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ABSTRACT 
 
We compared the accuracies of two genomic-selection prediction methods as affected by marker density and 
quantitative trait locus (QTL) number. Methods used to derive genomic estimated breeding values (GEBV) were 
random regression best linear unbiased prediction (RR–BLUP) and a Bayesian LASSO (Least Absolute Shrinkage 
and Selection Operator). In this study the genome comprised four chromosomes of 250 cM each. Also considering 
the number of markers 1000, 2000 and 5000 and the number of QTLs 4, 10, 20 and 40 and heritability of 5, 10 and 
25 percent were compared.. In all scenarios Bayesian LASSO was more accurate than RR-BLUP, also increasing 
the number of QTLs, the evaluation accuracy decreases slightly which this reduction is greater in the lower 
heritability. The correlation between true breeding value and the genomic estimated breeding value in target 
generations applying RR-BLUP and Bayesian LASSO decreased from 0.918 to 0.807 and 0.933 to 0.847 
respectively. 
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INTRODUCTION 
 

Genomic  selection  is  a  form   of   marker-assisted  selection  in   which genetic  markers  covering  the  whole 
genome are used  so that  all quantitative   trait  loci  (QTL)  are  in  linkage disequilibrium with  at  least  one 
marker. The major limitation to the implementation of genomic selection has been the large number of markers 
required and the cost of genotyping these markers. Recently both these limitations have been overcome in most 
livestock species following the sequencing of the livestock genomes, the subsequent availability of hundreds of 
thousands of single nucleotide polymorphisms (SNP), and dramatic developments in SNP genotyping technology 
[1]. 
 
the   availability   of   many   thousands  of  SNPs  spread  across the  genome for  different livestock  species  opens  
up possibilities  to  include genome-wide marker  information  in prediction of total breeding values, to perform 
genomic selection.  Compared to traditional  breeding practice, including genomic information yields a considerable 
increase  in selection  responses  for juvenile  animals that do not have phenotypic records [2]  and  potentially can 
reduce  the  costs of  a breeding program  up to 90% [3]. As a result of these developments there are many livestock 
breeding companies planning to implement genomic selection in the near future. The purpose of this paper is to 
review the requirements for maximum benefits to be derived from genomic selection. 
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Under a SNPs markers whole-genome scans approach, many markers are likely to be located in regions that are not 
involved in the determination of traits of interest. On the other hand, some markers may be in linkage disequilibrium 
with some QTL, or in regions harboring genes involved in the infinitesimal component of the trait. This suggests 
that differential shrinkage of marker effects should be a feature of the model, then an alternative is the use of 
LASSO (Least Absolute Shrinkage and Selection Operator) regression, which provide good features of subset-
selection (i.e., variable selection) with the shrinkage theory. de los Campos et al. [4] proposed a Bayesian approach 
of LASSO regression in genome-wide selection(GWS), and ever since, the success of this methodology has been 
reported by several authors [5]. 
 

MATERIALS AND METHODS 
 
Statistical models 
Two methods were used to estimate SNP effects: random regression BLUP (RR-BLUP) and Bayesian LASSO 
(Least Absolute Shrinkage and Selection Operator) regression Other than the requirement that markers are located 
across the genome, no additional information, such as marker location or pedigree, is required by the methods. The 
basic model can be denoted as: 
  �� = ����� + 
� 
 
Where y� is the Estimated breeding value  (EBV), X� is a 1 × p vector of SNP genotypes, g�X�� is a function relating 
genotypes to EBVs and e� is a residual term. The SNP genotypes are coded as variates according to the number of 
copies of one SNP Allele, i.e. 0, 1 or 2. We denote with X the matrix containing the column vectors �� of SNP 
genotypes at locus k (k =1, 2, ..., p). 
 
RR-BLUP 
In this method, SNP effects are assumed random [2], with g�x�� having the form: 
 

����� = � ���
�

��� �� 

 
Where β� the effect associated with SNP k is, x� is set up as described above for additive effects. The regression 
coefficients are found by solving the normal equations, 
 �� = ��′� + ���� �′! 
 
Where " is constant for all SNPs. Differences in shrinkage between SNP still arise as a result of variation in allele 
frequency. Meuwissen et al. [2] and Habier et al. [6]. have calculated " for their simulated data from known genetic 
and residual variances. With no knowledge of these variance  components and analyzing EBV data, an appropriate 
value for the shrinkage parameter can be obtained by cross-validation. When EBV have a variety of reliabilities then 
the regression can be weighted accordingly so that  
 �� = ��′#��� + ������′#��! 
 
