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ABSTRACT 
  
The paper discusses the solution of a simple kinetic equation of the type used for the computation 
of the change of the chemical composition in stars like the sun. Starting from the standard form 
of the kinetic equation it is generalized to a fractional kinetic equation and its solutions in terms 

of H -functions are obtained. The role of thermonuclear functions, which are also represented in 

terms of H- and H - functions. In such a fractional kinetic equation is emphasized. Results 
contained in this paper are related to recent investigations of possible astrophysical solutions of 
the solar neutrino problem. 
 
Key words: Fractional kinetic equation, Thermonuclear function, H -function. (2000 
Mathematics subject classification: 33C99). 
______________________________________________________________________________ 
 

INTRODUCTION 
 

A spherically symmetric, non-rotating, non-magnetic, self-gravitating model of a star like the sun 
is assumed to be in thermal equilibrium and hydrostatic equilibrium, with a non-uniform 
chemical composition throughout. The star is characterized by its mass, luminosity, effective 
surface temperature, radius, central density, and central temperature. For a given mass, four of 
these variables are independent and are governed by four simultaneous, non-linear, ordinary 
differential equations of the first order and four boundary conditions. Since there are four 
equations but more than four unknowns, additional information must be provided through the 
equation of state, nuclear energy generation rate, and the opacity (constitutive equations). The 
assumptions of thermal equilibrium and hydrostatic equilibrium imply that there is no time 
dependence in the equations describing the internal structure of the star (Kourganoff, 1973, 
Perdang, 1976, Clayton, 1983). 
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The evolution of a star like the Sun is governed by a second system of differential equations, the 
kinetic equations, describing the rate of change of chemical composition of the star for each 
species in terms of the reaction rates for destruction and production of that species (Kourganoff, 
1973, Perdang, 1976, Clayton, 1983). 
 
Methods for modeling processes of destruction and production have been developed for bio-
chemical reactions and their unstable equilibrium states (Murray, 1989) and for chemical 
reaction networks with unstable states, oscillations, and hysteresis (Nicolis and Prigogine, 1977). 
Stability investigations of thermonuclear reactions of stellar interest have not yet been worked 
out in details. However, the potentiality of instabilities in thermonuclear chains may not be 
overlooked, since, as was pointed out once by Eddington, “what is possible in the (Cavendish) 
Laboratory may not be too difficult in the Sun” (Perdang, 1976, Mestel, 1999). 
 
Consider an arbitrary reaction characterized by a time dependent quantity ( )N N t= . It is 

possible to equate the rate of change dN
dt to a balance between the destruction rate d  and the 

production rate p of N , that is dN d pdt = − + . In general, through feedback or other 

interaction mechanisms, destruction and production depend on the quantity N itself: ( )d d N= or 
( )p p N= . This dependence is complicated since the destruction or production at time t depends 

not only on ( )N t but also on the past history( ),N tτ τ < , of the variableN . This may be 
formally represented by 
 

      ( ) ( )t t
dN d N p Ndt = − + ,                                                                                         (1) 

 
Where tN denotes the function defined by ( ) ( ), 0.tN t N t t t∗ ∗ ∗= − > Here d and p are 

functional and eq. (1) represents a functional-differential equation. In the following we study a 
special case of this equation, namely the equation 
 

              ( )dN N tdt α= −                                                                                                (2) 

 
With a constant 0α > . Eq. (2) implies that spatial fluctuations or in homogeneities in the 
quantity ( )N t are neglected. The standard solution of the differential equation (2) will be briefly 
discussed in Section 2 and the generalization to a fractional differential equation and its solution 
will be derived in Section 3. 
 
2. Standard Kinetic Equation 
The production and destruction of species is described by kinetic equations governing the change 
of the number density iN  of species i over time, that is, 

    
,

i
i j k l

j k l i

dN
N N ij N N kl

dt
σν σν

≠

= − < > + < >∑ ∑ ,                                                   (3) 

Where mnσν< > denotes the reaction probability for an interaction involving species m and n , 
and the summation is taken over all reactions which either produce or destroy the species 
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i (Haubold and Mathai, 1995). For a gas of mass density ρ , the number density iN of the 

species i is expressed in terms of its abundanceiX , by the relation /i A i iN N X Aρ= , where 

AN is Avogadro’s number and iA is the mass of i in mass units. The mean lifetime ( )j iτ of 

species i for destruction by species j is given by the relation 
 

 
1

( )
( )

j
j j A

j j

X
i N ij N ij

i A
λ σν ρ σν

τ
= = < > = < > ,                                                       (4) 

 
Where ( )j iλ is the decay rate of i for interactions withj . Eq. (4) reveals the Physical 

importance of ijσν< > for the kinetic equation (3). 
 
