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Abstract

Among the various scaffold fabrication techniques,
thermally induced phase separation (TIPS) is one of the
most versatile methods to produce porous polymeric
scaffold and it has been largely used for its capability to
produce highly porous and interconnected scaffolds. The
scaffold architecture can be closely controlled by varying
the process parameters, including polymer type and
concentration, solvent/non-solvent ratio and thermal
history. TIPS technique has been widely employed, also, to
produce scaffolds with a hierarchical pore structure and
composite polymeric matrix/inorganic filler foams.

Keywords Porous scaffolds; Thermally induced phase
separation; Gradient

Introduction

The so-called scaffold is one of the building blocks of the
tissue engineering approach; the design of a scaffold includes
the selection of its constitutive material, its design architecture
and often the surface and/or bulk treatment(s) [1]. The scaffold
is a three-dimensional support suitable for the growth of a
tissue or an organ, aiming to temporarily replace the functions
of the extracellular matrix and to guide the proliferation and
growth of cells [2]. Several studies showed that, without a
proper template, the cells tend to arrange in a two-dimensional
(2D) layer forming a flat structure with poor mechanical
properties [3]. In particular, by using scaffolds, transplanted cells
can be delivered to a specific site place in a tissue hence driving
the growth of cells inside towards a desired target. Thus,
scaffolds represent the free space available for the tissue to
develop and a physical support for cell growth. To achieve these
objectives, the scaffold must possess some basic requirements:
biocompatibility,  biodegradability, = topological features,
mechanical properties, sterilazibility, etc. [4]. Several
biomaterials (natural [5,6] or synthetic [7,8]) have been
exploited to mimic as good as possible the tissue to regenerate.
The choice of the biomaterial is also related to its production

technique, in order to attain the optimum porosity, pore
interconnectivity and mechanical properties. Among the
possible techniques the most widely adopted are solvent-casting
and particulate leaching [9], phase separation methodologies
[10], gas-foaming [11], CAD/CAM based methods [12] and
electrospinning [13].

Thermally Induced Phase Separation
(TIPS) Technique

Thermally Induced Phase Separation (TIPS) is a widely
adopted procedure for scaffold preparation, suitable for
obtaining a well-interconnected porous structure.

This technique is based on the change in temperature to
induce the de-mixing of a homogeneous polymer solution, thus
creating a multi-phase system. When the de-mixing of the
solution occurs, the homogeneous solution separates into a
polymer-rich and a polymer-less phase. The de-mixing can be
solid-liquid (usually for binary polymer-solvent mixtures), or
liquid-liquid (usually for ternary polymer/solvent/non-solvent
mixtures).

One of the most relevant advantages of this technique is the
possibility to obtain a well-interconnected polymer network
with an easy-to-tune, fast and adaptable process. As a function
of the separations conditions, it is possible to obtain a wide
range of different morphologies with various characteristics,
such as: open or close pores, fibrous structure, membrane/like
architecture, etc. [14-17].

Lots of polymers have been used, among which it is worth to
mention polylactic acid[18], polyurethane[19], polycaprolacton
[20], etc.

Figure 1 reports the phase diagram of a typical ternary
solution. The thermodynamic equilibrium boundaries are
represented by the binodal and the spinodal curve. At high
temperatures (above the binodal curve) the polymer solution is
in the one-phase region and the solution is homogeneous. Upon
decreasing the temperature, the solution reaches the binodal
curve and de-mixing into a polymer-rich and a polymer-lean
phase occurs. The area between binodal and spinodal curve is
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the metastable region, where a (quite slow) mechanism of
nucleation and growth takes place, leading to (relatively) large
pores. On the opposite, the separation mechanism taking place
in the spinodal region, called spinodal decomposition, is very
fast and usually leads to the formation of a network of small
interconnected pores.
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Figure 1: Phase diagram of a ternary system polymer-solvent-
non/solvent.
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Operating Parameters

Distribution, shape and size of the pores are the result of a
delicate balance between different parameters among which the
most important are polymer type and concentration, polymer
molecular weight, solvent/non-solvent ratio and cooling path.

e Polymer concentration: as the concentration increases,
keeping constant the cooling path, pore dimension and
porosity decrease accordingly.

e Polymer molecular weight: an increase of the molecular
weight implies an increase of the viscosity of the solution
that plays a crucial role during the formation of the two
phases. The foams at higher molecular weight result more
homogeneous compared to the others ones.

¢ Solvent/non-solvent ratio: the first attempts to produce
scaffold via TIPS were carried out starting from a binary
solution polymer/solvent. In this case, the scaffolds present a
ladder-like structure due to the solidification of the solvent,
and the final scaffold structure is mainly dominated by the
progress of the crystallization of the solvent. Inducing a
liquid-liquid phase separation by adding a non-solvent
allowed a significant improvement in the scaffold
architecture together with an increase in the sensitivity of
the solution to the tuneable parameters, above all the
thermal history

e Cooling path: one of the principal advantages of the TIPS
technique is the possibility to tune the structure by playing
with the temperature vs. time pathway. As a matter of fact,
starting from the same solution, the final morphology of the
scaffold can exhibit very different features (in terms of pore
dimension, distribution, interconnectivity, etc) by simply
tuning the cooling path. The graph in Figure 2 [21] reports
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the trend of pore dimension as a function of the
temperature and time. It is evident that at 25°C pore size is
basically independent of the demixing time. For the
examined solution at 25°C the predominant process is
spinodal decomposition, not related to time. For the
remaining two temperatures, 30°C and 35°C, when
increasing the demixing time from 15 to 45 minutes the pore
dimensions are more than quintupled, and the sigmoidal
shape typically exhibited by saturation or “space-filling”
processes (like nucleation and growth) is visible.
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Figure 2: Effect of time and temperature in pore dimension.
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These criteria have a significant influence not only on the
onset of the phase separation, in which the domains of the
nucleating phase start to grow, but also in the next steps.
Indeed, the coalescence of the separate phase, continues
minimising the free energy due to the presence of the interfacial
surfaces. This process, called coarsening, causes the increase of
the pore dimension [22].

By taking advantage of the TIPS process, since the pore
dimension is mainly dependent on the residence time in the
metastable region [23], Mannella et al. [24] proposed an
experimental apparatus able to impose a different T vs. time
pathway on two sides of a sample. In this way a gradient of pore
dimension was obtained along the scaffold thickness in a single
step, without requiring the junction of the multiple layers.

TIPS technique was adopted, too, to produce also composite
scaffold by adding ceramic fillers: hydroxyapatite, bioglass,
keratin [25], etc. starting from binary [26,27] or ternary solution
[28].

Conclusion

TIPS technique allows the formation of an interconnected
porous structure through an easy-to-tune fabrication process.
The technique has demonstrated a remarkable potential to
obtain scaffolds with a wide range of pore sizes. The process can
be tuned by manipulating the processing parameters, e.g.
thermal history, to fabricate scaffolds with the desired
architectures and pore morphologies. By taking advantage of the
relative ease in tuning the final topology of the scaffold, foams
with hierarchical structures have been obtained by creating
thermal or concentration gradient. Furthermore, inorganic filler
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can be suitably incorporated into the scaffold matrix in a one-
step process to enhance the bioactivity and the mechanical
properties of the scaffold.
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