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ABSTRACT

This paper deals with the study of ureteral peristalsis in cylindrical tube through porous
medium. In reality, there are solid particles present in the flow, but it is necessary to understand
the behaviour of the fluid flow. The flow is analyzed for a single traveling wave in an
axisymmetric tube with an incompressible, Newtonian fluid. The wavelength of the traveling
wave assumed to be large. Analytical expressions for the stream function, axial velocity, and
pressure gradient have been obtained. The effect of various parameters on the flow is discussed
with the help of graphs.
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INTRODUCTION

The transport of fluid through axisymmetric tube pgristaltic motion is a fundamental
physiological process has found great importancenamy engineering and biological system
including study of humans. The phenomenon creategdsistaltic is an interesting problem
because of its applications in understanding mamysiplogical transport processes through
vessels under peristaltic motion. The descriptibthe phenomenon associated to this transport
has been studied by many authors. In order to statet peristalsis in various situations, many
theoretical and experimental investigations havenbmade since the first attempt of Latham [9].
Many investigators Jaffrin and Shapiro [6], Yin afdng [18], Barton and Raynor [2], Manton
[10], Srvastava and Srivastava [14] have analyhedotristaltic flow of viscous fluid. Recently,
Rathod and Asha [12] have worked on effect of ceuglress fluid and an endoscope on
peristaltic motionRathod et. al. [11] has studied the peristaltiogport of a couple stress fluid
in uniform and non-uniform annulus. Particle motionunsteady two-dimensional peristaltic
flow with application to the ureter has been stddig Joel Jiménez-Lozano et. al. [8]

In resent years, peristaltic transport through psrmedium has been of considerable interest
among geophysical and fluid dynamists. Peristataasport through porous medium has been
investigated by El- Sheshawey et. al .[4]. Varsh[i#] has studied the fluctuating flow of a
viscous fluid through porous medium bounded by psrand horizontal space.
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By applying Darcy’'s law flow through a porous medithas been discussed by Raptis and
Perdikis [13]. A mathematical model of peristalgisubes through a porous medium has been
studied by Hayat et al [6]. Sobh and Mady [15] hawestigated the peristaltic flow through a
porous medium in a non-uniform channel. Ahmadi Btahvi [1] have studied the equation of
motion for viscous flow through a rigid porous madi Casson fluid flow in a pipe filled with a
homogeneous porous medium is discussed by Dadh[3t.&ffect of porous boundaries on
peristaltic transport through a porous medium wadied by Elshehaway et al. [5]. Peristaltic
pumping of a variable viscosity fluid in a non-wrih tube with permeable wall is presented by
Vijayaraj et al. [17].

The aim of the present paper is to study the @dtistransport of a viscous incompressible fluid
through a porous medium and geometrical form of uteter is considered as a single wave
axisymmetric. Graphical results for streamline,oeély profile and the pressure gradient are
presented to illustrate the nature of the anallytesults.

Formulation of the problem
Consider the flow of an incompressible Newtoniandflthrough an axisymmetric tube with a
traveling sinusoidal wave along the wall. In cylicdl co-ordinate system(r,z) the

dimensional equation for the tube radius for afirite wave train is
R=n(z,) =R, +aSin% (Z-ct) (1)

where t is time,R, is average radius of the tubeis the amplitude of the wavéjs wavelength

and c is wave speed. In the laboratory frame (ZthR flow is unsteady. It becomes steady in
moving coordinate (z, r) traveling at the speedhefwave is used. The system of coordinate in
the laboratory frame and wave frame are relatemlityir

Z=Z-ct, T=R 1(a)
and the velocity components are related by
U, (zM=U (Z-ctR) [y Z1=Y (Z-ct,R)- 1(b)
where U, and U, are velocity component in frame.

The governing equations are the continuity equaaod the Navier- Stokes equations for
incompressible fluid with steady two-dimensionalrametric flow. These equations are:
29 ru)+ =0 @
ror Z

— T 2_
g0, g o 1, i_(:li_ j+a; Yy 3)
or r 0z :

u (4)
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In order to simplify the solution of this non-limeaystem, it is necessary to introduce non-
dimensional parameters. For simplification purpp#®s Reynolds number is introduced as well:

r=t 222,520, g2l gV
R, A A R, cR,
— _u - _u __p R,c -, _k
u:_rl =_Zl = 1 = !K_
Tt ¢ HC R v R,
eR,

The governing equations, Egs. (2) - (4) can beitmmrusing the dimensionless forms

10 Jdu
——(ru ) +—== S
rar( ) > (5)
au au op. .0 . 0% , 1

e =Py 2 020 (g |+et S22 6

R*[ az} or ar(ra ( )j 0z° K" ©)
2
[0 vy, 2] () 20 L, -
or 0z 0z ror\ or 022 K

The stream function is related to the velocity comgnts by:
ur =22 u9=2¥ ®)
r 0z r

By applying the definition of stream function, tbentinuity equation is satisfied identically and
the equation of motion becomes

o102 1000110000010 (00)) 00 100), o1 (Y 00)
rozor r or 0z|r 0z or or\ror\ oz 02\ r 0z r\ oz

9)
eq[L002 10001100 O 10/, 3(100)), . O (100 (100
rozor r or 0z|r or 0z ror\ orr or 0z°\r or or
(10)
The dimensionless wall equation of the tube is
n(z) =1+¢@Sinz 11

where ¢=% , for O<gp<1.