Where R is a diagonal matrix of Weights. they were treated as homogeneous, i.e. R = I.  
 
Bayesian Lasso Regression 
Given phonotypical measurements and genotype information, we could obtain the preconditioned response y  ̃based 
on the generic form of linear regression. However in genome-wide association studies, a number of covariates, 
which are either discrete or continuous, may be measured for each subject. In order to estimate genetic effects 
precisely by adjusting for these covariates, a GWAS model that takes into account the effects of important 
covariates would be more appropriate. Therefore, we describe the preconditioned value �˜� of a quantitative trait for 
subject i as  
 �$� = % + ��&' +  (� &� + )�&  * +  +�&, + - � ,              / = 1, … , 2           



Honarvar M. et al Euro. J. Exp. Bio., 2013, 3(2):42-47      
_____________________________________________________________________________ 

44 
Pelagia Research Library 

Where µ is the overall mean, Xi is the d1-dimensional vector of discrete covariates for subject i,  ' =    �'1 ,· · · , '41 �& is the vector of regression coefficients for discrete covariates, Zi is the d2 -dimensional vector of 
continuous covariates for subject i, �  =    ��1 ,· · · , �42 �&  is the vector of regression coefficients for continuous 
covariates, 
 
 6   =    �61 ,· · · , 67 �& and 4 =   �41 ,· · · , 47 �& are the p-dimensional vectors of the additive and dominant 
effects of SNPs, respectively, 8� and 9� are the indicator vectors of the additive and dominant effects of SNPs for 
subject i, and  i is the residual error assumed to follow a : �0, <=� distribution. The j-th elements of 8� and 9� are 
defined as  
 

8�> =  ? 1, /@ Aℎ
 �
2CA�7
 C@ D:E F /G HH0, /@ Aℎ
 �
2CA�7
 C@ D:E F /G H6−1, /@ Aℎ
 �
2CA�7
 C@ D:E F /G 66J 
 9�> = K 1, /@ Aℎ
 �
2CA�7
 C@ D:E F /G H60, /@ Aℎ
 �
2CA�7
 C@ D:E F/G HH CL 66  J 
 
The   Bayesian  lasso   is implemented with a hierarchical model,  in which scale  mixtures of normal  are used as  
prior distributions  for the  genetic effects and  exponential priors are  considered for their variances, and then  
solved by  using  the  Markov  chain  Monte  Carlo (MCMC) algorithm.    Our  approach  obviates  the   choice   of  
the   lasso parameter by imposing  a diffuse  hyper-prior on it and estimating it along  with other  parameters and  is 
particularly powerful  for selecting the most  relevant  SNPs for GWASs where  the number of predictors  exceeds 
the number of observations[7]. 
 

Table1. The parameters of the simulated genetic model 
 
Number of chromosomes 4 

Mutation rate  2.5× 10-5 
Distribution of additive mutational effects  Gamma(1.66, 0.4) 
Dominance of QTL effects  0 
Population structure 

Generations 1–1000  Ideal* , N = 100 

Generation 1001  Ideal* , N= 200 
Generation 1002  20 half-sib families, N = 2000 

Generation 1003 and later  Ideal* , N =2000 
Marker genotyping  Generations 1001 and later 
Phenotypic recording  Generations 1001 and 1002 
 

*  Ideal denotes a population structure where the effective size equals the actual population size. This structure is simulated by giving 
every male (female) in generation t-1 an equal probability of becoming the sire (dam) of animal i in generation t, which implies no 

selection and  random mating of males and females [2]. 
 
