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ABSTRACT 
 
The  present    paper deals with a     prey - predator     model    incorporating i) the   predator  is  
provided   with    an   alternative   food    in    addition     to   the    prey, ii) the prey is harvested 
under optimal conditions. The model is characterized by a pair of first order non-linear 
differential equations. All the four equilibrium points of the model are identified and the criteria 
for the stability are discussed .The possibility of existence of bioeconomic equilibrium is 
discussed. The optimal harvest policy is studied with the help of Pontryagin’s maximum 
principle. Finally, some numerical examples are discussed. 
 
Key words: Prey, Predator, equilibrium points, stability, bionomic equilibrium point, optimal 
harvesting, threshold results, normal steady state, catch-per-unit-effort. 
______________________________________________________________________________ 
 

INTRODUCTION 
 

Ecology relates to the study of living beings in relation to their living styles. Research in the area 
of theoretical ecology was initiated by Lotka [6] and by Volterra [7].Since then many 
mathematicians and ecologists contributed to the growth of this area of knowledge as reported in 
the treatises of Paul Colinvaux [13], Freedman [14], Kapur [2, 3] etc. Harvesting of multispecies 
fisheries is an important area of study in fishery modeling. The issues and techniques related to 
this field of study and the problem of combined harvesting of two ecologically independent 
populations obeying the logistic law of growth are discussed in detail by Clark [11,12].. 
Chaudhuri [9, 10] formulated an optimal control problem for the combined harvesting of two 
competing species. Models on the combined harvesting of a two-species prey-predator fishery 
have been discussed by Chaudhuri and Saha Ray [8] Biological and bionomic equilibria of a 
multispecies fishery model with optimal harvesting policy is discussed in detail by Kar and 
Chaudhari [15]. Recently Archana Reddy [1] discussed the stability analysis of two interacting 
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species with harvesting of both species. Lakshmi Narayan and Pattabhiramacharyulu [4, 5] and 
Shiva Reddy et al. [16,17] have discussed different prey-predator models in detail. Srilatha et al 
[19,20] discussed a four species model with different combination of interactionsbetween the 
them. Most of the mathematical models on the harvesting of a multispecies fishery have so far 
assumed that the species are affected by harvesting only.  
 
A population model proposed by Kar and Chaudhuri, (c.f. Harvesting in a two-prey one-predator 
fishery: Bioeconomic model, ANZIAM J.45 (2004), 443-456) and this model motivated the 
present investigation. In the present investigation, we discussed a prey-predator model by taking    
an   alternative   food for the predator and harvesting of the prey under optimal conditions. The 
model is characterized by a pair of first order non-linear differential equations. The existence of 
the possible steady states along with their local stability is discussed. We derive the conditions 
for global stability of the system using a Liapunov function .The possibility of existence of 
bioeconomic equilibrium is discussed. The optimal harvest policy is studied and the solution is 
derived in the equilibrium case by using Pontryagin’s maximum principle [18]. Finally, some 
numerical examples are discussed. 
 
2. Mathematical Model. 
The model equations for a two species prey-predator system are given by the following system 
of non-linear ordinary differential equations employing the following notation: 
 

1N and 2N are  the  populations of the prey and predator with natural growth rates 1a and 

2a respectively, 11α  is rate of decrease of the prey due to insufficient food, 12α  is rate of decrease 

of the prey due to inhibition by the predator, 21α is rate of increase of the predator due to 

successful attacks on the prey, 22α  is rate of decrease of the predator due to insufficient food 

other than the prey; 1q    is the catch ability co-efficient of the prey, E is the harvesting effort and 

1q EN1 is the catch-rate function based on the CPUE (catch-per-unit-effort) hypothesis]. Further 

both the variables 1N and 2N are non-negative and the model parameters     1a , 2a , 11α , 12α , 21α , 

22α , 1q , E and ( )1 1a q E− are assumed to be non-negative constants.                         

                                                                   

( ) 21
1 1 1 11 1 12 1 2

dN
a q E N N N N

dt
α α= − − −                                                    (2.1) 

22
2 2 22 2 21 1 2

dN
a N N N N

dt
α α= − +                                          (2.2) 

 
3. Equilibrium States. 
The system under investigation has four equilibrium states defined by  

I. The fully washed out state with the equilibrium point 
21

0; 0N N= =                (3.1)          

II. The state in which, only the predator survives given by 
1

0N = ; 2
2

22

a
N

α
=    (3.2) 

III . The state in which, only the prey survives given by   
( )1 1

1
11

a q E
N

α
−

= ;
2

0N =  (3.3) 
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IV . The co-existent state (normal steady state) given by 
 

22 1 1 2 12
1

11 22 12 21

( )a q E a
N

α α
α α α α

− −=
+

;      2 11 21 1 1
2

11 22 12 21

( )a a q E
N

α α
α α α α

+ −=
+

                           (3.4) 

 
 This state would exit only when   ( )22 1 1 2 12a q E aα α− >              (3.5) 

 
4. Stability of the Equilibrium States 
To investigate the stability of the equilibrium states we consider small perturbations u1, u2 in 

N1and N2 over 1N  and 2N  respectively, so that  
 

 N1 =  1N  + u1 ;N2 =   2N  + u2                                   (4.1) 
 
By substituting (4.1) in (2.1) & (2.2) and neglecting second and higher powers of the 
perturbations u1, u2 we get the equations of the perturbed state 
 
dU

AU
dt

=                                                                                                             (4.2)       

 
 where 

( ) 1 21 1 11 12 12 1

1 22 2 21 2221

2

2

a q E N N N
A

a N NN

α α α

α αα

 − − − −
=  

+ − 
                 (4.3)        

 
The characteristic equation for the system is      [ ] 0det A Iλ− =    (4.4) 

 
The equilibrium state is stable only when the roots of the equation (4.4) are negative in case they 
are real or have negative real parts in case they are complex. 
 