Boundary Conditions

The boundary conditions are determined based ofiderate relation of the stream function in
moving frame at two different locations. The fitgtation is at the centerline (r = 0), and the
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second is at the wall (r #). At the centerline, the velocity in the axialadtion is constant and

the volume flux is zero. At the wall, the axial @eity is -1 and the volume flux is F.
In conclusion, the dimensionless boundary condisoexpressed as

Y =0, ar(r a;rj Ofor r=0 (12)
Y=F, (E—a" j=—1 for r=n(z) (13)
ror

Equations For Large Wavelength
By neglecting the terms containing ), and R, using long wavelength and low Reynolds
number approximation. Eqg. (9) and (10) tend toftilewing system.

op
— = 14
o (14)
0z ror\ or\r or r{ or
where M :\/i
k
With dimensionless boundary conditions
W =0, i(}a_‘//j =0for r=0 (16)
or\r or
Y=F, (}%—wj:—l for r=n(z) @an
r or

We note from Eq. (9) that p = p(z) and , Eq.(9) 4@8) can be cross differentiated and
substracted to eliminate the dependence to theymeserm. The resulting expression, one finds
that

oriror\ or\r or or\r or

Integrating of Eq. (18) and the use of boundarydans (16) yields.
d(1dy) M? r
— | == | ——y=—C 19
ar(r arj r d 2t (19)

in which G is an arbitrary function of z. Equation (19) canscalbe written as

rz(?a—?ﬂ?a—?—(Mzrzﬂ)q:O (20)
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where

1/ r

==+—C 21
aq FoM2 (21)

The solution of equation (20) is

@ =C,l,(Mr)+CK (Mr) (22)
and thus from Eq. (21)
v r[ C,1,(Mr) + CK (M) - 2%'2} (23)

in which I, (Mr)and K, (Mr) are the modified Bessel's functions of first @rdfirst and second

kinds, respectively, and ;Gnd G are arbitrary functions of z. With the help of bdary
condition (16) and (17) expression (23) becomes.

_M(2F +1*)1,(Mr) - MrF1 {M 1) - nyrl (M7)]
Yo Mn?*1,(Mn)

(24)

In the above equation,andl, are the modified Bessel's functions of order zarmw two
respectively.

Now, from Eqgs. (14), (15) and (24), the expressifmm velocity and pressure gradient are

u = CF +1°)M 14(Mr) - 2MFI (M n) - 201 (Mn)

2 (25)
anlz(Mn)
dp _ 2[(2F +n? )M (M) -M F1 {M ) -nMI (M n)] 62
dz n’1,(Mn)
The dimensionless pressure risgand friction force~, are defined by
- 2 2 - -
Ap = [#721RF +n°)M |0(|\/|r)2 M Fl (M 1) -nMI (M n)] dz (27)
0 n°l,(Mn)
- 2 2 - -

F =g - ZACE MMM LM )M (M, (28)

0 n°l,(Mn)
RESULTSAND DISCUSSION

There are analytical solutions for the stream-fiomct axial velocity, pressure gradient and
frictional force, it is possible to plot the behawof the model at several location of interestisTh

paper presents a theoretical study of peristdit through porous medium in the uereter that
considers solid particles in the medium. Althoupk teal peristaltic motion presented in the
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problems of physiology is very difficult, as itiis the ureter, this analysis can serve as a model,
which may help in understanding the mechanicswkteral peristalsis.

The effect of variation of permeability K on theestm functiony is depicted in fig.1. This
figure shows that with an increase in the permagbK, the deviation in stream function
becomes smaller.

The effect of variation of total flux F on the stne functiony is exhibited in

fig.2. From this figure it can be noted that theeain function strongly depend on the choice of
the total flux F.

It is possible to plot the profiles of axial veltycwith respect to radial location for various vedu
of permeability K and for the fixed value of tothix F = - 2 and radius of tulze=1. From fig.3,

it is clear that the axial velocity increases wikeis increased. fig 4, shows that for F =- 0.5, a
constant velocity distribution across the crossisaas formed; in this case, no pressure gradient
exist near the cross-section of tube wiper 1.

When F > -0.5, the flow velocity is curved towattle positive z—direction (not shown in fig. 4)
due to an exerted pressure gradient in negativieeztobn, whilst for F< -0.5 a pressure gradient
in the positive z—direction is required to maintaimch a flux value, hence flow velocity is
curved towards the negative z- direction. Also frbg 5, it is clear that the pressure gradient
decreases with increase of permeability K.

The distribution of the pressure gradiedp/dz within a wavelengthzJ[0, 277] are shown in
Fig. 6and 7. Fig. 6 is plotted for various valuéshe wave amplitudep and fig. 7 is prepared to
show the effect of occlusion F on the pressureigrador fixed values ofy, ¢, and K. It can be

clearly seen from the Figs. 6 and 7 that, on the band, in the wider part of the tube
z[1[0,3.2]and [6.2,8]the pressure gradient is relatively small, thathsg, flow can easily pass

without imposition of large pressure gradient. @a bther hand, in a narrow part of the tube, a
much larger pressure gradient is required to miairttee same flux to pass it, especially for the
narrowest position neaz =377/2 when the wave amplitude (Fig.6) or the absolute value of
the flux F (Fig.7) is larger. This mathematical mbdan be of some help in understanding the
medical, engineering and industrial problems.
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