
A Prospective Pilot Study of the Biometrics of Critical Care Practitioners during
Live Patient Care using a Wearable “Smart Shirt”
Nicholas B Slamon1*, Scott H Penfil2, Vinay M Nadkarni3 and Robert M Parker1

1Division of Pediatric Critical Care, Department of Anesthesiology and Critical Care, Nemours/Alfred I. duPont Hospital for Children, Wilmington,
USA
2Division of Pediatric Critical Care, The Herman and Walter Samuelson Children’s Hospital at Sinai, Baltimore, Maryland, USA
3Department of Anesthesiology and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
*Corresponding author: Nicholas B Slamon, Division of Pediatric Critical Care, Department of Anesthesiology and Critical Care, Nemours/Alfred I.
duPont Hospital for Children, Wilmington, USA, Tel: 302-651-6328; E-mail: Nicholas.Slamon@nemours.org

Received date: March 22, 2018; Accepted date: March 29, 2018; Published date: April 05, 2018

Citation: Slamon NB, Penfil SH, Nadkarni VM, Parker RM (2018) A Prospective Pilot Study of the Biometrics of Critical Care Practitioners during Live
Patient Care using a Wearable “Smart Shirt”. J Intensive Crit Care. Vol.4 No.2:10

Abstract
Objective: To measure the biometrics (heart rate, heart rate
variability) of critical care physicians during live clinical
patient scenarios.

Design: Participants wore the Hexoskin biometric smart
shirt (Hexoskin, Carrè Technologies, Montreal, Quebec)
during live clinical activities.

Setting: 24-bed tertiary care children’s hospital pediatric
intensive care unit

Subjects: Pediatric critical care attendings and fellows.

Interventions: Heart rate (HR), respiratory rate (RR), and
heart rate variability (HRV) were recorded during clinical
shifts. Activities included subject baseline (SB), patient
rounds (PR), tracheal intubation (TI), and central line
insertion (CL).

Measurements and main results: Mean HR for the activities
SB, PR, TI, and CL were 81 ± 3.65, 85 ± 4.75, 99 ± 10.83, and
108 ± 8.97 beats per min, respectively. Mean standard
deviation dispersion perpendicular and along the axis of
identity (SD1/SD2) were 0.244 ± 0.038, 0.220 ± 0.022, 0.180
± 0.050, and 0.167 ± 0.015, respectively. P values for mean
HR, max HR, and HRV were significant when comparing SB
with TI (0.010, 0.027, and 0.001) and CL (0.007, 0.001, and
0.012) but not when comparing with PR (0.026, 0.125, and
0.321). Comparison of SD1/SD2 for TI versus CL showed no
statistical significance, P=0.578. Poincaré plots confirmed
the similar patterns of physiologic activation. Subject
baseline and PR plots were fan-shaped, suggesting primary
parasympathetic input. TI and CL were torpedo-shaped,
suggesting sympathetic activation.

Conclusion: Study of the biometrics of physicians as they
deliver real-time critical patient care is feasible using
wearable technology. Critical care activities requiring not
only thought, focus, and planning but also the physical
execution of technical skills, such as IT or CL insertion,
resulted in higher levels of sympathetic activation. Further

study of physicians from various specialties and different
levels of experience, the use of stress mitigation techniques,
and correlation with procedural success or failure is
warranted.

Keywords: Children; Pediatric intensive care unit (PICU);
Heart rate variability; Burnout; Stress; Biometrics

Introduction
Biometrics, the science of using measureable characteristics

to describe individuals, often is grouped into physiologic or
behavioural categories [1,2]. Examples include fingerprints and
retinal vessel patterns, which are distinctive to an individual.
There is growing interest, however, in measurement of
physiologic biometrics, such as heart rate (HR), with regard to
health and wellness.

Continuous measurement of patient vital signs is standard
practice and has led to improvements in morbidity and
mortality. In the developing world, as many as 50-80% of
children with septic shock die. In developed countries with
pediatric intensive care units (PICU), that figure is as low as
13.9% [3]. Most health professionals, while good at monitoring
patients, are ignorant of their own biometrics while delivering
care under stressful conditions.

Until recently, measurement of HR, respiration rate (RR), and
heart rate variability (HRV) required cabled monitors in a
physiology laboratory or the use of the bulky, portable Holter
apparatus. This made study of live conditions challenging.
Devices like the Fitbit (San Francisco, CA), Jawbone (San
Francisco, CA), and Nike Fuelband (Beaverton, OR) are sold as a
way to lose weight and improve wellness and employees are
incentivized with lower insurance premiums for compliance.
Roughly 3.3 million fitness bands/trackers were sold between
April 2013 and March 2014 [4].

