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ABSTRACT 
 
This paper deals with the study of ureteral peristalsis in cylindrical tube through porous 
medium. In reality, there are solid particles present in the flow, but it is necessary to understand 
the behaviour of the fluid flow. The flow is analyzed for a single traveling wave in an 
axisymmetric tube with an incompressible, Newtonian fluid. The wavelength of the traveling 
wave assumed to be large. Analytical expressions for the stream function, axial velocity, and 
pressure gradient have been obtained. The effect of various parameters on the flow is discussed 
with the help of graphs.    
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INTRODUCTION 
 

The transport of fluid through axisymmetric tube by peristaltic motion is a fundamental 
physiological process has found great importance in many engineering and biological system 
including study of humans. The phenomenon created by peristaltic is an interesting problem 
because of its applications in understanding many physiological transport processes through 
vessels under peristaltic motion. The description of the phenomenon associated to this transport 
has been studied by many authors. In order to understand peristalsis in various situations, many 
theoretical and experimental investigations have been made since the first attempt of Latham [9]. 
Many investigators Jaffrin and Shapiro [6], Yin and Fung [18], Barton and Raynor [2], Manton 
[10], Srvastava and Srivastava [14] have analyzed the peristaltic flow of viscous fluid. Recently, 
Rathod and Asha [12] have worked on effect of couple stress fluid and an endoscope on 
peristaltic motion. Rathod et. al. [11] has studied the peristaltic transport of a couple stress fluid 
in uniform and non-uniform annulus. Particle motion in unsteady two-dimensional peristaltic 
flow with application to the ureter has been studied by Joel Jiménez-Lozano et. al. [8]  
 
In resent years, peristaltic transport through porous medium has been of considerable interest 
among geophysical and fluid dynamists. Peristaltic transport through porous medium has been 
investigated by El- Sheshawey et. al .[4]. Varshney [16] has studied the fluctuating flow of a 
viscous fluid through porous medium bounded by porous and horizontal space. 
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By applying Darcy’s law flow through a porous medium has been discussed by Raptis and 
Perdikis [13]. A mathematical model of peristalsis in tubes through a porous medium has been 
studied by Hayat et al [6]. Sobh and Mady [15] have investigated the peristaltic flow through a 
porous medium in a non-uniform channel. Ahmadi and Manvi [1] have studied the equation of 
motion for viscous flow through a rigid porous medium. Casson fluid flow in a pipe filled with a 
homogeneous porous medium is discussed by Dash et.al [3] . Effect of porous boundaries on 
peristaltic transport through a porous medium was studied by Elshehaway et al. [5]. Peristaltic 
pumping of a variable viscosity fluid in a non-uniform tube with permeable wall is presented by 
Vijayaraj et al. [17].  
 
The aim of the present paper is to study the peristaltic transport of a viscous incompressible fluid 
through a porous medium and geometrical form of the ureter is considered as a single wave 
axisymmetric. Graphical results for streamline, velocity profile and the pressure gradient are 
presented to illustrate the nature of the analytical results. 
 
Formulation of the problem 
Consider the flow of an incompressible Newtonian fluid through an axisymmetric tube with a 
traveling sinusoidal wave along the wall. In cylindrical co-ordinate system ( , )r z  the 
dimensional equation for the tube radius for an in finite wave train is 
 

               b

2π
R = η(z, t) = R + aSin( (Z - ct))

λ
                                                                 (1) 

 
where t is time, bR  is average radius of the tube, a is the amplitude of the wave,λ is  wavelength 

and c is  wave speed. In the laboratory frame (Z, R) the flow is unsteady. It becomes steady in 
moving coordinate (z, r) traveling at the speed of the wave is used. The system of coordinate in 
the laboratory frame and wave frame are related through    
 
                                                           z = Z -ct,    r = R                                              1(a)                                           
 
and the velocity components are related by 
 

r r z zu (z, r) = U (Z -ct,R) ;u (z, r) = U (Z -ct,R) - c                                                          1(b)     
 
where    zu  and ru are velocity component in frame. 

 
The governing equations are the continuity equation and the Navier- Stokes equations for 
incompressible fluid with steady two-dimensional asymmetric flow. These equations are: 
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In order to simplify the solution of this non-linear system, it is necessary to introduce non-
dimensional parameters. For simplification purposes, the Reynolds number is introduced as well: 
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The governing equations, Eqs. (2) - (4) can be rewritten using the dimensionless forms 
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The stream function is related to the velocity components by: 
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By applying the definition of stream function, the continuity equation is satisfied identically and 
the equation of motion becomes 
 

2
3 2 4

2

1 1 1 1 1
e

p
R

r z r r r z r z r r r r z z r z

ψ ψ ψ ψ ψε ε ε∂ ∂ ∂ ∂ ∂ ∂ ∂  ∂ ∂  ∂ ∂     − = − − − +     ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂      

2 1 1

K r z

ψε  ∂  
  ∂  

                                                                                                           

                                                                                                                                                                   (9) 
 

2
2

2

1 1 1 1 1 1
e

p
R r

r z r r r z r r z r r r r r z r r

ψ ψ ψ ψ ψε ε∂ ∂ ∂ ∂ ∂ ∂ ∂  ∂ ∂  ∂ ∂     − − = − + + −     ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂      

1 1

K r r

ψ ∂  
  ∂  

                                                                                                                             

                                                                                                                                                                                 
                                                                                                                                                                  (10) 
The dimensionless wall equation of the tube is 
 
         η(z) = 1+ Sinzφ                                                                                                    (11)  
 

where
b

a

R
φ = , for 0 1φ< < . 

