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ABSTRACT 

Parallel algorithms play an imperative role in the high performance 
computing environment. Dividing a task into the smaller tasks and 
assigning them to different processors for parallel execution are the 
two key concepts to evaluate the performance of parallel algorithms. 
Performance enhancement is essential in large scientific applications, 
where dense matrix multiplication algorithm is extensively used. 
Thus, optimization of this algorithm, both for serial and parallel 
execution would provide upsurge performance. In this paper, a brief 
systematic survey on serial and parallel optimization techniques 
applied on matrix multiplication algorithm is carried out. 

Keywords: Parallel algorithm, Parallel processing, Matrix 
multiplication algorithm, Serial optimization, Parallel optimization. 

 
INTRODUCTION

Programming on multiprocessor 
system using divide and conquer technique 
is called parallel programming. The parallel 
program is composed of various active 
processes all at once solving a particular 
problem. This paper focuses upon the 
previous research work which has been done 
to optimize the matrix multiplication 
algorithm on serial and parallel platforms. 
This paper focuses on different aspects of 
optimizing the matrix multiplication 
algorithm. 

 
 
 

What is parallel algorithm? 
An idealized parallel algorithm is 

that which is written for Parallel Random 
Access Machines (PRAM) model with no 
communication overhead1.  

Conventional uniprocessor computer 
system has been modeled as Random Access 
Machines (RAM) by Sheperdson and 
Sturgis in 19632 whereas parallel computers 
with zero synchronization and no memory 
access overhead have been modeled as 
PRAM in 19783. If there is a set of k 
concurrent processes and if k=1 then it is 
called sequential algorithm. Sequential 
algorithm runs on uniprocessor machine. If 
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there is a set of k concurrent processes and if 
k>1 then it is called parallel algorithm. 
Parallel algorithm runs on parallel 
computers1. 

 
Matrix multiplication algorithm 

Matrix is an extremely significant 
mean in conveying and discussing problems 
which arise from real life scenarios. It will 
be effortless to manipulate and obtain more 
information by managing the data in matrix 
form. Multiplication is one of the essential 
operations on matrices. A square matrix of 
order n x n is an arrangement of set of 
elements in n rows and n columns4.  

Cij =

1

0

n
ik kj

k
A B




 , 0 i< m, 0  j<1…(Eq.1) 

If we multiply the matrix A of the 
dimension m x n by the matrix B with size n 
x l, we store the result in matrix C (C= A x 
B) with dimension m x l with each element 
defined according to the expression (Eq. 1). 

 
Literature survey of matrix multiplication 
algorithm on serial and parallel platform 

Parallel matrix multiplication has 
been explored and investigated extensively 
in the previous two decades. There are 
diverse approaches to optimize the matrix 
multiplication algorithm. In this section, a 
brief overview on existing matrix 
multiplication algorithm is carried out. 

 
Serial matrix multiplication optimization 

Matrix multiplication is an 
exceptionally imperative essence in several 
numerical linear algebra algorithms and is 
one of the most studied problems in high-
performance computing. 

Several approaches have been 
proposed to optimize matrix multiplication 
by improving spatial and temporal locality. 
Blocking or tiling is one such fundamental 
technique5. Regardless of its generalization, 
blocking is architecture dependent whereas 
cache oblivious algorithms6 are an 
architecture independent substitute to the 

blocked algorithms.  The divide and conquer 
paradigm is used by cache oblivious 
algorithms. Authors in7 made a comparison 
between cache oblivious and cache 
conscious algorithm. They found that even 
highly optimized cache oblivious programs 
perform significantly slower than cache 
conscious counterparts based on blocking. 
Chatterjee et al. bestowed a proposal 
regarding recursive array layouts and fast 
matrix multiplication. According to them 
cache oblivious method is to utilizing a 
recursive structure for the matrices8. 
Conversely, conventional implementations 
of the Basic Linear Algebra Subroutines 
(BLAS) libraries9-16 are primarily based on 
the blocking approach and hence require 
optimization on a particular hardware 
platform. The BLAS routines provide 
standard building blocks to perform basic 
vector and matrix operations. As the BLAS 
are proficient, convenient, and extensively 
accessible, they are generally used in the 
development of high quality linear algebra 
software e.g. LAPACK. 