Making use of a sophisticated, reliable, and portable personal
monitoring system, this study set out to quantify the biometrics
(HR, HRV) of critical care doctors in live clinical patient care
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scenarios as a measure of physician stress. We hypothesize it is
feasible to measure biometric changes in critical care physicians
as they deliver care to patients.

Materials and Methods

Population
The protocols and methods for this study were approved by

the Nemours/Alfred I. duPont Hospital for Children Institutional
Review Board (project number 780981). In total, one critical care
attending (male), two senior fellows (both male), and two junior
fellows (one male, one female) participated. There were no
exclusion criteria as this was a voluntary, prospective,
observational study.

Study design
The Hexoskin Smart Shirt (Hexoskin, Carrè Technologies,

Montreal, Quebec) is marketed as the most advanced biometric
shirt available, measuring more body metrics than any other
wearable technology product and with greater precision.
Hexoskin contains two respiratory loops and three cardiac dry
textile electrodes. Its integrated activity sensor, respiratory
sensor, and heart sensor measure data in real time and record
for up to 14 h via a small (40 g) “brain” contained in a pocket
pouch. Data synchronize with a phone application and cloud
storage and can be analyzed through a secure website.

The electrocardiographic sensor is a one-channel, 256 Hz
detector with variability rates from 30 to 220 beats per min
(bpm) making it suitable to perform HRV analysis. Acceleration
and activity level, as well as step counting, are standard with
each device. Energy expenditure in the form of kilocalories is
calculated. Breathing rate, minute ventilation, and a calculation
of oxygen consumption are also reported.

Finally, the device can also measure inactivity and sleep
parameters by tracking total sleep duration, sleep position
changes, time asleep in each position, and an estimation of
sleep efficiency. The shirt demonstrated low variability, good
agreement, and consistency of data in scientific studies [5-7].

Study subjects wore the Hexoskin Smart Shirt during PICU
shifts after establishing baseline rest measurements. Heart rate,
RR, and HRV were recorded as opportunities arose during shifts.
The PICU activities included patient rounds (PR), tracheal
intubation (TI), and central line (CI) insertion. Data were time
marked via the paired Bluetooth application and then
electronically encrypted, password protected, and stored on the
Hexoskin website.

Heart rate variability
Heart rate variability is the beat-to-beat changes manifested

through regulation of the autonomic nervous system, temporal
changes, and respiratory variation. Standard deviation (SD) 1 is
the dispersion of point’s perpendicular to the axis of the line of
identity and represents an instantaneous beat-to-beat
variability. Standard deviation 2 is the dispersion of points along

the axis of the line of identity and represents continuous beat-
to-beat variability [8-10]. Standard deviation 1 determines the
width of the ellipse (short-term variability), whereas SD2 equals
the length of the ellipse (long-term variability) [11]. The
SD1/SD2 ratio represents the randomness in the HRV time series
[11,12].

In 1996, the European Society of Cardiology and the North
American Society of Pacing Electrophysiology created the HRV
standards, which VivoSense (Vivonoetics, San Diego, CA)
software utilizes to obtain their values. Poincarè plots provide a
graphical representation of HRV by plotting R-R interval (n+1
along Y-axis) against the previous R-R interval (n along X-axis).

A line of identity is drawn through the plot, with SD1
representing the dispersion of points perpendicular to that line
and SD2 representing points along the line. A long, slender
“torpedo” shape is representative of sympathetic activity; a fan
or “comet” shape represents a balance between
parasympathetic and sympathetic activity. Calculation of
SD1/SD2 ratios provided numerical quantitation of
parasympathetic/sympathetic activity.

Statistical analysis
Paired t test was performed on maximum HR, average HR,

absolute and percentage change in HR, and HRV (using SD1/SD2)
as markers of physiologic stress. Heart rate maximum was
calculated using the Tanaka formula.

Heart rate reserve, defined as the difference between
maximum possible HR and resting HR, provides insight as to the
intensity of the activity. Calculations compared subject baseline
(relaxed while at home) with activities recorded during PICU
work. VivoSense software generated HRV calculations and
analysis. Each recording was analyzed for artifact with high
sensitivity and low interpolation. All sessions had greater than
95% quality based on validated software metrics. Individuals
were compared with self to eliminate composition and
demographic differences.

Results

Participant demographics
Table 1 presents the summary demographic data for each

participant. Average age was 34.8 ± 5.03 years, weight 90 ±
15.28 kg, height 1.74 ± 0.06 m. Body mass index was similar
among all males (mean 29.6), with the female fellow being
substantially less (23.1).