 
Boundary Conditions 
The boundary conditions are determined based on the flow rate relation of the stream function in 
moving frame at two different locations. The first location is at the centerline (r = 0), and the 
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second is at the wall (r = η ). At the centerline, the velocity in the axial direction is constant and 
the volume flux is zero. At the wall, the axial velocity is -1 and the volume flux is F. 
In conclusion, the dimensionless boundary condition is expressed as 
           

      
1

0, 0 0for r
r r r

ψψ ∂ ∂ = = = ∂ ∂ 
                                                                          (12)   
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                                                                       (13) 

 
Equations For Large Wavelength  
By neglecting the terms containing (ε ), and eR  using long wavelength and low Reynolds 

number approximation. Eq. (9) and (10) tend to the following system.  
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 With dimensionless boundary conditions 

    
1

0, 0 0for r
r r r

ψψ ∂ ∂ = = = ∂ ∂ 
                                                                         (16) 

    
1

, 1 ( )F for r z
r r

ψψ η∂ = = − = ∂ 
                                                                      (17) 

 
We note from Eq. (9) that p = p(z) and , Eq.(9) and (10) can be cross differentiated and 
substracted to eliminate the dependence to the pressure term. The resulting expression, one finds 
that 
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Integrating of Eq. (18) and the use of boundary conditions (16) yields. 
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 in which  C1 is an arbitrary function of z. Equation (19) can also be written as 
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where 

1 122

r
C

r M

ψφ = +                                                                                                              (21) 

 
The solution of equation (20) is 
 

1 2 1 3 1( ) ( )C I Mr C K Mrφ = +                                                                                                (22) 

 
and thus from Eq. (21)  

1
2 1 3 1 2

C r
ψ = r C I (Mr) + C K (Mr) -

2M
 
  

                                                                               (23)                 

 
in which 1 1I (Mr)and K (Mr)  are  the modified  Bessel’s functions of first order, first and second 

kinds, respectively, and C2 and C3 are arbitrary functions of z. With the help of boundary 
condition (16) and (17) expression (23) becomes. 
 

2
1 0 1

2
2

r[(2F +η )I (Mr) - MrFI (M η) - ηrI (Mη)]
ψ =

Mη I (Mη)
                                                             (24)     

 
In the above equation 0 2I and I  are the modified Bessel’s functions of order zero and two 

respectively. 
 
 Now, from Eqs. (14), (15) and (24), the expressions for velocity and pressure gradient are 
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The dimensionless pressure rise p∆ and friction forceFλ  are defined by 
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RESULTS AND DISCUSSION 

  
There are analytical solutions for the stream-function, axial velocity, pressure gradient and 
frictional force, it is possible to plot the behavior of the model at several location of interest. This 
paper presents a theoretical study of peristaltic flow through  porous medium in the uereter that 
considers solid particles in the medium. Although the real peristaltic motion presented in the 
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problems of physiology is very difficult, as it is in the ureter, this analysis can serve as a model, 
which may help in understanding the mechanics of a ureteral peristalsis.  
 
The effect of variation of permeability K on the stream function ψ  is depicted in fig.1. This 
figure shows that with an increase in the permeability K, the deviation in stream function 
becomes smaller.  
The effect of variation of total flux F on the stream function ψ  is exhibited in   
 
fig.2. From this figure it can be noted that the stream function strongly depend on the choice of 
the total flux F.  
 
It is possible to plot the profiles of axial velocity with respect to radial location for various values 
of permeability K and for the fixed value of total flux F = - 2 and radius of tube 1η = . From fig.3, 
it is clear that the axial velocity increases when K is increased.  fig 4, shows that for F = - 0.5, a 
constant velocity distribution across the cross-section is formed; in this case, no pressure gradient 
exist near the cross-section of tube when η  = 1. 
 
When F > -0.5, the flow velocity is curved towards the positive z–direction (not shown in fig. 4) 
due to an exerted pressure gradient in negative z-direction, whilst for F< -0.5 a pressure gradient 
in the positive z–direction is required to maintain such a flux value, hence flow velocity is 
curved towards the negative z- direction. Also from fig. 5, it is clear that the pressure gradient 
decreases with increase of permeability K.  
 
The distribution of the pressure gradient dp / dz within a wavelength [0,2 ]z π∈  are shown in 

Fig. 6and 7. Fig. 6 is plotted for various values of the wave amplitude φ  and fig. 7 is prepared to 
show the effect of occlusion F on the pressure gradient for fixed values of η , φ , and K. It can be 
clearly seen from the Figs. 6 and 7 that, on the one hand, in the wider part of the tube 

[0,3.2] [6.2,8]z and∈ the pressure gradient is relatively small, that is, the flow can easily pass 
without imposition of large pressure gradient. On the other hand, in a narrow part of the tube, a 
much larger pressure gradient is required to maintain the same flux to pass it, especially for the 
narrowest position near 3 / 2z π=  when the wave amplitude φ  (Fig.6) or the absolute value of 
the flux F (Fig.7) is larger. This mathematical model can be of some help in understanding the 
medical, engineering and industrial problems. 
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