QTLs 4, 10, 20 and 40 and the numberarkars 1000, 2000 and 5000 for the trait with lability of
0.25 is presented in Table 2. Regarding to Tabley2ncreasing the number of markers the evaluaimuracy is
increased and by decreasing it the accuracy dexgeBy increasing the number of QTLs the accurd@yaluation
decreased slightly. For example, when the numbenarkers was considered to be 1000, by increabimgnimber
of QTLs from 4 to 40, the accuracy of evaluatiomngsRR-BLUP and Bayes methods decreased from Ot@75
0.859 and 0.889 to 0.870 respectively. On the ofleerd, by increasing the number of markers theceffé the
number of QTLs on evaluation accuracy decreased.

Table2. The correlation between the actual and thestimated breeding values in the generation of 100@th different number of marker
and QTL

QTL | SNP | RR-BLUP | Bayes

1000 0.8751 | 0.8892
4 2000 0.9024 | 0.9184
5000 0.9111 | 0.9299
1000 0.8779 | 0.9059
10 | 2000 0.9091 | 0.9247
5000 0.9179 | 0.9330
1000 0.8721 | 0.8956
20 | 2000 0.9114 | 0.9261
5000 0.9171 | 0.9376
1000 0.8590 | 0.8707
40 | 2000 0.8994 | 0.9136
5000 0.9205 | 0.9335

The values of evaluation accuracy using RR-BLUP 8ages methods by considering 1000, 2000 and 5000
markers and for heritability of 5, 10 and 25 petcare shown in Table 3. From Table 3 one can satttie
evaluation accuracy of both methods increases drgasing the number of markers and heritability @od versa.
The rate of variation in the evaluation accuradgatesl to the number of markers in lower heritapilg less than
high heritability.

Table 3. The correlation between the actual and thestimated breeding values in the generation of 18Qvith different number of marker
and heritability

SNP | ¥ | RR-BLUP | Bayes

5 0.8043 | 0.8130
1000 | 10 0.8398 | 0.8576
25 0.8779 | 0.9059

5 0.8400 | 0.8424
2000 | 10 0.8678 | 0.8820
25 0.9091 | 0.9247

5 0.8461 | 0.8534
5000 | 10 0.8758 | 0.9031
25 0.917¢ 0.933(

Meuwissen et al. [2] presented that the greatemtiaber of markers, the markers effects will bésiatl more
accurately and as a result the evaluation accuvdgenomic breeding values will be higher. Thessults are
consistent with the results in this work. On theesthand, Nilson et al. [8] presented that by iasieg the trait
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heritability from 0.2 to 0.4, the genomic evaluatiaccuracy increases by about 4 percent whichnsistent with
the results from Kolbehdari et al.[9] but is comyrto expectations of Meuwissen et al [2].

The evaluation accuracy values by RR-BLUP and Bagethods for 4, 10, 20 and 40 QTLs and 5, 10 and 25
percent heritability are shown in Table 4. As prged, increasing the number of QTLs, the evaluatiocuracy
decreases slightly which this reduction is gremtehe lower heritability.

Table 4. The correlation between the actual and thestimated breeding values in the generation of 18@vith different number of QTL
and heritability

QTL | h? | RR-BLUP | Bayes

5 0.8389 | 0.8502
4 10 0.8691 | 0.8788
25 0.9111 | 0.9299

5 0.8461 | 0.8534
10 | 10 0.8758 | 0.9031
25 0.917¢ 0.933(

5 0.8480 | 0.8562
20 | 10 0.8762 | 0.8919
25 0.9171 | 0.9376

5 0.8415 | 0.8589
40 | 10 0.8637 | 0.8967
25 0.9205 | 0.9335

The accuracy rate in the target generation (100®@9®) using BLUP and Bayes methods are shown lileTa The
number of markers and QTLs are considered to b&® Z0@ 10 respectively. As expected, in both cates,
evaluation accuracy rate decreases across theagiemst

Table 5. The correlation between the actual and thestimated breeding values in the generation of 1801009

Generations| RR-BLUP | Bayes
1003 0.9179 | 0.9330
1004 0.8795 | 0.9121
1005 0.8522 | 0.8928
1006 0.8392 | 0.8776
1007 0.8242 | 0.8693
1008 0.8101 | 0.8540
1009 0.8074 | 0.8476

The correlation between true breeding value andym®mic estimated breeding value in target geloersi{1003
to 1009)applying RR-BLUP and Bayesian LASSO de@ddsom 0.918 to 0.807 and 0.933 to 0.847 respelgtiv
The use of phenotypic and family tree informatisnai common method in animal breeding. The use pétge
information of individuals in molecular level todrease genetic progress by reducing the genergapnand
improving the evaluation accuracy of breeding valiseone of the main goals of modern biologicahtedogies in
animal breeding [10]. In general, the genomic d@ecis a form of selection assisted by marker Wwhises the
genetic markers covering the whole genome [11]ianthkes a notable increase , in comparison withventional
breeding, in response to a selection of young dsitiiet do not have sufficient phenotypic recondsrf relatives

2.

Increasing of the genomic data increases availaftgmation for genetic evaluation. This informaticontains
molecular genotypes in loci. The observed genotypesarkers are available and thus the model celude the
unknown effect of each of the markers. In this gtilL.UP mixed model and Bayes method were usedatuate
the markers effects. In BLUP model, presented bywissen et al. [2] a constant and equal varianeétiifuted to
all of the loci. It is also assumed that each mahes a small effect and no marker has a very laffget. Many
studies have shown that Bayes method is more aeciuracomparison with BLUP which is consistent witte
present results [12]
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Habier et al [6] compared different methods of gaeimobreeding values evaluation and showed that 8ayethod
has high accuracy for any number of markers. In Blrtlethod, equal variance in all markers is consitlend it is
no longer necessary to have preliminary informatanthe variance of the markers effects (what eded in the
Bayes approach). This method is simpler than thee@an method and requires less computation. Teithodl is
also more affected by family relationships amongpbe.

Meuwissen et al [2] in a simulation study, used pB@notypic records in the reference group in otdestimating
the genomic breeding values of people in validasehfor a trait with heritability 0.5 and they ogfed that the
accuracy of single trait genomic evaluation by gdtLUP method is 0.57. Solberg et al [12] in a gtuded 1000
phenotypic records in the reference group for & tséth a heritability of 0.5. They used Bayes nwihfor

estimating the effects of the markers and repattietl the genomic evaluation accuracy of validagen is 0.66.
This advantage could be due to the statistical atktised. It has been reported in some studieBthas methods
are better than the BLUP method [13].

CONCLUSION

By using a dense marker map covering all chromospihé possible to accurately estimate the bregdalue of
animals that have no phenotypic record of their @nd no progeny. For evaluation of traits whichemlng the
phenotypic records from them is difficult or impitss, such as traits that only appear in femalesgase resistance
and traits with low heritability, using the Genonsielection is suggested. Methods that assumedadistribution
for the variance associated with each chromosom@eet gave more accurate predictions of breedihgegseven
when the prior was not correct.
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