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Abstract
The hydrazinophthalazines-derivates (syn. hydrazine) hydralazine and dihydralazine 
were approved by the FDA as anti-hypertensives in 1953 – and because they are 
both effective and safe they are among the oldest drugs which have kept their 
place in clinical practice. While hydrazine was originally discovered as potent vaso-
dilatator which lowered blood pressure and increased renal perfusion, it received 
renewed recognition in the 1980s due to its effectiveness for the treatment of 
heart failure and further reconsideration in the 2000s due to its effectiveness 
to reverse epigenetic DNA methylation in cancer. In light of recent advances in 
the understanding of cardio-renal interactions and contribution of epigenetics to 
chronic heart and kidney failure, we here re-visit rationales for use of hydrazine in 
clinical care. 
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Hydrazinophthalazines-Derivates Hydral-
azine and Dihydralazine
The hydrazinophthalazines-derivates hydralazine (C8H8N4, 

syn. 1(2H)-phthalazinone, hydrazine, 1-hydrazinophthalazine, 
hydralazine mono-hydrochloride, hydralazine hydrochloride) and 
dihydralazine (C8H10N6, syn. 1,4-phthalazinedione, 2,3-dihydro-, 
dihydrazone, 1,4-dihydrazinonaphthalazine, dihydralazine sulfate, 
dihydrazinophthalazin) were discovered more than 50 years ago as 
potent vasodilators which lowered blood pressure and increased 
renal perfusion [1-3]. While the two substances are considered 
fully interchangeable regarding their biological activity, they have 
slightly different pharmacokinetics. Dihydralazine’s half-life of 
4.8 hours is almost twice as long as the half-life of hydralazine-
hydrochloride (2.5 hours) and dihydralazine is typically taken on 
a twice daily regimen compared to three- or four-times a day 
regimen with hydralazine [4]. There is some confusion in the 
literature, because “hydralazine”, “hydrazine” and “dihydralazine” 
are being used synonymously, whereas distinct substances are 
being historically used in different countries: While in the U.S. 
the hydrazinophthalazines-derivate hydralazine is being used 
(marketed as “Apresoline”), in Europe dihydralazine (“Nepresol”) 
is available. For practical purposes we will adhere here to the 
term “hydrazine” if no further specification between hydralazine 
and dihydralazine is warranted. 

Hydrazine for Anti-hypertensive Therapy
Hydrazine was first introduced to clinical application in 1952 for 
its blood pressure lowering effect (which had been consistently 
documented in animal studies) [1]. Of note, despite being already 
in clinical use, it was first tested in a controlled, double-blinded 
clinical study in 1964, which confirmed its safety and effectiveness 
[5]. Through observational studies, evidence for the benefit of 
combination therapy of hydrazine with an inhibitor of the beta-
adrenergic system and a diuretic emerged, and by the late 1970s 
such “triple therapy” was standard of care for the treatment of 
essential hypertension [6, 7]. Hydrazine has kept its role as third-
line anti-hypertensive in patients with severe hypertension and 
due to its benign side effects it still has its place in pregnancy 
hypertension [8, 9]. Due to its reliable vasodilatory effect it is 
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still used intravenously to control blood pressure in ICU setting 
[9]. In summary, despite being brought to clinical use in pre-
modern clinical trial times, hydrazine has kept its role in clinical 
practice for over 50 years, which is unparalleled by any other anti-
hypertensive drug. 

