
American Journal of Computer Science and Engineering Survey www.pubicon.co.in

 Review Article

A Survey on Serial and Parallel Optimization
Techniques Applicable for Matrix
Multiplication Algorithm

Yajnaseni Dash*, Sanjay Kumar and V.K. Patle

School of Studies in Computer Science & IT, Pt. Ravishankar Shukla University, Raipur,
Chhattisgarh, 492010, India

ABSTRACT

Parallel algorithms play an imperative role in the high performance
computing environment. Dividing a task into the smaller tasks and
assigning them to different processors for parallel execution are the
two key concepts to evaluate the performance of parallel algorithms.
Performance enhancement is essential in large scientific applications,
where dense matrix multiplication algorithm is extensively used.
Thus, optimization of this algorithm, both for serial and parallel
execution would provide upsurge performance. In this paper, a brief
systematic survey on serial and parallel optimization techniques
applied on matrix multiplication algorithm is carried out.

Keywords: Parallel algorithm, Parallel processing, Matrix
multiplication algorithm, Serial optimization, Parallel optimization.

INTRODUCTION

Programming on multiprocessor
system using divide and conquer technique
is called parallel programming. The parallel
program is composed of various active
processes all at once solving a particular
problem. This paper focuses upon the
previous research work which has been done
to optimize the matrix multiplication
algorithm on serial and parallel platforms.
This paper focuses on different aspects of
optimizing the matrix multiplication
algorithm.

What is parallel algorithm?
An idealized parallel algorithm is

that which is written for Parallel Random
Access Machines (PRAM) model with no
communication overhead1.

Conventional uniprocessor computer
system has been modeled as Random Access
Machines (RAM) by Sheperdson and
Sturgis in 19632 whereas parallel computers
with zero synchronization and no memory
access overhead have been modeled as
PRAM in 19783. If there is a set of k
concurrent processes and if k=1 then it is
called sequential algorithm. Sequential
algorithm runs on uniprocessor machine. If

Address for

Correspondence

School of Studies in
Computer Science &
IT, Pt. Ravishankar
Shukla University,
Raipur, Chhattisgarh,
492010, India.

E-mail: yajnasenidash
@gmail.com

 Dash et al__ ISSN 2349 – 7238

AJCSES[3][1][2015] 071-077

there is a set of k concurrent processes and if
k>1 then it is called parallel algorithm.
Parallel algorithm runs on parallel
computers1.

Matrix multiplication algorithm

Matrix is an extremely significant
mean in conveying and discussing problems
which arise from real life scenarios. It will
be effortless to manipulate and obtain more
information by managing the data in matrix
form. Multiplication is one of the essential
operations on matrices. A square matrix of
order n x n is an arrangement of set of
elements in n rows and n columns4.

Cij =

1

0

n
ik kj

k
A B




 , 0 i< m, 0 j<1…(Eq.1)

If we multiply the matrix A of the
dimension m x n by the matrix B with size n
x l, we store the result in matrix C (C= A x
B) with dimension m x l with each element
defined according to the expression (Eq. 1).

Literature survey of matrix multiplication
algorithm on serial and parallel platform

Parallel matrix multiplication has
been explored and investigated extensively
in the previous two decades. There are
diverse approaches to optimize the matrix
multiplication algorithm. In this section, a
brief overview on existing matrix
multiplication algorithm is carried out.

Serial matrix multiplication optimization

Matrix multiplication is an
exceptionally imperative essence in several
numerical linear algebra algorithms and is
one of the most studied problems in high-
performance computing.

Several approaches have been
proposed to optimize matrix multiplication
by improving spatial and temporal locality.
Blocking or tiling is one such fundamental
technique5. Regardless of its generalization,
blocking is architecture dependent whereas
cache oblivious algorithms6 are an
architecture independent substitute to the

blocked algorithms. The divide and conquer
paradigm is used by cache oblivious
algorithms. Authors in7 made a comparison
between cache oblivious and cache
conscious algorithm. They found that even
highly optimized cache oblivious programs
perform significantly slower than cache
conscious counterparts based on blocking.
Chatterjee et al. bestowed a proposal
regarding recursive array layouts and fast
matrix multiplication. According to them
cache oblivious method is to utilizing a
recursive structure for the matrices8.
Conversely, conventional implementations
of the Basic Linear Algebra Subroutines
(BLAS) libraries9-16 are primarily based on
the blocking approach and hence require
optimization on a particular hardware
platform. The BLAS routines provide
standard building blocks to perform basic
vector and matrix operations. As the BLAS
are proficient, convenient, and extensively
accessible, they are generally used in the
development of high quality linear algebra
software e.g. LAPACK.

