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ABSTRACT

The paper discusses the solution of a simple kinetic equation of the type used for the computation
of the change of the chemical composition in stars like the sun. Sarting from the standard form
of the kinetic equation it is generalized to a fractional kinetic equation and its solutions in terms

of H -functions are obtained. The role of thermonuclear functions, which are also represented in

terms of H- and H - functions. In such a fractional kinetic equation is emphasized. Results
contained in this paper are related to recent investigations of possible astrophysical solutions of
the solar neutrino problem.

Key words Fractional kinetic equation, Thermonuclear funttioH -function. (2000
Mathematics subject classification: 33C99).

INTRODUCTION

A spherically symmetric, non-rotating, non-magnesiglf-gravitating model of a star like the sun
is assumed to be in thermal equilibrium and hyditastequilibrium, with a non-uniform
chemical composition throughout. The star is cheraed by its mass, luminosity, effective
surface temperature, radius, central density, @miral temperature. For a given mass, four of
these variables are independent and are governddubysimultaneous, non-linear, ordinary
differential equations of the first order and fdowundary conditions. Since there are four
equations but more than four unknowns, additionBdrmation must be provided through the
equation of state, nuclear energy generation eatd,the opacity (constitutive equations). The
assumptions of thermal equilibrium and hydrostauilibrium imply that there is no time
dependence in the equations describing the intestmatture of the star (Kourganoff, 1973,
Perdang, 1976, Clayton, 1983).
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The evolution of a star like the Sun is governedilsecond system of differential equations, the
kinetic equations, describing the rate of changeh®&@mical composition of the star for each
species in terms of the reaction rates for destm@nd production of that species (Kourganoff,
1973, Perdang, 1976, Clayton, 1983).

Methods for modeling processes of destruction amdiyction have been developed for bio-
chemical reactions and their unstable equilibritates (Murray, 1989) and for chemical

reaction networks with unstable states, oscillaj@nd hysteresis (Nicolis and Prigogine, 1977).
Stability investigations of thermonuclear reactiaisstellar interest have not yet been worked
out in details. However, the potentiality of indtdies in thermonuclear chains may not be
overlooked, since, as was pointed out once by Etoim “what is possible in the (Cavendish)

Laboratory may not be too difficult in the Sun” (Bang, 1976, Mestel, 1999).

Consider an arbitrary reaction characterized byinge tdependent quantily =N (t). It is
possible to equate the rate of cha Gt to a balance between the destruction catand the

production rate pof N, that is dl\%t =-d +p. In general, through feedback or other

interaction mechanisms, destruction and productepend on the quantity itself:d =d (N ) or
p = p(N). This dependence is complicated since the degiruot production at timé depends
not only on N (t)but also on the past histaxy(7),7 <t, of the variabl& . This may be
formally represented by

dN 2 ==d(N)+p(N,), (1)

Where N, denotes the function defined b, ({t")=N(-t"),t">0.Here dand pare

functional and eq. (1) represents a functionaledéhtial equation. In the following we study a
special case of this equation, namely the equation

NG =-aN® @
With a constant >0. Eg. (2) implies that spatial fluctuations or i@nmogeneities in the
guantity N (t) are neglected. The standard solution of the difig@eequation (2) will be briefly

discussed in Section 2 and the generalizationftacéional differential equation and its solution
will be derived in Section 3.

2. Standard Kinetic Equation
The production and destruction of species is desdrby kinetic equations governing the change

of the number densitil, of species over time, that is,

%:—ZNiNJ<av>ij+ZNkN,<av>kl, (3)
j k| #i

Where < gv > mn denotes the reaction probability for an interactiorolving speciesnandn,
and the summation is taken over all reactions whdither produce or destroy the species
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i (Haubold and Mathai, 1995). For a gas of mass tepsithe number densit\N, of the
speciesi is expressed in terms of its abundaX¢e by the relationN, = pN , X, /A, where
N, is Avogadro’'s number and is the mass of in mass units. The mean lifetimg (i ) of

species for destruction by speciegis given by the relation

A)=—L =N, <ovsij = pN, b <oy >ij
j Tj(i i AAj ,

(4)

Where A, (i)is the decay rate of for interactions withj . Eq. (4) reveals the Physical

importance of< gv >ij for the kinetic equation (3).