The data Simulation:  Data sets with heritability of 5, 10 and 25 percent at different marker densities were 
simulated to allow comparison of the different models, in terms of accuracy of predicted breeding values. An 
effective population size of 100 animals was simulated, of which half of the animals were female and the other half 
male. This structure was kept constant for 1000 generations. Mating was performed by drawing the parents of an 
animal randomly from the animals of the previous generation. The considered genome comprised four chromosomes 
of 250 cM each. The number of segregating QTL affecting the trait was set at 4, 10, 20 and 40 and the number of 
markers was 1000, 2000 and 5000 for the traits with heritability of 0.05 and 0.25. QTL loci were randomly 
determined, with all possible positions on the genome having  equal  chance Simulating a whole All marker loci 
with a minor allele frequency in generations 1001-1003  of 0.02 were discarded. Different marker densities were 
created for each simulated data set. To arrive at a mutation-drift balance, populations were simulated for 1000 
generations at an effective size of 100. After these 1000 generations, the actual size of the populations was 
increased, to 200 (100 males and100 females) in generation 1001, and to 2000 (20 half-sib families of size 100 each) 
in generations 1002 and 1003. The animals in generations 1001 and 1002 were marker genotyped and recorded for 
the trait. Phenotypic records were obtained by adding a normally distributed error term with variance 1 to the genetic 
value of the individuals. The 2000 animals of generation 1003 are assumed to be juveniles that did not (yet) have 
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phenotypic records and their breeding values were estimated using marker information only. The breeding value of 
each animal was the sum of the effects of the QTL alleles that it carried. To obtain the phenotype, we added a 
normal error deviate with variance calculated to achieve the desired heritability. The statistical methods will be 
compared for their accuracy of predicting the true genetic values of the animals in generation 1003 [2]. 

 
RESULTS AND DISCUSSION 

 
The correlation between the actual and the estimated breeding values in the generation of 1003, considering the 
number of QTLs 4, 10, 20 and 40 and the number of markers 1000, 2000 and 5000 for the trait with heritability of 
0.25 is presented in Table 2. Regarding to Table 2, by increasing the number of markers the evaluation accuracy is 
increased and by decreasing it the accuracy decreases. By increasing the number of QTLs the accuracy of evaluation 
decreased slightly. For example, when the number of markers was considered to be 1000, by increasing the number 
of QTLs from 4 to 40, the accuracy of evaluation using RR-BLUP and Bayes methods decreased from 0.875 to 
0.859 and 0.889 to 0.870 respectively. On the other hand, by increasing the number of markers the effect of the 
number of QTLs on evaluation accuracy decreased.  

 
Table2. The correlation between the actual and the estimated breeding values in the generation of 1003 with different number of marker 

and QTL 
 

QTL SNP RR-BLUP Bayes 

4 
1000 
2000 
5000 

0.8751 
0.9024 
0.9111 

0.8892 
0.9184 
0.9299 

 
10 

 

1000 
2000 
5000 

0.8779 
0.9091 
0.9179 

0.9059 
0.9247 
0.9330 

 
20 

 

1000 
2000 
5000 

0.8721 
0.9114 
0.9171 

0.8956 
0.9261 
0.9376 

 
40 

 

1000 
2000 
5000 

0.8590 
0.8994 
0.9205 

0.8707 
0.9136 
0.9335 

 
The values of evaluation accuracy using RR-BLUP and Bayes methods by considering 1000, 2000 and 5000 
markers and for heritability of 5, 10 and 25 percent are shown in Table 3. From Table 3 one can see that the 
evaluation accuracy of both methods increases by increasing the number of markers and heritability and vice versa. 
The rate of variation in the evaluation accuracy related to the number of markers in lower heritability is less than 
high heritability. 
 
Table 3. The correlation between the actual and the estimated breeding values in the generation of 1003 with different number of marker 

and heritability 
 

SNP h2 RR-BLUP Bayes 
 
 

1000 
 

 
5 
10 
25 

 
0.8043 
0.8398 
0.8779 

 
0.8130 
0.8576 
0.9059 

 
 

2000 
 

 
5 
10 
25 

 
0.8400 
0.8678 
0.9091 

 
0.8424 
0.8820 
0.9247 

 
 

5000 
 

 
5 
10 
25 

 
0.8461 
0.8758 
0.9179 

 
0.8534 
0.9031 
0.9330 

 
Meuwissen et al. [2] presented that the greater the number of markers, the markers effects will be satisfied more 
accurately and as a result the evaluation accuracy of genomic breeding values will be higher. These results are 
consistent with the results in this work. On the other hand, Nilson et al. [8] presented that by increasing the trait 
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heritability from 0.2 to 0.4, the genomic evaluation accuracy increases by about 4 percent which is consistent with 
the results from Kolbehdari et al.[9] but is contrary to expectations of Meuwissen et al [2]. 
 
The evaluation accuracy values by RR-BLUP and Bayes methods for 4, 10, 20 and 40 QTLs and 5, 10 and 25 
percent heritability are shown in Table 4. As presented, increasing the number of QTLs, the evaluation accuracy 
decreases slightly which this reduction is greater in the lower heritability. 
 

