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ABSTRACT 
 
This paper describes a model for the analysis of drag on flexible red blood cell considering different assumed 
shapes of red blood cells in narrow capillary of diameter of the same order as that of the cells or slightly greater. 
We have considered Krogh cylindrical model of the capillary surrounded by tissue. The blood cell was assumed as 
particle suspended in plasma flowing in axisymmetric Stoke’s flow. Flow in the narrow gap between the particle and 
the gap have been studied. The gap between the cell and the capillary wall is small so that the lubrication theory is 
applicable. Both prolate and oblate spheroids shape of the red cell have been considered. Results for total drag 
have been brought out for different shapes of parameters involved.  
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INTRODUCTION 
 
The study of flow of closely fitting incompressible elastic pellets in tubes has been developed as model of blood 
flows in capillaries. The blood cells were assumed as particles suspended in plasma flowing in axisymmetric 
Stoke�s flow [8]. When blood flows through capillaries whose diameter is less than that of a red blood cell, it is 
obvious that the red cell must be deformed. Observations show that cell may also be deformed in somewhat larger 
vessels [10,11,12,13,14].  
 
In either case, it is to be expected that deformations dependent on the magnitude of the viscous stress and hence on 
the velocity or pressure gradient, will result during flow. The shape of the particle will then be velocity dependent. 
Since the increased pressure drop is a function of shape as discussed for the rigid particles [19]. It may be expected 
that the apparent viscosity of a suspension of deformable particle is a function of mean velocity or pressure gradient 
in a given size tube and it will vary in a nonlinear manner with tube diameter.  
 
The qualitative ideas were first incorporated in to a quantitative theory by Lighthill using the approximations of 
lubrication theory and a amplified linear relation of the cell deflection to the local pressure [9]. The original 
formulation by Lighthill has been modified by Fitzgerald [6, 7] to make it more separate and realistic with respect to 
the blood flow problems the qualitative results are the same. Lighthill and Fitzgerald both include more realistic 
analysis. Stoke’s flow in a cylindrical tube containing a line of spheroidal particles was studied by Chen and Skalak 
under large and very narrow gap between the particle and the capillary [3]. In their later work they used lubrication 

theory [5]. Canhun and Burton [4] have thoroughly studied the surface area and volume as 138.1± 17.4 2mµ  and 
3107 16.8 mµ±  respectively with 8.065 mµ as diameter. The density of RBC is about 1.10 and that of plasma is 

usually assumed to be naturally buoyant particle in stoke�s flow [2]. The resultant force and moment on the particle 
due to pressure and viscous force must be zero [17] as given by the equation   
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where 0c , 0b  are major & minor axes in meridian plane section of spheroid , ( )xΡ  is the pressure and U is the 

velocity of plasma in the gap between the cell and capillary wall. Wang and Skalak [20] find out the solution for a 
line of Spherical particles and Chen and Skalak [3] given the solution for a spheroid particle. Bungay and Breener 
[2] Solved full Navier Stoke’s equation by using singular perturbation equation. In narrow capillaries, the 
flexibilities of red blood cells tend to make themselves centering and they do not rotate. Chen and Skalak [3] treated 
an idealized problem of blood flow in capillary in which blood cells represent particle whose diameter are of the 
order of magnitude as that of the capillary. Both prolate and oblate spheroids equally spaced have been considered. 
Numerical computations for total drag have been brought out for different sets of parameters involved [11, 12]. 
These authors have also applied lubrication theory as mentioned above for simplified analysis and compared the 
results the drag pressure drop and drag coefficient. In practice, It is found impractical to compute pressure and drag 
for large spheroids because of the slow convergence of the series solutions. For this region, lubrication theory for 
large spheroids is introduced at this point which may be expected to give food accuracy for large spheroids closely 
fitting the cylinder with very narrow gap. Earlier Tandon et al have also studied fluid exchange and or nutritional 
transport in between capillary and surrounding tissue. Bali et al [1] developed a model of fluid and nutritional 
exchange when the gap between the cell and the capillary wall is small and discussed the fluid flux at the capillary 
tissue interface. The effect of thickness of the porous material on the peristaltic pumping when the tube wall is 
provided with non-erodible porous lining [14]. A mathematical model is developed to study the steady flow of 
Casson fluid through an inclined tube of non-uniform cross section with multiple stenosis [18].   
 
Formulation of the Problem: 
 

 
 

Figure 1 Geometrical diagram for the prolate spheroid 

 
Figure 2 Geometrical diagrams for the oblate spheroid 
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Equation of motion in capillary region is  
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In non dimensional form 
 

1
0

Re

u
r r

x r

∂Ρ ∂ + = ∂ ∂ 
                                                                                                    (2) 

 
 

2

Re log
4

r
u A r B

x

∂Ρ= + +
∂

                                                                                          (3) 

 
 
Boundary Condition: 
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Equation of motion in tissue region is 
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Boundary Condition: 
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Pressure in capillary region is obtained by solving equation of continuity: 
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Following Chen and Skalak [3], the total drag is given by 
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Boundary Condition 
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Pressure drop is given by 
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RESULTS AND DISCUSSION 
 
The governing equations have been solved using analytical methods with proper boundary and interfacial 
conditions. The results of analysis have been obtained and discussed through graph 3 to 7. 
 
Figure 3 depicts the variation of drag with axial distance for different values of permeability. As permeability 
increases more fluid goes inside the tissue therefore more pressure developed in between the gap (i.e. between cell 
and capillary wall). Due to increased pressure cell deformed and squeezed out easily. i.e. drag decreases. 
 
Figures 4 to 5 show the variation of drag with axial distance for different values of cell velocity and slip parameter 
which is similar to the effect of permeability because as permeability increases slip parameter increases. It is clear 
from the graph that cell velocity increases drag decreases. This is obvious from the definition of drag that drag is 
inversely proportional to the velocity.   
 
Figure 6 shows the effect of deformation parameter on drag. As deformation parameter increases effect of outside 
pressure is large. Therefore red cell deformation will be large so that red cell can squeeze out easily i.e. drag 
decreases. 
 
Figure 7 depicts the variation of Pressure with axial distance for different values of cell velocity this show that as red 
blood cell velocity increases Pressure decreases.  Which supports the result of Tandon & Bhardwaj [19]. 
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Figure 3 Variation of total drag with axial distance for different values of permeability for  σ = 1, U=1.5 

 
 
 

 
Figure 4 Variation of total drag with axial distance for different values of cell velocity for  k = 0.002, σ = 1.5 
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Figure.5 Variation of total drag with axial distance for different values of slip parameter for k=0.002, U = 1 
 
 
 
 
 
 

 
Figure 6 Variation of drag with axial distance for different values of cell shapes k=0.002, σ=0.5 
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Figure 7  Variation of Pressure with axial distance for different values of cell velocity for U = 1.5, σ = 1. 
 

CONCLUSION 
 
Red blood cells squeeze through tiny capillaries to deliver oxygen and pickup carbon di oxide. To understand 
several types of disorders the study of deformation of red blood cell is very important. Mobility is the key factor in 
diseases such as malaria, genetic disorder sickle cell anemia and spherocytosis both render cells unable to flow 
through narrow capillaries and prevent them to flow which causes to red blood cells to squeeze. Therefore in this 
paper an attempt has been made to study the squeezing flow of red blood cell in narrow capillary which may be 
helpful in diagnostic / study various diseases like sickle cell anemia and spherocytosis.    
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