Linear Algebra Package (LAPACK) 
is a standard software library which 
provides routines to solve systems of linear 
equations, linear least squares, problems of 
eigen value and singular value 
decomposition (SVD)17. Consequently, 
automatic optimization of matrix 
multiplication on different platforms has 
been a dynamic area of research. One such 
instance is Automatically Tuned Linear 
Algebra Software (ATLAS)18 which 
provides C and Fortran77 interfaces to a 
portably efficient BLAS implementation. 
ATLAS automatically produces optimized 
numerical software for a given processor 
architecture as a part of the software 
installation process [19]. Another high 
performance implementation of matrix 
multiplication for a variety of architectures 
was presented in the GotoBLAS library20. In 
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table 1 serial matrix multiplication 
optimization methods are presented. 
 
Parallel matrix multiplication optimization 

Parallel matrix multiplication has also 
been systematically explored over the past 
three decades. Therefore, several parallel 
matrix multiplication algorithms have been 
proposed for distributed memory, shared 
memory and hybrid platforms. Here, only the 
algorithms designed for distributed memory 
platforms are focused. 

Different layouts such as 1D Layout 
and 2D Layout were used for the optimization 
purpose. 1D Layout21 was found to be much 
slower than serial. Here firstly, a bus 
connected machine without broadcast was 
considered and only one pair of processors 
can communicate at a time (ethernet). 
Secondly, a machine with processors on a 
ring was considered and all processors may 
communicate with nearest neighbors 
simultaneously. The efficiency of nearest 
neighbor communication on a ring (or bus 
with broadcast) is 1/(1 + O (p/n)). In 2D 
Layout processors are considered in 2D grid 
(physical or logical) can communicate with 4 
nearest neighbors which broadcast along rows 
and columns. 2D Layout includes canon’s 
matrix, scalable universal matrix multiply and 
recursive layouts. Cannon22 introduced the 
first efficient distributed algorithm for two-
dimensional meshes parallel matrix 
multiplication providing theoretically optimal 
communication cost in 1969. This algorithm 
is suitable for homogenous 2D grids but its 
extension is difficult to heterogeneous 2D 
grids. Constant storage requirements and 
independency of number of processors are the 
major advantage of the algorithm23. However 
cannon’s matrix is hard to generalize with 
efficiency of 1/(1+O (sqrt (p)/n)). Fox’s 
algorithm24 was extended in PUMMA 
(Parallel Universal Matrix Multiplication 
Algorithm)25 and Broadcast-Multiply-Roll 
(BiMMeR)26 for a common 2D processor grid 

by using block cyclic data distribution and 
torus wrap data layout respectively. The 3D 
algorithm27 prepares the p processors as p1/3× 
p1/3 × p1/3 3D mesh and accomplishes a factor 
of p1/6 less communication cost than 2D 
parallel matrix multiplication algorithms. But 
3D algorithm need p1/3 extra copies of the 
matrices which would be a significant 
problem on some platforms. For instance, on 
one million cores, the 3D algorithm will 
require 100 extra copies of the matrices. 
Hence, this algorithm is only convenient to 
relatively smaller matrices. Agarwal et al.28 in 
1994 proposed a different method for 
improving the performance of parallel matrix 
multiplication by overlapping communication 
and computation. The Scalable Universal 
Matrix Multiplication Algorithm (SUMMA)29 
is a very useful algorithm which needs less 
workspace and overcomes the necessity of a 
square 2D grid. It is slightly less efficient, but 
simpler and easier to generalize with 
efficiency 1/(1 + O (log p * p/(b*n2) + log p * 
sqrt (p)/n)). The smaller value of b produces 
less memory and has lower efficiency 
whereas the larger value of b produces more 
memory and has higher efficiency. It uses 
Scalable Linear Algebra Library for 
Distributed Memory Concurrent Computers 
(ScaLAPACK)30, which is one of the most 
conventional parallel numerical linear algebra 
packages. DIMMA (Distribution Independent 
Matrix Multiplication Algorithm)31 is related 
to SUMMA but uses a different pipelined 
communication scheme for overlapping 
communication and computation. A novel 
matrix multiplication algorithm suitable for 
clusters and scalable shared memory systems 
(SRUMMA)32 has equivalent algorithmic 
efficiency with Cannon’s algorithm on 
clusters and shared memory systems. It uses 
block checkerboard distribution of the 
matrices and overlaps communication with 
computations by using remote memory access 
(RMA) communication rather than message 
passing. Authors presented 2.5D algorithm33 
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to generalize the 3D algorithm by 
parameterizes the extent of the third 
dimension of the processor arrangement: 