Linear Algebra Package (LAPACK)
is a standard software library which
provides routines to solve systems of linear
equations, linear least squares, problems of
eigen value and singular value
decomposition (SVD)17. Consequently,
automatic optimization of matrix
multiplication on different platforms has
been a dynamic area of research. One such
instance is Automatically Tuned Linear
Algebra Software (ATLAS)18 which
provides C and Fortran77 interfaces to a
portably efficient BLAS implementation.
ATLAS automatically produces optimized
numerical software for a given processor
architecture as a part of the software
installation process [19]. Another high
performance implementation of matrix
multiplication for a variety of architectures
was presented in the GotoBLAS library20. In

 Dash et al__ ISSN 2349 – 7238

AJCSES[3][1][2015] 071-077

table 1 serial matrix multiplication
optimization methods are presented.

Parallel matrix multiplication optimization

Parallel matrix multiplication has also
been systematically explored over the past
three decades. Therefore, several parallel
matrix multiplication algorithms have been
proposed for distributed memory, shared
memory and hybrid platforms. Here, only the
algorithms designed for distributed memory
platforms are focused.

Different layouts such as 1D Layout
and 2D Layout were used for the optimization
purpose. 1D Layout21 was found to be much
slower than serial. Here firstly, a bus
connected machine without broadcast was
considered and only one pair of processors
can communicate at a time (ethernet).
Secondly, a machine with processors on a
ring was considered and all processors may
communicate with nearest neighbors
simultaneously. The efficiency of nearest
neighbor communication on a ring (or bus
with broadcast) is 1/(1 + O (p/n)). In 2D
Layout processors are considered in 2D grid
(physical or logical) can communicate with 4
nearest neighbors which broadcast along rows
and columns. 2D Layout includes canon’s
matrix, scalable universal matrix multiply and
recursive layouts. Cannon22 introduced the
first efficient distributed algorithm for two-
dimensional meshes parallel matrix
multiplication providing theoretically optimal
communication cost in 1969. This algorithm
is suitable for homogenous 2D grids but its
extension is difficult to heterogeneous 2D
grids. Constant storage requirements and
independency of number of processors are the
major advantage of the algorithm23. However
cannon’s matrix is hard to generalize with
efficiency of 1/(1+O (sqrt (p)/n)). Fox’s
algorithm24 was extended in PUMMA
(Parallel Universal Matrix Multiplication
Algorithm)25 and Broadcast-Multiply-Roll
(BiMMeR)26 for a common 2D processor grid

by using block cyclic data distribution and
torus wrap data layout respectively. The 3D
algorithm27 prepares the p processors as p1/3×
p1/3 × p1/3 3D mesh and accomplishes a factor
of p1/6 less communication cost than 2D
parallel matrix multiplication algorithms. But
3D algorithm need p1/3 extra copies of the
matrices which would be a significant
problem on some platforms. For instance, on
one million cores, the 3D algorithm will
require 100 extra copies of the matrices.
Hence, this algorithm is only convenient to
relatively smaller matrices. Agarwal et al.28 in
1994 proposed a different method for
improving the performance of parallel matrix
multiplication by overlapping communication
and computation. The Scalable Universal
Matrix Multiplication Algorithm (SUMMA)29
is a very useful algorithm which needs less
workspace and overcomes the necessity of a
square 2D grid. It is slightly less efficient, but
simpler and easier to generalize with
efficiency 1/(1 + O (log p * p/(b*n2) + log p *
sqrt (p)/n)). The smaller value of b produces
less memory and has lower efficiency
whereas the larger value of b produces more
memory and has higher efficiency. It uses
Scalable Linear Algebra Library for
Distributed Memory Concurrent Computers
(ScaLAPACK)30, which is one of the most
conventional parallel numerical linear algebra
packages. DIMMA (Distribution Independent
Matrix Multiplication Algorithm)31 is related
to SUMMA but uses a different pipelined
communication scheme for overlapping
communication and computation. A novel
matrix multiplication algorithm suitable for
clusters and scalable shared memory systems
(SRUMMA)32 has equivalent algorithmic
efficiency with Cannon’s algorithm on
clusters and shared memory systems. It uses
block checkerboard distribution of the
matrices and overlaps communication with
computations by using remote memory access
(RMA) communication rather than message
passing. Authors presented 2.5D algorithm33