In the case of a non-degenerate, non-relativigg&; g a non-resonant charged nuclear reaction
proceeds at low energies dominated by Coulombdrapéenetration, the reaction probability

< ov >mn takes the form (Clayton, 1983, Bergstroem et &i99)

1/2
8 2 1 s“ (0
<ol S )

Wherel ,represents a thermonuclear function given by

l,(v-la,z ,p)=.|'y”‘1e‘ay‘zy_pdy, vz,p>C
0

w1),02 ;1)] '
0

Where H -function is defined in terms of a Mellin-Barnepeéyintegral as

Heo [z]= Hro [z

(3307 3A) D (@550 Inap
(05 .8 im0 B B 10

_iiw_ £
= | wOzde

—joo

[re-sar]ira-a oo}’

where  @(&) = = —
T1{ra-b+56}" [ re,-a,o)

()

(6)

(7)

(8)

For further details oH -function, we refer to the original paper of Busemand Srivastava [2].
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When pin eq. (6) is real and rationdl, =B, =1, then theH -function can be reduced to a G-
function by using the multiplication formula formana functions.

rm o, imal i
F(mz)=(2m) 2 m zrlr(z +J—j,m:1,2,.. 9)
. m
In the case of Coulomb-barrier penetration (Gamaetar), o :%, I ,reduces to
1) _a ¥ az®|_

Where G denotes Meijer's G-function, which was adticed into mathematical analysis in
attempts to give meaning to the generalized hyjengéric function F, in the casep >q +1.

Proceeding with eq. (3), the first sum in eq. @) @lso be written as

_ZNiNj<W>ij:_Ni(zNj<0V>ij):Nia1" (11)
i i

Where a is the statistically expected number of reactio®s pnit volume per unit time

destroying the specigs.lt is also a measure of the speed in which theti@aproceeds. In the
following we are assuming that there &g (j =1,...ii ,...)species] per unit volume and that

for a fixed N, the number of other reacting species that intesgttt the i-th species is constant

in a unit volume. Following the same argument weeh#&r the second sum in eq. (3)
accordingly,

+ZNKNI<0V>kI=+Nibi (12)
kI #i
Where N, b, is the statistically expected number of the i-tb@es produced per unit volume per
unit time for a fixed\, . Note that the number density of speci@é, =N, (t), is a function of

time while the<ov >_ , containing the thermonuclear functions (see €§s.and (6)), are

assumed to depend only on the temperature of theuwanot on the time and number densities
N. . Then eq. (1) implies that

dN . (t
Pl q-niv, ) - (13)
t
For eq. (13) we have three distinct casess 8 —b, >0,c, <0, andc, =0of which the last case
says thatN, does not vary over time, which means that the foiwand reverse reactions
involving speciesi are in equilibrium; such a value foN,is called a fixed point and
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corresponds to a steady-state behavior. The fwstdases exhibit that either the destruction
(c, >0)of species or production ¢, <0) of species dominates.

For the case, >0 we have

dN, (t) _
da

<N, () (14)

With the initial condition thatN, (t =0) =N is the number density of speciest timet =0,
and it follows that

N, (t)dt =N e™'dt . (15)

The exponential function in eq. (15) represents sbtution of the linear one-dimensional
differential equation (14) in which the rate of tlastion of exhibit instabilities, oscillations, or
chaotic dynamics, in striking contrast to its cousthe logistic finite-difference equation
(Perdance, 1976, Haubold and Mathai, 1995). A tinginadiscussion of eq. (14) and its standard
solution in eq. (15) is given in Kourganoff (1973).

3. Fractional Kinetic Equation
In the following, for the sake of brevity, the indéin eq. (14) will be dropped. The standard
kinetic equation (14) can be integrated

N(©)-Ny=-,DN(), (16)

Where ,D,"is the standard Riemann integral operator. Thergéination of this operator to the

fractional integral of operatop >0is denoted by,D, " and is defined, following Riemann-
Liouville, based on the Cauchy formula, by

DPf (t) =ﬁjf (D)@t -7)Pdr, p>0 (17)

With
D ) =1 ()

(Oldham and Spanier, 1974, Miller and Ross, 1993)e most general fractional integral
operator of the type (17) contait$ -function (7) as the kernel function. ff(t)is continuous
for t =a, then integration of arbitrary real order haspghaperty

D (LD (1)) =D, ().
Replacing the Riemann integral operator by thetifsaal Riemann-Liouville operatogD,” in
eg. (16), we obtain a fractional integral equatorresponding to eq. (14)
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N({)-N,=—",D,/'N(t). (18)

For dimensional reasons, the coefficienh eq. (16), containing the probabilities of thacton
under consideration, had to be replaceabaccordingly.