Hydrazine Therapy for Chronic Heart 
Failure
The concept that pharmacologic reduction in systemic vascular 
resistance could improve cardiac performance and outcomes 
for patients with chronic heart failure led to clinical testing of 
hydralazine. The Veterans Affairs Vasodilator-Heart Failure Trials 
(V-HeFT I and II) evaluated the efficacy of vasodilators in chronic 
heart failure patients: Whereas in V-HeFT I, the combination of 
hydralazine and isosorbide dinitrate (BiDil) provided a beneficial 
effect on prognosis in heart failure, V-HeFT II demonstrated 
superiority of the angiotensin converting enzyme inhibitor (ACEI) 
enalapril over BiDil on 2-year survival [10]. However, BiDil exerted 
the most favourable short term impact on exercise performance 
and left ventricular ejection fraction. Since then seven clinical 
trials revealed reduced all-cause mortality upon BiDil therapy 
compared to placebo [11]. However, when compared to, 
ACEIs were associated with even lower all-cause mortality 
and cardiovascular mortality than hydralazine plus isosorbide 
dinitrate therapy [11]. Notably, the African American Heart Failure 
Trial (A-HeFT) heart failure study established that hydralazine 
administered at 200-300 mg/day plus isosorbide dinitrate in 
self-declared African Americans was more effective than ACEIs 
(making hydralazine the first race-based prescription drug in 
the United States), but failed again to demonstrate substantial 
superiority in Caucasians as compared to enalapril [12, 13]. In 
summary, hydrazine exerts beneficial effect in patients with heart 
failure [11]. Because hydralazine plus isosorbide dinitrate at fixed 
dose in Caucasians and Asians was inferior to treatment with 
optimum doses of ACE inhibitors, renin angiotensin aldosterone 
system (RAAS) inhibition became gold-standard treatment. As the 
underlying mechanisms of beneficial effect of hydrazine were not 
fully understood, all studies concluded that combination therapy 
of hydrazine with ACE inhibitors should be undertaken, but such 
trials have not been performed [14]. 

Hydrazine and Kidney Function
First studies on systemic functions of hydrazine documented 
increased renal blood flow upon hydrazine administration in 
both hypertensive and normotensive subjects [1]. Such increased 
renal blood flow is linked to increased cardiac output. Increased 
hydrazine-induced renal perfusion does not translate to 
immediate increase of glomerular filtration rate (GFR) in subjects 
with normal kidney function, and lowering of blood pressure in 
patients with malignant hypertension and chronic kidney disease 
through hydrazine administration is associated with stable GFR 
as well. Studies in patients with both chronic heart failure and 
chronic kidney disease documented even increased GFR upon 
hydralazine administration [15, 16]. In the 1980s several studies 
reported a less-severe long-term GFR-decline upon hydralazine 
therapy in animal studies and small patient cohorts [17-19]. Since 

emergence of several conflicting reports regarding a potential 
benefit of hydrazine on kidney function, anti-hypertensive 
hydrazine therapy has been widely considered to be “neutral” on 
kidney function [20]. However, our group recently reported anti-
fibrotic reno-protective efficacy of hydrazine in several murine 
models of chronic kidney disease and also through retrospective 
analysis of patients with complicated hypertension [21]. Notably, 
such reno-protective effects were observed both in mice and 
patients at doses which were below standard anti-hypertensive 
regimen [21]. Because so-called DNA promoter de-methylation 
was achieved at both low-dose and standard dose hydralazine 
therapy, and because aberrant DNA promoter methylation 
causally contributes to progression of kidney (and heart) failure 
these studies suggested that beneficial effect of hydralazine was 
due to its epigenetic biological activity (as further detailed below) 
[21-24]. 