 Dash et al__ ISSN 2349 – 7238

AJCSES[3][1][2015] 071-077

to generalize the 3D algorithm by
parameterizes the extent of the third
dimension of the processor arrangement:

× ×c, c ∈ [1, p1/3]. Simultaneously, it is
predictable that exascale systems will have a
considerably shrinking memory space per
core34. Therefore, the 2.5D algorithm cannot
be scalable on future exascale systems. Ali et
al.35 proposed the performance analysis of the
matrix multiplication algorithms through
Message passing Interface (MPI). In a
previous study, matrix multiplication problem
has also been studied to recognize the effect
of problem size on parallelism. But this study
was limited to a single multicore processor
only and that was too implemented in Open
Multi-Processing (OMP) environment36. In37
a hierarchical optimization was presented to
improve the communication cost and the
overall performance on large-scale platforms.
They applied their approach on SUMMA for
optimization of message-passing parallel
algorithms for execution on large scale
distributed memory systems. Authors38
analyzed the impact of different block size
(M.K and K.N) on the performance. They
used various parameter values for K and
predefined values of the parameters M and N,
for testing algorithm behavior in different
cache regions. In39 a technique was
implemented to improve parallel execution of
auto generated OpenMP programs by
considering architecture of on chip cache
memory. Several studies40-42 were carried out
to evaluate the performance of matrix
multiplication algorithm on multicore
processors by using OMP. They found that
the parallel algorithms with small data set
perform worse than sequential algorithms.
However as the size of the data set increases
the execution of parallel algorithms bestows
the best outcome than sequential execution.

CONCLUSION

Optimization techniques can speed up
the multi-core parallel execution by reducing
the number of memory accesses, using the
features of granularity and scalability of the
algorithm and improving the algorithm
appropriate to hardware architecture and
organization. In this paper an extensive
survey of published research work is carried
out which will be beneficial for the
researchers to get the deep insight into this
topic for further analysis and exploration.

REFERENCES

1. Hwang K, Jotwani N (2001), “Advanced

Computer Architecture”, Tata McGraw Hill
education Private Limited, Second Edition.

2. Shepherdson J. C., Sturgis H. E (1963),
Computability of Recursive Functions. J.
ACM 10, 2 (April 1963), 217-255.
DOI=10.1145/321160.321170

3. Fortune S, James Wyllie (1978, Parallelism in
random access machines. In Proceedings of
the tenth annual ACM symposium on Theory
of computing (STOC '78). ACM, New York,
NY, USA, pp. 114-118.

4. Horn, Johnson (2013), Matrix Analysis (2nd
ed.), Cambridge University Press.

5. Gustavson FG (2012), Cache blocking for
linear algebra algorithms. Parallel processing
and applied mathematics. In: Lecture Notes in
Computer Science, vol 7203, Springer, Berlin,
pp. 122-132.

6. Frigo M, Leiserson CE, Prokop H,
Ramachandran S (1999), Cache-oblivious
algorithms. In: Proceedings of the 40th annual
symposium on foundations of computer
science, FOCS ’99. IEEE Computer Society,
Washington, DC, USA, pp. 285.

7. Yotov K, Roeder T, Pingali K, Gunnels J,
Gustavson F (2007), An experimental
comparison of cache-oblivious and cache-
conscious programs. In: Proceedings of the
nineteenth annual ACM symposium on
parallel algorithms and architectures, SPAA’
07ACM, New York, NY, USA, pp. 93-104.

8. Chatterjee S, Lebeck AR, Patnala PK,
Mithuna T (2002), Recursive array layouts

 Dash et al__ ISSN 2349 – 7238

AJCSES[3][1][2015] 071-077

and fast matrix multiplication. IEEE Trans
Parallel Distrib Syst 13(11), pp. 1105-1123.

9. Basic Linear Algebra Routines (BLAS),
Available online at: http://www.netlib.org/
blas/.

10. Lawson C. L., Hanson R. J., Kincaid D., and
Krogh F. T., Basic Linear Algebra
Subprograms for FORTRAN usage, ACM
Trans. Math. Soft., 5 (1979), pp. 308-323.