× ×c, c ∈ [1, p1/3]. Simultaneously, it is 
predictable that exascale systems will have a 
considerably shrinking memory space per 
core34. Therefore, the 2.5D algorithm cannot 
be scalable on future exascale systems. Ali et 
al.35 proposed the performance analysis of the 
matrix multiplication algorithms through 
Message passing Interface (MPI). In a 
previous study, matrix multiplication problem 
has also been studied to recognize the effect 
of problem size on parallelism. But this study 
was limited to a single multicore processor 
only and that was too implemented in Open 
Multi-Processing (OMP) environment36. In37 
a hierarchical optimization was presented to 
improve the communication cost and the 
overall performance on large-scale platforms. 
They applied their approach on SUMMA for 
optimization of message-passing parallel 
algorithms for execution on large scale 
distributed memory systems. Authors38 
analyzed the impact of different block size 
(M.K and K.N) on the performance. They 
used various parameter values for K and 
predefined values of the parameters M and N, 
for testing algorithm behavior in different 
cache regions. In39 a technique was 
implemented to improve parallel execution of 
auto generated OpenMP programs by 
considering architecture of on chip cache 
memory. Several studies40-42 were carried out 
to evaluate the performance of matrix 
multiplication algorithm on multicore 
processors by using OMP. They found that 
the parallel algorithms with small data set 
perform worse than sequential algorithms. 
However as the size of the data set increases 
the execution of parallel algorithms bestows 
the best outcome than sequential execution. 

 
 
 
 

CONCLUSION 

Optimization techniques can speed up 
the multi-core parallel execution by reducing 
the number of memory accesses, using the 
features of granularity and scalability of the 
algorithm and improving the algorithm 
appropriate to hardware architecture and 
organization. In this paper an extensive 
survey of published research work is carried 
out which will be beneficial for the 
researchers to get the deep insight into this 
topic for further analysis and exploration. 
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Table 1. Studies on serial matrix multiplication optimization 
 

Author and Year Reference Method Used Description 

Lawson et al. 
(1979),  Dongarra et 

al. (1988, 1990, 
2002) and Blackford 

et al. (2002) 

[9-16] BLAS 

Level 1: Perform scalar, vector and 
vector-vector operations. 

Level 2: Perform matrix-vector 
operations. It is very efficient on 

vector computers, but not suitable 
to computers with a hierarchy of 

memory (i.e., cache memory). 
Level 3: Used for matrix-matrix 

operations. 

Clint and Dongarra 
(1998) 

[18-19] ATLAS 

ATLAS can be used by researchers 
requiring fast linear algebra 

routines as it provides optimized 
libraries. 

Frigo et al. (1999) [6] 
Cache oblivious 

algorithms 
Cache oblivious algorithms are not 

depending on the architecture. 

Chatterjee et 
al.(2002) 

[8] 
Recursive Array 

Layouts 

Authors observed a basic 
qualitative difference between the 

standard algorithm and the fast 
ones in terms of the benefits of 

using recursive layouts. 

Yotov et al. (2007) [7] 
Cache oblivious and 

cache conscious 
algorithms 

Compared both cache oblivious 
and cache conscious programs 
experimentally and found that 

cache conscious programs perform 
better than cache oblivious 

programs based on blocking. 

Goto and van De 
Geijn (2008) 

[20] GotoBLAS 
Analysis of high performance 

matrix multiplication in GotoBLAS 
library. 

Gustavson (2012) [5] Blocking 
Blocking is dependent on the 

architecture. 

 

 

 

 

 

 

 