Hydrazine-Induced Promoter De-
Methylation
While the molecular mechanisms through which hydrazine 
exerts its biological effects are still not fully understood, it has 
been established that one of its actions is to induce promoter 
methylation of select genes. Promoter methylation refers to 
a prototypical epigenetic mechanism in which methylated 
cytosine residues clustered within cytosine-guanidine rich 
“CpG islands” in proximal promoter regions effectively silence 
transcription of affected genes [25]. Such promoter methylation 
(syn. DNA-methylation or promoter CpG island methylation) 
plays an important role in gene imprinting, cell differentiation, 
but also in adaptation to environmental factors and numerous 
diseases [26]. Studies on monozygous twins proved that aberrant 
methylation of select genes can be solely responsible for causing 
cancer [27, 28]. Not surprisingly, aberrant promoter CpG island 
methylation also contributes to progression of chronic heart 
and kidney failure [29, 30]. Such aberrant promoter CpG island 
methylation in context of chronic heart and kidney failure does 
not affect random genes, but few select genes are consistently 
hypermethylated. In this regard, the gene encoding for Ras-Gap-
like protein 1 (RASAL1) is hypermethylated in both chronic heart 
and kidney failure [31, 32]. RASAL1 converts the active form of 
the oncoprotein Ras-GTP to inactive Ras-GDP, and hence RASAL1 
depletion through promoter methylation causes increased Ras 
signaling activity [33]. Such increased Ras-GTP activity contributes 
to progression of fibrosis – a pathological scarring process – in 
heart and kidney and also liver and lung, making demethylation 
of aberrantly methylated (RASAL1) promoters an attractive 
therapeutic target [22, 29, 34]. In addition to contributing to 
fibroblast activation, aberrant DNA methylation involves other 
cell types as well, such as cardiomyocytes and macrophages in 
chronic heart failure and podocytes and tubular epithelial cells 
in chronic kidney disease. In animal studies of chronic fibrosis, 
therapeutic de-methylation through administration of the 
nucleoside analogue 5’azacytidine (Vidaza) inhibited progression 
of fibrosis in various organs including kidney and heart [22, 35-
37]. While 5’azacytidine is in clinical use for its de-methylating 
activity in refractory myelodysplastic syndrome, its genotoxicity 
puts its potential decade-long use in chronic heart and kidney 
disease to question [38]. 

Hydrazine possesses similar de-methylating activity as 
5’azacytidine, without being genotoxic. While the nucleoside 
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analogue 5’azacytidine exerts its de-methylating activity by causing 
DNA damage which is (mostly) repaired with unmethylated 
DNA, hydrazine induces an endogenous demethylation 
mechanism. Hydrazine induces so-called Tet protein-mediated 
hydroxymethylation of methylated DNA (the mechanism which 
also removes methylation marks in germline cells), which 
ultimately results in replacement of methylated cytosine residues 
with naked cytosine [21]. Tet proteins specifically are recruited 
to genes with CXXC motifs within their promoter regions. 
RASAL1 possesses such CXXC motif, making it a specific target of 
hydrazine-induced demethylation [29].

Broad de-methylating activity of dihydralazine has been long 
known and there are several ongoing clinical trials in cancer 
patients in which this de-methylating activity is being utilized [39, 
40]. In these studies 3X 25 mg/day hydralazine were determined as 
optimum de-methylating dose, which is in line with the optimum 
dose of 1-2 times 25 mg/day dihydralazine which were identified 
in our studies (dihydralazine has a longer half-life as compared 
to hydralazine–HCl) [39]. Hydrazine exerts its de-methylating 
activity via induction of the endogenous de-methylating enzyme 
Tet3 (a member of the ten-eleven family of zinc finger proteins), 
making it substantially better tolerable as compared to traditional 
de-methylating drugs such as 5’azacytidine, which are also used 
in the cancer field. Importantly, such optimum de-methylating 
anti-fibrotic activity is achieved at doses (25-50 mg/day) which 
are substantially lower than standard anti-hypertensive regimen 
(100 to 200 mg/day) [21, 40]. This is important, as use of low 
dose dihydrazine reduces likelihood of hypotension, even as add-
on to existing renin-angiotensin-aldosterone inhibitory therapies.