In the case of a non-degenerate, non-relativistic gas, if a non-resonant charged nuclear reaction 
proceeds at low energies dominated by Coulomb-barrier penetration, the reaction probability 

mnσν< > takes the form (Clayton, 1983, Bergstroem et al., 1999) 
 

1/2 ( )2

21/2
0

8 1 (0)
( , , , )

( ) !mn

S
I a z

kT

ν

ν
ν

σν ν ρ
πµ ν− +

=

 < > =  
 

∑                                                    (5) 

 
Where 2I represents a thermonuclear function given by 

1
2

0

( 1, , , ) , , , 0ay zyI a z y e dy z
ρνν ρ ν ρ

−
∞

− − −− = >∫  

                          =
1

2,0
0,2 1

( ,1),(0, ;1)

a
H az

ν
ρ

ν
ρρ

−
−

 
 
  

,                                                                   (6) 

 

Where H -function is defined in terms of a Mellin-Barnes type integral as 
  

[ ] 1, 1,

1, 1,

, , ( ; ; ) ,( ; )
, , ( , ) ,( , ; )

j j j N j j N P

j j M j j j M Q

M N M N a A a
P Q P Q b b BH z H z α α

β β
+

+
 =
 

 

           
1

( )
2

i

i

z d
i

ξφ ξ ξ
π

∞

− ∞

= ∫                                               (7) 

 

where        
{ }

{ }
1 1

1 1

( ) (1 )

( )
(1 ) ( )

j

j

M N A

j j j j
j j

Q PB

j j j j
j M j N

b a

b a

β ξ α ξ
φ ξ

β ξ α ξ

= =

= + = +

Γ − Γ − +
=

Γ − + Γ −

∏ ∏

∏ ∏
                                           (8)  

 
For further details of H -function, we refer to the original paper of Buschman and Srivastava [2]. 
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When ρ in eq. (6) is real and rational, 1j jA B= = , then the H -function can be reduced to a G-

function by using the multiplication formula for gamma functions. 
 

  
1 1 1

2 2

0

( ) (2 ) , 1,2,...
m mmz

j

j
mz m z m

m
π

− −−

=

 Γ = Γ + = 
 

∏                                                         (9) 

In the case of Coulomb-barrier penetration (Gamow factor), 2

1
,

2
Iρ = reduces to 

 
( 1) 2

3,0
2 0,3 11/2 ( 1), ,

2

1
, , ,

2 4 a

a az
I a z G

ν

ν
ν

π

− +
−

+

   =   
    

                                                                     (10) 

 
Where G denotes Meijer’s G-function, which was introduced into mathematical analysis in 
attempts to give meaning to the generalized hypergeometric function p qF in the case 1p q> + . 

 
Proceeding with eq. (3), the first sum in eq. (3) can also be written as  
 
  ( )i j ij i j ij i i

j j

N N N N N aσν σν− < > = − < > =∑ ∑ ,                                                  (11) 

 
Where ia is the statistically expected number of reactions per unit volume per unit time 

destroying the species i .It is also a measure of the speed in which the reaction proceeds. In the 
following we are assuming that there are ( 1,..., ,...)jN j i= species j per unit volume and that 

for a fixed iN the number of other reacting species that interact with the i-th species is constant 

in a unit volume. Following the same argument we have for the second sum in eq. (3) 
accordingly, 
 
        

,
k l kl i i

k l i

N N N bσν
≠

+ < > = +∑                                                                                (12) 

 
Where i iN b is the statistically expected number of the i-th species produced per unit volume per 

unit time for a fixed iN . Note that the number density of species, ( )i ii N N t= , is a function of 

time while the mnσν< > , containing the thermonuclear functions (see eqs. (5) and (6)), are 

assumed to depend only on the temperature of the gas but not on the time t  and number densities 

iN . Then eq. (1) implies that 

             
( )

( ) ( )i
i i i

dN t
a b N t

dt
= − −   .                                                                              (13) 

 
For eq. (13) we have three distinct cases, 0, 0i i i ic a b c= − > < , and 0ic = of which the last case 

says that iN does not vary over time, which means that the forward and reverse reactions 

involving species i are in equilibrium; such a value for iN is called a fixed point and 
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corresponds to a steady-state behavior. The first two cases exhibit that either the destruction 
( 0ic > )of species i or production ( 0ic < ) of species i dominates. 