The Laplace transform of the Riemann-Liouville fragal integral is
L{,D,*f );p} =p°F(p), (19)

Where
F(p)=T(p) [ e™f (r)dr.
7=0
In order to solve eq. (18), the integral equat®exposed to a Laplace transformation leading to

-1

N (p)=L{N (t);p} =N,—>—. (20)
1+(pj
C

To arrive at a representation of eq. (20) in teoBl -function, result can be used,

z? g1t a (gyl:lJ
1+aza'_a'g/ Hl,l az (511] ]1
_ 1—11i{( C Y (%,1:1]

To prepare eq. (21) for an inverse Laplace transfone following two fundamental properties
of an H -function can be used,

1—MN @ ;A (3 ) —M N
- j A N @50 e | — k [(@j:ai A N @50 Insap
k H PQ |:Z (0.8 hm »©®; B Bj g i| H PQ |:Z ©; B hm 05 By Bj Mg :|’ k>0 (22)
—M N (a0, A n @ e | — 7™M | L b8 A e @) B Mg
Hre [Z (b 8w ) B B g | T Heo 718 A ey @ A dap | k>0 (23)
Leading to
11
1—u2 =i
N(p):No_HMB( 1111] ' (24)
cv c|(-17]

Where theH -function is defined in eq. (7).
The Laplace transforms ¢ -function (7) is given in terms of another -function by

(l_bj ;BJ ;Aj Im Y(l_bj ;'Bl )M+1Q
(11),(Fay a; )N (Fay a; A N+1P:| (25)

1—N#aM

L{W(Z), p} = BH Q,P+1 |:p
ForO<u<1in (9),and
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T . - l—mnNal 1 (0.0).@ a@; Aj kn @ a5 Nuap
L { H@); p} B B Hpag |:E‘ ;.5 )1,:47’(bj B, B )Mﬂ-:-lQ (26)

For 0< u<1in (9), respectively.

Further, havingT(p) , the inverse Laplace transform of this-function is given by
— A 1—Nm b 18 A (D B
H(2) =L {H (p).2} = ~Habw| 2[00 0 0 ) (27)
ForO<u<1in (9),and
H(z)= L‘l{ﬁ(p),z} = lﬁr;f,lg [z
z
For u=1in (9), respectively.

(@0 A} Jin (@ .05 Inaap (012)
0.8 hm b5 .55 Bj Im+10 (28)

The above four Laplace transforms hold for

- b
maxA; R 73 | minB, Re—<* |.
1<j<n ap 1<j<m :BQ

Applying an inverse Laplace transform to tHe-function in eq. (24) gives

9., o

(o%) ,(0,1:1)

N(t):Nolﬁiélct
V

Which is the solution of the fractional kinetic edjon (18). For theH -function in eq. (7) with
(29), the following computable representation cae Herived. When the poles of

rl (b, - B,s)are simple, that is,
B.(b; +1) % B; (b, +V)

For j #h; j,h=1,..M ;A py = 0,1,2,.. Then one obtains the following expansion for the
function,

{ r(1-a -a @V +V>j}
i J J :Bh (_1)vz(bh+v)/[3h

Q (bh+v)]} wg,
rla-g ®*V)
{jmﬂ (aj al IBh

Which exists for allz #0 if #>0and for0<|z k8™ if =0, where zand Bare given in
egs. (9) and (10). Comparing (29) with eq. (30 ohtains the series expansion

130
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N(t)=N Zr(( kl) 1) (ct)™, (31)

For v =1, the exponential solution of the standard kinetjoation (15) is recovered.

REFERENCES

[1] Bergstroem, L., Lguri, S. and Rubinstein,Phys. Rev. D60, 045005-1-045005-2999.

[2] Buschman, R.G. and Srivastava, H,M.Phys.A:Math.Gen .23,1990, pp 4707-4710.

[3] Clayton, D.D.;Principles of Sellar Evolution and Nucleosynthesis, Second Edition, The
University of Chicago Press, Chicago and Lond@®83.

[4] Haubold, H.J. and Mathai, A.MAstrophys. Space Sci. 228,1995, pp 113-134.

[5] Kaniadakis, G., Lavagno, A., Lissa, M.and QuarB.; Physica A 261, 1998, pp 359-373,
http://xxx.lanl.gov/abs/astro-ph/9710173

[6] Kourganoff, V.; Introduction to the Physics of Sellar Interiors, D. Reidel Publishing
Company, Dordrechi,973.

[7] Mestel, L.;Physics Reports 311, 1999, pp 295-305.

[8] Miller, K.S. and Ross, B.An Introduction to the Fractional Calculus and Fractional
Differential Equations, John Wiley and Sons, New York993.

[9] Murray, J.D.;Mathematical Biology, Biomathematics Texts vil. 19, Springer-Verlag, Berlin,
1989.

[10] Nicolis, G. and Prigogine, |.;Sedf-Organization in Nonequilibrium Systems-From
Dissipative Structures to Order Through Fluctuations, John Wiley and Sons, New York77.
[11] Oldham, K.B. and Spanier, Jhe Fractional Calculus, Academic Press, New York974.
[12] Perdang, JLecture Notesin Sellar Sability, Pert | and 11, Instituto di Astronomia, Padova
, 1976. DR, Contemporary Drug Synthesis, John Wile & Sons Inc Hoboken, New Jers2y04,
pp 397.

390
Pelagia Research Library