Hydrazine and RAAS Inhibitors
Since the discovery of angiotensin converting enzyme (ACE)-
inhibitors captopril [41] and enalapril [42], clinical use of hydrazine 
was inversely correlated to the use of inhibitors of the renin 
angiotensin aldosterone system (RAAS): In direct comparison, 
long-term anti-hypertensive effects of enalapril and captopril 
were more efficient in lowering blood pressure in hypertensive 
patients [20]. After numerous controlled double-blinded multi-
center clinical trials revealed decreased mortality upon long-
term anti-hypertensive RAAS-inhibitor treatment they rose to 
prominence [43, 44], whereas trials of comparable dimensions 
were not done for hydrazine. In chronic kidney disease associated 
with proteinuria, RAAS-inhibitors were proven to pre-emt 
decline glomular filtration rate (GFR) of in various experimental 
models and also in large controlled clinical trials [45, 46]. Fixed 
combination hydralazine hydrochloride and isosorbide dinitrate 
(“BiDil”) was proven to be effective in treatment of chronic heart 
failure, but FDA approval was initially not granted due to failure 
to prove superiority to ACE-inhibitor therapy (and upon further 
review approved for the use in self-identified African Americans 
as the first “race-specific” drug) [47]. Today, ACE-inhibitors (and 
angiotensin receptor blockers) are first-line therapies for essential 
hypertension, for chronic heart failure and for patients with 
chronic proteinuric kidney disease. As chronic heart and chronic 
kidney failure are common co-morbidities, RAAS inhibitors 
are among the most commonly used drugs in both cardiology 
and nephrology [48]. Nevertheless, a fundamental difference 
between RAAS inhibitors and hydrazine is that ACE inhibitors 
(and angiotensin receptor blockers) reduce GFR (by preventing 
angiotensin II-induced vasoconstriction of the efferent arteriole, 
which is the driving force for ultrafiltration and thereby maintaining 
or increasing GFR in the face of a reduced plasma flow) - whereas 

hydrazine vasodilatory activity is unspecific (and does not affect 
proteinuria) [1-49]. Even though it was demonstrated that 
decline of GFR does not enhance progression of chronic kidney 
disease [50], it does often limit use of RAAS inhibitors at optimum 
doses (i.e., due to ensuing hyperkalemia) or reduces GFP below 
tolerable threshold in advances stages of chronic kidney disease 
(CKD). The consequence in clinical practice is, that target doses 
proven to be beneficial in chronic heart failure (i.e., 10 mg ramipril 
or twice daily 160 mg valasartan) are often not realized [51, 52]. 
The benefit of sub-optimal doses has not yet been systematically 
proven for chronic heart failure (especially not in comparison 
with hydrazine, which does not require dose reduction in CKD). 
ESC guidelines for management of chronic heart failure arbitrarily 
suggest reduction of RAAS inhibitor dosage by 50% with serum 
creatinine levels greater than 3 mg/dl [53]. Effectiveness of half-
optimal doses of RAAS inhibitors for chronic heart or kidney 
failure has not been compared to optimum doses of hydrazine, 
yet. 

A Rationale for Epigenetic Repurposing 
of Hydralazine in Chronic Heart and 
Kidney Failure
As outlined above, it is conceivable that hydrazine deserves 
reconsideration for treatment of chronic heart and kidney failure 
due to both its traditional vasodilatory function and also due to its 
promoter-demethylating activity. In light of proven effectiveness 
of RAAS inhibitors at optimal dosage in chronic heart failure and 
proteinuric kidney diseases and their limitations to achieve such 
optimal doses due to low GFR, hyperkalemia and hypotension, 
utility of hydrazine may lie mostly in scenarios in which it is added 
to existing RAAS therapeutic regimen (at optimal or especially 
at sub-optimal doses). Such value of add-on hydrazine therapy 
may lie in further improvement of cardiac function, increased 
renal perfusion, and additionally in the reversal of aberrant DNA 
promoter methylation. Specifically its epigenetic potential may 
add a novel therapeutic modality to existing therapy. Attraction of 
hydrazine-mediated epigenetic therapy lies also in the potential of 
therapy stratification (aberrant DNA methylation can be detected 
in blood) and possibility of monitoring therapeutic effectiveness 
(through measurement of possible de-methylation in blood 
samples). Due to its potential – improved cardiac function (both 
systolic and diastolic), increased renal perfusion and correction 
of aberrant DNA methylation – and its safety (which has been 
established in over 60 years of clinical practice and which led to 
preferable use of hydrazine in pregnancy hypertension), there is 
much to gain at moderate risk, and hydrazine may deserve a fair 
trial to re-assess its place in cardio-renal medicine. 
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