 
For the case 0ic >  we have 

 

           
( )

( )i
i i

dN t
c N t

dt
= −                                                                                             (14) 

 
With the initial condition that 0( 0)iN t N= = is the number density of species i at time 0t = , 

and it follows that 
 
       0( ) ic t

iN t dt N e dt−= .                                                                                               (15) 

 
The exponential function in eq. (15) represents the solution of the linear one-dimensional 
differential equation (14) in which the rate of destruction of exhibit instabilities, oscillations, or 
chaotic dynamics, in striking contrast to its cousin, the logistic finite-difference equation 
(Perdance, 1976, Haubold and Mathai, 1995). A thorough discussion of eq. (14) and its standard 
solution in eq. (15) is given in Kourganoff (1973). 
 
3. Fractional Kinetic Equation 
In the following, for the sake of brevity, the index i in eq. (14) will be dropped. The standard 
kinetic equation (14) can be integrated 
 
          1

0 0( ) ( )tN t N c D N t−− = − ,                                                                                  (16) 

 
Where 1

0 tD − is the standard Riemann integral operator. The generalization of this operator to the 

fractional integral of operator 0p > is denoted by p
a tD − and is defined, following Riemann-

Liouville, based on the Cauchy formula, by 
 

    11
( ) ( )( ) , 0

( )

t
p p

a t

a

D f t f t d p
p

τ τ τ− −= − >
Γ ∫                                                                (17) 

With 
            0 ( ) ( )a tD f t f t=  

(Oldham and Spanier, 1974, Miller and Ross, 1993). The most general fractional integral 

operator of the type (17) contains H -function (7) as the kernel function. If ( )f t is continuous 
for t a≥ , then integration of arbitrary real order has the property 
 

          ( )( ) ( )p q p q
a t a t a tD D f t D f t− − − −= . 

Replacing the Riemann integral operator by the fractional Riemann-Liouville operator 0 tD ν− in 
eq. (16), we obtain a fractional integral equation corresponding to eq. (14) 
 



Naseem A. Khan et al                                                     Adv. Appl. Sci. Res., 2011, 2 (4):383-390  
 _____________________________________________________________________________ 
 

388 
Pelagia Research Library 

                 0 0( ) ( )tN t N c D N tν ν−− = − .                                                                          (18) 

 
For dimensional reasons, the coefficient c in eq. (16), containing the probabilities of the reaction 
under consideration, had to be replaced by cν accordingly. 
 
The Laplace transform of the Riemann-Liouville fractional integral is 
 

               { }0 ( ); ( )p p
tL D f t p p F p− −= ,                                                                         (19) 

 
Where 

           
0

( ) ( ) ( )pF p p e f dτ

τ

τ τ
∞

−

=

= Γ ∫ . 

In order to solve eq. (18), the integral equation is exposed to a Laplace transformation leading to 

      { }
1

0( ) ( );

1

p
N p L N t p N

p

c

ν

−

−= =
 +  
 

.                                                                      (20) 

To arrive at a representation of eq. (20) in terms of H -function, result can be used,  

   
,1;11,1/

1,1
,11

z
a H az

az

ββ
β α α α

βα
α

 
 −  
 
 
 

 
=  

+   

, 

   
1

,1;11,1
1,10 1

,1

1
( )

c
N p N H

c p

ν
ν

ν

 
 
 
 
 
 

  
=   

   

                                                                               (21) 

To prepare eq. (21) for an inverse Laplace transform, the following two fundamental properties 
of an H -function can be used, 
 

 1, 1, 1, 1,

1, 1, 1, 1,

, ,( ; ; ) ,( ; ) ( ; ; ) ,( ; )
, ,( , ) ,( , ; ) ( , ) ,( , ; )