Primary determinants
Mean, minimum, and maximum HR; SD; and absolute and

percentage change in HR were calculated for participants in each
activity. These data are presented in Table 2. Resting baseline
HR average for all participants was 81 ± 3.65 bpm. Heart rates
ranged from a minimum of 60 bpm to a maximum of 101 bpm.
Despite differences in age, sex, and body composition, resting
baseline was similar for all participants. Due to the small sample
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size, there was no analysis to determine if level of athletic fitness
correlated to HR averages.

Table 1 Baseline characteristics  of subjects (*Max HR is 208-0.7*Age (years) **HRR is max heart rate-resting heart rate (utilized
baseline HR to determine resting HR)).

Subject Age (years) Weight (kg) Height (m) Sex Position Predicted Max HR Heart Rate Reserve

A 44 100 1.78 M Senior Attending 177 111

B 32 85 1.68 M Third Year Fellow 186 99

C 34 107 1.8 M Second Year Fellow 184 113

D 35 95 1.78 M First Year Fellow 184 103

E 29 63 1.65 F First Year Fellow 188 112

Table 2 Summary of measured activities (Mean HR; shown in bold type followed by range and standard deviation in parentheses.
Percentage change in mean HR from resting state shown in parentheses after absolute change in heart rate).

Subject Resting HR Rounds HR
D in HR

Intubation HR
D in HR

CVL HR
D in HR

(% D) (% D) (% D)

Subject A 87; 79-92 (2.29) 85; 69-101 (4.67) -2 (-2.3%) 116; 95-147 (13.32) 29 (33.33%) 110; 100-120 (4.49) 23 (26.44%)

Subject B 87; 81-99 (2.56) 102; 90-118 (4.23) 15 (17.24%) 99; 87-116 (5.21) 12 (13.79%) 101; 90-115 (4.07) 14 (16.09%)

Subject C 72; 60-101 (6.33) 71; 57-92 (5.58) -1 (-1.39%) 86; 77-107 (6.31) 14 (19.44%) 117; 98-138 (7.34) 45 (62.5%)

Subject D 77; 73-85 (2.06) 80; 68-99 (4.86) 3 (3.9%) 102; 84-126 (9.72) 25 (32.47%) 98; 86-119 (5.69) 21 (27.27%)

Subject E 82; 75-95 (4.99) 89; 76-109 (4.43) 7 (8.54%) 101; 83-123 (6.97) 19 (23.17%) 114; 98-127 (4.59) 32 (39.02%)

During PRs, participants obtained recordings ranging in
duration from 49 min, 51 s to 3 h, 23 min, 56 s. Average HR
during rounds was 85 ± 4.75 bpm. Heart rate ranged from 57 to
118 bpm. There was no statistically significant difference when
comparing mean baseline HR with PR (P=0.259). On average, the
HR of participants increased 4.4 bpm (5.2%). There was also no
statistically significant difference when comparing resting
baseline HR maximum with PR HR maximum (P=0.126). Of note,
the average and maximum HR for the third-year fellow was
greater than for the remainder of the group.

For the TI activity, participants obtained recordings ranging in
duration from 9 min, 2 s to 27 min, 47 s. Average HR during
intubation was 99 ± 10.83 bpm. Heart rate ranged from 77 to
147 bpm. There was a statistically significant difference when
comparing mean baseline HR to TI (P=0.001). On average, the
HR of participants increased 19.8 bpm (24.4%). There was also a
statistically significant difference when comparing baseline HR
maximum to TI HR maximum (Ps=0.027).

During CL placement, participants obtained recordings
ranging in duration from 14 min, 9 s to 40 min, 53 s. Average HR
during CL placement was 108 ± 8.97 bpm. Heart rate ranged
from 86 to 138 bpm. There was statistically significant difference
when comparing mean baseline HR to CL placement HR
(P=0.007). On average, the HR of participants increased 27 bpm
(34.3%). There was also statistically significant difference when
comparing baseline HR maximum to CL placement HR maximum
(P=0.001).

When comparing TI to CL placement, mean HR was 101 and
108, respectively. The greatest rise in HR among all tasks
performed was seen during CL insertion (34.4%). However,
statistically, there was no significance between these two
activities, with a P-value of 0.277 for the mean HR and 1.0 for
the maximum HR. Although the CL placement activity produced
higher mean, maximum, and change in HR, statistically, these
activities could not be differentiated.

Heart rate variability
Data reporting HRV parameters are summarized in Table 3.