11. Dongarra J. J, J. Du Croz, S. Hammarling,
and R. J. Hanson, An extended set of
FORTRAN Basic Linear Algebra
Subprograms, ACM Trans. Math. Soft., 14
(1988), pp. 1-17.

12. Dongarra J. J., Croz JD, Hammarling S.,
Hanson R. J., Algorithm 656: An extended set
of FORTRAN Basic Linear Algebra
Subprograms, ACM Trans. Math. Soft., 14
(1988), pp. 18-32.

13. Dongarra J. J., Croz JD, Duff I. S., and
Hammarling S., A set of Level 3 Basic Linear
Algebra Subprograms, ACM Trans. Math.
Soft., 16 (1990), pp. 1-17.

14. Dongarra J. J., Croz JD, Duff I. S.,
Hammarling S., Algorithm 679: A set of
Level 3 Basic Linear Algebra Subprograms,
ACM Trans. Math. Soft., 16 (1990), pp. 18-
28.

15. Blackford L. S., Demmel J., Dongarra J., Duff
I., Hammarling S., Henry G., Heroux M.,
Kaufman L., Lumsdaine A., Petitet A., Pozo
R., Remington K., Whaley R. C., An Updated
Set of Basic Linear Algebra Subprograms
(BLAS), ACM Trans. Math. Soft., 28-2
(2002), pp. 135—151.

16. Dongarra J., Basic Linear Algebra
Subprograms Technical Forum Standard,
International Journal of High Performance
Applications and Supercomputing, 16(1)
(2002), pp. 1-111, and International Journal of
High Performance Applications and
Supercomputing, 16(2) (2002), pp. 115-199.

17. http://www.netlib.org/lapack/lapacke.html
18. http://math-atlas.sourceforge.net/
19. Clint WR, Dongarra JJ (1998), Automatically

tuned linear algebra software. Proceedings of
the 1998 ACM/IEEE conference on
supercomputing. Supercomputing’98 IEEE
Computer Society, Washington, DC, USA,
pp. 1-27.

20. Goto K, van De Geijn RA (2008), Anatomy
of high-performance matrix multiplication.
ACM Trans Math Softw 34(3), pp.1-25.

21. Dekel E., D. Nassimi, and S. Sahni, “Parallel
matrix and graph algorithms”, SIAM Journal
on Computing”, vol.10, 1981, pp. 657-673

22. Lynn Elliot Cannon, A cellular computer to
implement the Kalman Filter Algorithm,
Technical report, Ph.D. Thesis, Montana State
University, 14 July 1969.

23. Gupta, H.; Sadayappan, P.: Communication
Efficient Matrix-Multiplication on
Hypercubes, dbpubs.stanford.edu.

24. Fox GC, Otto SW, Hey AJG (1987), Matrix
algorithms on a hypercube I: matrix
multiplication. Parallel Comput 4(1), pp.17-
31.

25. Choi J, Walker DW, Dongarra J (1994),
PUMMA: Parallel universal matrix
multiplication algorithms on distributed
memory concurrent computers. Concurr
Pract Exp 6(7), pp.543-570.

26. Huss-Lederman S, Jacobson E, Tsao A,
Zhang G (1994), Matrix multiplication on the
Intel Touchstone Delta. Concurr Pract Exp
6(7), pp.571-594.

27. Agarwal RC, Balle SM, Gustavson FG, Joshi
M, Palkar P (1995), A three-dimensional
approach to parallel matrix multiplication.
IBM J Res Dev 39(5), pp. 575–582.

28. Agarwal RC, Gustavson FG, ZubairM (1994),
A High-performance matrix-multiplication
algorithm on a distributed-memory parallel
computer, using overlapped communication.
IBM J Res Dev 38(6), pp. 673–681.

29. van de Geijn RA, Jerrell W (1997), SUMMA:
scalable universal matrix multiplication
algorithm. Concurr Pract Exp 9(4), pp.255–
274.

30. Blackford LS, Choi J, Cleary A, D’Azeuedo
E, Demmel J, Dhillon I, Hammarling S,
Henry G, Petitet A, Stanley K, Walker D,
Whaley RC (1997), ScaLAPACK user’s
guide. Society for industrial and applied
mathematics, Philadelphia.