1
, 0j j j N j j N P j j j N j j N P

j j M j j j M Q j j M j j j M Q

M N M Na A a a A ak
P Q P Qb b B b b BH z H z k

k
α α α α
β β β β

+ +

+ +
   = >
   

              (22)  

 

1, 1, 1, 1,

1, 1, 1, 1,

, ,( ; ; ) ,( ; ) (1 ; ; ) ,(1 ; )
, ,( , ) ,( , ; ) (1 , ) ,(1 , ; )

1
, 0j j j N j j N P j j j M j j M Q

j j M j j j M Q j j N j j j N P

M N M Na A a b A b
P Q P Qb b B a a AH z H k

z
α α β β
β β α α

+ +

+ +

− −
− −

   = >    
                (23) 

Leading to 

          
1 1

1 , ;11,1
1,10 1 1

1 ,

1
( )

p
N p N H

c c
ν ν

ν νν

 − 
 
 − 
 

 
=  

  

   ,                                                                   (24) 

Where the H -function is defined in eq. (7). 
The Laplace transforms of H -function (7) is given in terms of another H -function by 

       { }( );L H z p = 1, 1,

1, 1,

1, (1 ; ; ) ,(1 ; )
, 1 (1,1),(1 , ) ,(1 , ; )

1
j j j M j j M Q

j j N j j j N P

N M b A b
Q P a a AH p

p
β β

α α
+

+

+ − −
+ − −
 
 

                                     (25) 

For 0 1µ≤ ≤  in (9),and  
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    { }( );L H z p = 1, 1,

1, 1,

, 1 (0,1),( ; ; ) ,( , )
1, ( , ) ,( , ; )

1 1
j j j N j j N P

j j M j j j M Q

M N a A a
P Q b b BH

p P
α α

β β
+

+

+
+

 
  

                                           (26) 

 
For 0 1µ≤ ≤  in (9), respectively. 
 

Further, having ( )H p , the inverse Laplace transform of this H -function is given by 

  { }1( ) ( ),H z L H p z−= = 1, 1,

1, 1,

, (1 ; ; ) ,(1 ; )
, 1 (1 , ) ,(1 , ; ) ,(1,1;1)

1 j j j M j j M Q

j j N j j j N P

N M b A b
Q P a a AH z

z
β β
α α

+

+

− −
+ − −
 
 

                             (27) 

For 0 1µ≤ ≤  in (9),and 

{ }1( ) ( ),H z L H p z−= = 1, 1,

1, 1,

, ( , ; ) ,( , ) ,(0,1;1)
1, ( , ) ,( , ; )

1
j j j N j j N P

j j M j j j M Q

M N a A a
P Q b b BH z

z
α α
β β

+

+
+  

 
                                    (28) 

For 1µ ≥  in (9), respectively. 
 
The above four Laplace transforms hold for 

 
11

1
max Re min Re QP

j j
j mj n

P Q

ba
A B

α β≤ ≤≤ ≤

  − <        
. 

Applying an inverse Laplace transform to the H -function in eq. (24) gives 

     
1

0, ;11,1
1,20 1

0, ,(0,1;1)

1
( )N t N H ct ν

νν

 
 
 
 
 
 

 
=  

  

                                                                              (29) 

Which is the solution of the fractional kinetic equation (18). For the H -function in eq. (7) with 
(29), the following computable representation can be derived. When the poles of 

1

( )
m

j j
j

b sβ
=

Γ −∏ are simple, that is, 

     ( ) ( )h j j hb bβ λ β ν+ ≠ +  

For ; , 1,..., ; , 0,1,2,...j h j h M λ ν≠ = = . Then one obtains the following expansion for the H -
function, 
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+
=

= +

  + Γ − −  
−   

  + Γ −  
   

∏

∏
,                                               (30) 

Which exists for all 0z ≠  if 0µ > and for 10 | |z β −< <  if 0µ = , where µ and β are given in 
eqs. (9) and (10). Comparing (29) with eq. (30), one obtains the series expansion 
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         0
0

( 1)
( ) ( )

( 1)

k
k

k

N t N ct
k

ν

ν

∞

=

−=
Γ +∑ ,                                                                              (31) 

For 1ν = , the exponential solution of the standard kinetic equation (15) is recovered. 
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