When comparing SD1/SD2 ratios, the baseline mean was 0.244 ±
0.038. Patient rounds mean was 0.220 ± 0.022. There was no
statistically significant difference between these activities
(P=0.321). The SD1/SD2 mean for intubation was 0.180 ± 0.050
(P=0.001). The SD1/SD2 for CL placement was 0.167 ± 0.015
(P=0.012). When comparing SD1/SD2 TI with CL placement,
there was also no statistical significance, (P=0.578). The SD1/SD2
data followed the same pattern as the HR mean and maximum.
Table 4 provides a summary of p values for comparison of the
mean HR, maximum HR and SD1/SD2 ratios during the
measured activities to baseline readings. Supplemental Figure 1
depicts the Poincaré plots for each participant and each activity;
this is the graphical representation of SD1 and SD2. As stated
previously, the wider the data points, the more parasympathetic
activity; the narrower the plot, the greater the sympathovagal
activity. For each participant, baseline and PR plots were fan- or
comet-like, suggesting a greater degree of parasympathetic
input and less overall stress on the participant. This agrees with
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the SD1/SD2 values for each activity. Endotracheal intubation
and CL placement were much more torpedo-shaped, suggesting
a greater degree of sympathetic input (Figure 1).

Table 3 Summary of heart rate variability.

Subject SD1/SD2 Resting SD1/SD2 Rounds SD1/SD2 Intubation SD1/SD2 CVL

Subject A 0.178 0.2 0.096 0.144

Subject B 0.239 0.221 0.187 0.187

Subject C 0.247 0.261 0.192 0.17

Subject D 0.26 0.214 0.176 0.173

Subject E 0.296 0.202 0.251 0.159

Table 4 Summary of p-values for each activity when compared to
baseline resting state.

Parameter Rounds Intubation CVL

Mean HR 0.259 0.01 0.007

Max HR 0.125 0.027 0.001

SD1/SD2 Ratio 0.32 0.001 0.012

Figure 1 Poincaré plots. (CL: Central Line; RR: Respiratory
Rate; Y axis: R-R interval (n+1) in seconds (s); X axis: R-R 
interval (n) in seconds (s)).

Discussion
In this project, using a “smart shirt,” the authors captured the

biometric parameters of pediatric critical care physicians while
caring for live patients. Although there have been a handful of
studies in a simulated environment, this is the first to quantify
the biometrics of the physicians in real time while caring for
PICU patients [13-16]. The mobile technology associated with
this smart shirt allowed the physicians to accurately record their
own vital signs while they delivered care.

It is stressful to care for critically ill patients in the PICU. By
comparison, studies of police work have shown that officers
suffer both physical and psychological job stress. Chronic stress

and over-production of cortisol has been linked to the reduction
of lymphocytes and is suggested as a culprit for the high rate of
hospital admissions found in the police population [17,18]. A
meta-analysis of over 300 articles by Segerstrom and Miller cited
that stressors with short temporal parameters elicit potentially
beneficial changes in the immune system (fight or flight
response); however, as stressors become more chronic, more
components of the immune system are affected in a detrimental
way [19].

Job stress is also associated with physician burn out. A survey
of 6,880 physicians by the American Medical Association and
Mayo Clinic evaluated the prevalence of burnout between 2011
and 2014 [20]. Burnout rates were higher for all specialties in
2014 with nearly a dozen specialties experiencing more than a
10% increase. Reasons cited included poor h, low pay, stressful
conditions, work-life balance inequity, excessive paperwork, and
regulatory mandates. Self-analysis of biometrics cannot remedy
all of these factors but could improve the effects of stress on
practitioners.

In the mid-1950s, Selye described general adaption syndrome
as a physiologic explanation of the body’s reaction to stress
within a three-phase model: alarm phase, resistance phase, and
exhaustion phase [21]. This cascade of events activates the
hypothalamic-pituitary-adrenal axis, increasing cortisol and
subsequently causing release of norepinephrine and
epinephrine, leading to a reflexive increase in HR and RR [22,23].

During insertion of a central venous catheter or breathing
tube in an ill pediatric patient, there were statistically significant
increases in both mean HR and maximum HR. This phenomenon
was expected, as the procedural skills seen in pediatric critical
care carry with them certain expectations. The patients are ill
and often unstable with smaller target blood vessels than adults.
Peripheral access in children is often difficult to achieve and
maintain. The trachea of an infant or child is anatomically
different from that of adults; it is smaller, more anteriorly
located, and cone-shaped. Children have a larger tongue,
relative to mouth size, and an omega-shaped epiglottis that are
difficult to control [24,25]. Additionally, time to desaturation in
children due to a smaller functional residual capacity makes TI a
time-sensitive procedure. Patient rounding by comparison is a
more cerebral exercise that often affords time to make and
change decisions.
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In an attempt to quantify which of these two procedures was
more stressful, a comparison was made based on HR variables
alone. We expected that TI would be more stressful than CL, but
we did not find a statistically significant difference. However, CL
insertion did show a 34% increase in baseline HR compared with
only 24% for intubation. Perhaps because CL placement is a
longer, multi-step sterile process requiring hand-eye
coordination and ultrasound guidance and because it comes
with the risk of vessel injury and arrhythmia, some find it more
stressful.