Table 4. The correlation between the actual and the estimated breeding values in the generation of 1003 with different number of QTL 
and heritability 

 
QTL h2 RR-BLUP Bayes 

 
 
4 
 

 
5 
10 
25 

 
0.8389 
0.8691 
0.9111 

 
0.8502 
0.8788 
0.9299 

 
 

10 
 

 
5 
10 
25 

 
0.8461 
0.8758 
0.9179 

 
0.8534 
0.9031 
0.9330 

 
 

20 
 

 
5 
10 
25 

 
0.8480 
0.8762 
0.9171 

 
0.8562 
0.8919 
0.9376 

 
 

40 
 

 
5 
10 
25 

 
0.8415 
0.8637 
0.9205 

 
0.8589 
0.8967 
0.9335 

 
The accuracy rate in the target generation (1003 to 1009) using BLUP and Bayes methods are shown in Table 5. The 
number of markers and QTLs are considered to be 5000 and 10 respectively. As expected, in both cases, the 
evaluation accuracy rate decreases across the generations. 
 

Table 5. The correlation between the actual and the estimated breeding values in the generation of 1003 -1009 
 

Generations RR-BLUP Bayes 
1003 0.9179 0.9330 
1004 0.8795 0.9121 
1005 0.8522 0.8928 
1006 0.8392 0.8776 
1007 0.8242 0.8693 
1008 0.8101 0.8540 
1009 0.8074 0.8476 

 
The correlation between true breeding value and the genomic estimated breeding value in target generations (1003 
to 1009)applying RR-BLUP and Bayesian LASSO decreased from 0.918 to 0.807 and 0.933 to 0.847 respectively. 
The use of phenotypic and family tree information is a common method in animal breeding. The use of genetic 
information of individuals in molecular level to increase genetic progress by reducing the generation gap and 
improving the evaluation accuracy of breeding values is one of the main goals of modern biological technologies in 
animal breeding [10]. In general, the genomic selection is a form of selection assisted by marker which uses the 
genetic markers covering the whole genome [11] and it makes a notable increase , in comparison with conventional 
breeding, in response to a selection of young animals that do not have sufficient phenotypic records from relatives 
[2]. 
 
Increasing of the genomic data increases available information for genetic evaluation. This information contains 
molecular genotypes in loci. The observed genotypes in markers are available and thus the model can include the 
unknown effect of each of the markers. In this study, BLUP mixed model and Bayes method were used to evaluate 
the markers effects. In BLUP model, presented by Meuwissen et al. [2] a constant and equal variance is attributed to 
all of the loci. It is also assumed that each marker has a small effect and no marker has a very large effect. Many 
studies have shown that Bayes method is more accurate in comparison with BLUP which is consistent with the 
present results [12] 
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Habier et al [6] compared different methods of genomic breeding values evaluation and showed that Bayes method 
has high accuracy for any number of markers. In BLUP method, equal variance in all markers is considered and it is 
no longer necessary to have preliminary information on the variance of the markers effects (what is needed in the 
Bayes approach). This method is simpler than the Bayesian method and requires less computation. This method is 
also more affected by family relationships among people. 
 
Meuwissen et al [2] in a simulation study, used 500 phenotypic records in the reference group in order to estimating 
the genomic breeding values of people in validation set for a trait with heritability 0.5 and they reported that the 
accuracy of single trait genomic evaluation by using BLUP method is 0.57. Solberg et al [12] in a study used 1000 
phenotypic records in the reference group for a trait with a heritability of 0.5. They used Bayes method for 
estimating the effects of the markers and reported that the genomic evaluation accuracy of validation set is 0.66. 
This advantage could be due to the statistical method used. It has been reported in some studies that Bayes methods 
are better than the BLUP method [13]. 
 

CONCLUSION 
 

By using a dense marker map covering all chromosomes, it is possible to accurately estimate the breeding value of 
animals that have no phenotypic record of their own and no progeny. For evaluation of traits which collecting the 
phenotypic records from them is difficult or impossible, such as traits that only appear in females, disease resistance 
and traits with low heritability, using the Genomic selection is suggested. Methods that assumed a prior distribution 
for the variance associated with each chromosome segment gave more accurate predictions of breeding values even 
when the prior was not correct. 
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