31. Choi J (1997), A new parallel matrix
multiplication algorithm on distributed-
memory concurrent computers. In: High
Performance Computing on the Information
Superhighway, HPC, Asia ’97, pp. 224–229.

 Dash et al__ ISSN 2349 – 7238

AJCSES[3][1][2015] 071-077

32. KrishnanM, Nieplocha J (2004), SRUMMA:
a matrix multiplication algorithm suitable for
clusters and scalable shared memory systems.
In: Proceedings of parallel and distributed
processing symposium.

33. Solomonik E, Demmel J (2011),
Communication-optimal parallel 2.5D matrix
multiplication and LU factorization
algorithms. In: Euro-Par (2), Lecture Notes in
Computer Science, vol 6853. Springer, Berlin,
pp 90-109.

34. U.S.Department of Energy (2011): “Exascale
Programming Challenges”. ASCR Exascale
Programming Challenges Workshop.

35. Ali J, Khan RZ, (2012), Performance
Analysis of Matrix Multiplication Algorithms
Using MPI, International Journal of
Computer Science and Information
Technologies (IJCSIT), Vol. 3 (1), pp. 3103 -
3106.

36. Patel R, Kumar S (2012), “Effect of problem
size on parallelism”, Proc. of 2nd
International conference on Biomedical
Engineering & Assistive Technologies at NIT
Jalandhar, pp. 418-420.

37. Hasanov K, Quintin JN, Lastovetsky A
(2014), “Hierarchical approach to
optimization of parallel matrix multiplication
on large-scale platforms” , J Supercomputing,
Springer, 2014.

38. Ristov S., Gusev M., Velkoski G. (2014),
Optimal Block Size for Matrix Multiplication
Using Blocking, MIPRO 2014, 26-30 May
2014, Opatija, Croatia, pp. 295-300.

39. Dheeraj D, Nitish, B, Ramesh S, (2012),
“Optimization of Automatic Conversion of
Serial C to Parallel OpenMP,” Cyber-Enabled
Distributed Computing and Knowledge
Discovery (CyberC), 2012 International
Conference, pp.309-314.

40. Sharma SK, Gupta K (2012), “Performance
Analysis of Parallel Algorithms on Multi-core
System using OpenMP Programming
Approaches”, International Journal of
Computer Science, Engineering and
Information Technology (IJCSEIT), Vol.2,
No.5.

41. Kathavate S, Srinath N.K. (2014), “Efficiency
of Parallel Algorithms on Multi Core Systems
Using OpenMP,” International Journal of
Advanced Research in Computer and
Communication Engineering, Vol. 3, Issue
10, October 2014. pp. 8237-8241.

42. Kulkarni P, Pathare S, “Performance analysis
of parallel algorithm over sequential using
OpenMP,” IOSR Journal of Computer
Engineering (IOSR-JCE), Volume 16, Issue
2, pp. 58-62.

 Dash et al__ ISSN 2349 – 7238

AJCSES[3][1][2015] 071-077

Table 1. Studies on serial matrix multiplication optimization

Author and Year Reference Method Used Description

Lawson et al.
(1979), Dongarra et

al. (1988, 1990,
2002) and Blackford

et al. (2002)

[9-16] BLAS

Level 1: Perform scalar, vector and
vector-vector operations.

Level 2: Perform matrix-vector
operations. It is very efficient on

vector computers, but not suitable
to computers with a hierarchy of

memory (i.e., cache memory).
Level 3: Used for matrix-matrix

operations.

Clint and Dongarra
(1998)

[18-19] ATLAS

ATLAS can be used by researchers
requiring fast linear algebra

routines as it provides optimized
libraries.

Frigo et al. (1999) [6]
Cache oblivious

algorithms
Cache oblivious algorithms are not

depending on the architecture.

Chatterjee et
al.(2002)

[8]
Recursive Array

Layouts

Authors observed a basic
qualitative difference between the

standard algorithm and the fast
ones in terms of the benefits of

using recursive layouts.

Yotov et al. (2007) [7]
Cache oblivious and

cache conscious
algorithms

Compared both cache oblivious
and cache conscious programs
experimentally and found that

cache conscious programs perform
better than cache oblivious

programs based on blocking.

Goto and van De
Geijn (2008)

[20] GotoBLAS
Analysis of high performance

matrix multiplication in GotoBLAS
library.

Gustavson (2012) [5] Blocking
Blocking is dependent on the

architecture.