This study also employed HRV as a more accurate method of
stress analysis in human subjects. In the 1960s, Hon and Lee [26]
and Wolf [27] described HRV as paramount in our understanding
of the interplay between stress and physiology. Decreased
variability is used as an outcome marker after myocardial
infarction, in diabetic neuropathy, and in quantifying the degree
of mental stress. Exercise physiologists have used HRV to
optimize training and recovery for athletes [28].

Standard techniques of HRV include linear methods, time or
frequency domain analysis, and geometric methods. Time
domain methods are based on the beat-to-beat intervals and
the subsequent SD of those intervals. Frequency domain
methods (power spectral density) assign bands of frequency and
count the number of intervals that match or fall into each
segment. Time and frequency analysis is limited by assumptions
made about the data, such as ectopic beats leading to skewed
data, and must be standardized without using recordings of
differing durations. Recent data suggest that linear HRV
calculations fail to capture upwards of 85% of a subject’s HRV,
calling into question its validity [29].

Exercise science suggests that geometric or non-linear
Poincaré plots are surrogates of time- and frequency-domain
analysis to assess HRV. They provide better repeatability and
reliability with smaller random error. They may be more suitable
for diagnostic purposes and for assessing individual treatment
effect. Also, despite computational challenges, the geometric
analysis of Poincaré plots and SD1/SD2 ratios were more
accurate [28,30].

Baseline and PR activities by Poincaré plot were fan-shaped
with lower sympathetic tone when compared with torpedo-
shaped TI and CL plots. Comparison of SD1/SD2 ratios between
subject baseline and the individual activities confirmed the
findings shown in the simplistic HR analysis. Rounding activities
were comparable to resting readings. However, both TI and CL
insertion SD ratios indicated statistically significant differences
with a high degree of sympathetic activation. Again, this may
reflect what is at stake, or at least the perceived stakes, for a
physician performing a challenging procedure.

Questions not answered in this study are the focus of a
planned multicenter collaboration. Comparison of HRV
measurements between various levels of training within critical
care and amongst different specialties with similar scope of
practice is planned (emergency medicine and anesthesia).

At this time, it is unclear if there is a reduction in stress levels
associated with training and experience. Some postulate that
being unaware of potential consequences in a stressful situation

allows the subject to work more freely and unencumbered by
anxiety. An interesting survey of medical students found that
dealing with the subject of death was particularly stressful.
Students reported sometimes coping with alcohol. However, as
they progressed in school (one would assume resulting in more
experience), they reported a 50% increase in their alcohol intake
[31]. Perhaps, knowing potential consequences results in more,
not less, sympathetic activation explaining the higher attending
response seen during intubation in this study.

The small number of subjects and inability to compare
between training levels limits this study. Other limitations of the
study involve the Hexoskin Smart Shirt itself. Reliable readings
for HR require the shirt to be tight fitting to the skin. In addition,
elastic straps designed to adhere the chest and abdominal
sensors directly to the skin should be worn to reduce motion
artifact. Finally, since it was difficult to predict exactly when a
procedure would occur, ultrasonic gel was applied to the leads
to increase conductivity.

A limitation that enhanced the study involved the Hexoskin’s
14 h battery life. Rather than record for an entire 15 to 24 h
shift, the project focused on shorter discreet activities. This
prevented sifting through many h of data, much of which was
non-stressful.

While this study demonstrates it is possible to quantitate
physician biometrics, the true practice implications are unclear.
Studies of physician stress are evolving, but impact on burnout,
career longevity, and physician general health is unknown.
Comparison between chronic and acute stressors, call shift
variation, patient complexity, and census volume all need to be
considered.

Conclusion
Critical care activities requiring not only thought, focus, and

planning, but also the physical execution of technical skills such
as TI or CL insertion, resulted in higher levels of sympathetic
activation and were more stressful. Further study of real-time
critical care activities in practitioners with various levels of
experience, the use of stress mitigation techniques, and
correlation with procedural success or failure is warranted.
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