The equilibrium points I, II, and III are found to unstable, so we restricted our study to the 
normal steady state only. 
 
4.1    Stability of the normal steady state: 
In this case the characteristic equation is 
 

2λ + 1 211 22( )N Nα α λ+ + 11 22 12 21[ ]α α α α+ 1 2N N 0=                                      (4.5) 

 
Since the sum of the roots of   (4.5) is negative and the product of the roots is positive, the roots 
of which can be noted to be negative .Hence the co-existent equilibrium state is stable. 
The solutions curves are: 

1u = 2 110 1 22 20 12

1 2

( )u N u Nλ α α
λ λ

 + −
 − 

1 t
e
λ + 2 110 2 22 20 12

2 1

( )u N u Nλ α α
λ λ

 + −
 − 

 2 t
e

λ
 (4.6)  
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2 =u 1 220 1 11 10 21

1 2

( )u N u Nλ α α
λ λ

 + +
 − 

1 t
e
λ + 1 220 2 11 10 21

2 1

( )u N u Nλ α α
λ λ

 + +
 − 

 2 t
e

λ
              (4.7) 

Where  1 2,λ λ are the roots of the equation (4.5) 

 
5. Global stability 
Let us consider the following Liapunov’s function 

1 2
1 1 2 21 2 1 2

1 2

( , ) ln ln
N N

V N N N N N l N N N
N N

    = − − + − −        
                 (5.1) 

 
where ‘l‘ is positive constant ,to be chosen later   
Differentiating  V   w.r.to  ‘t’ we get 

1 21 1 2 2

1 2

N N dN N N dNdV
l

dt N dt N dt

   − −= +   
   

                                                    (5.2) 

 
Substituting (2.1) and (2.2) in (5.2), we get 

( ) ( )( ){ } ( )( ) ( ){ }2 2

1 1 2 1 2 211 1 12 1 2 21 1 2 22 2

dV
N N N N N N l N N N N N N

dt
α α α α= − − − − − + − − − −  

Choosing 12

21

l
α
α

=  and with some algebraic manipulation yields 

2 212
1 211 1 22 2

21

( ) ( ) 0
dV

N N N N
dt

αα α
α

= − − − − < .                               (5.3) 

 

Therefore , the equilibrium point 1 2( , )N N is globally asymptotically stable. 
 
6. Bionomic equilibrium  
The term bionomic equilibrium is an amalgamation of the concepts of biological equilibrium as 
well as economic equilibrium. The economic equilibrium is said to be achieved when the total 
revenue obtained by selling the harvested biomass equals the total cost for the effort devoted to 
harvesting. 
 
Let 1c =  fishing cost per unit effort of the prey, 1p = price per unit biomass of the prey. The net 

economic revenue for the prey at any time t is given by   
 

( )1 1 1 1 1R p q N c E= −                                                                                                                 (6.1) 

 
The biological equilibrium is  ( ) ( ) ( )( )1 2, ,N N E

∞ ∞ ∞
 , where ( ) ( ) ( )1 2, ,N N E

∞ ∞ ∞
are the positive 

solutions of               ( ) 2
1 1 1 11 1 12 1 2 0a q E N N N Nα α− − − =                                          (6.2) 

2
2 2 22 2 21 1 2 0a N N N Nα α− + =                                                                                     (6.3) 

and( )1 1 1 1 0p q N c E− =                                                                                               (6.4) 
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From (6.4), we have 

{ }1 1 1 1( ) ( ) 0p q N c E∞ ∞− = ( ) 1
1

1 1

c
N

p q∞
⇒ =

     
(6.5) 

From (6.3) and (6.5), we get  ( ) 1
2 2 21

22 1 1

1 c
N a

p q
α

α∞

 
= + 

 
                            (6.6) 

From (6.2), (6.5) & (6.6), we get     ( ) ( )1
1 11 12 2

1 1 1

1 c
E a N

q p q
α α

∞ ∞

 
= − − 

 
    (6.7)                

It is clear that ( ) 0E
∞

>   if  ( )1
1 11 12 2

1 1

c
a N

p q
α α

∞

 
− > 

 
                                 (6.8)  

Thus the bionomic equilibrium ( ) ( ) ( )( )1 2, ,N N E
∞ ∞ ∞

 exists, if inequality (6.8) holds. 

 
7.    Optimal harvesting policy 
 The present value J of a continuous time-stream of revenues is given by 

( )1 1 1 10

tJ e p q N c Edtδ∞ −= −∫                                                                             (7.1)                          

 
Where δ denotes the instantaneous annual rate of discount. Our problem is to maximize J subject 
to the state equations (2.1) & (2.2) and control constraints ( )max

0 E E≤ ≤  by invoking 

Pontryagin’s maximum principle. 
 
The Hamiltonian for the problem is given by 
  

( ) ( )
( )

2
1 1 1 1 1 1 1 11 1 12 1 2 1 1

2
2 2 2 22 2 21 1 2

tH e p q N c E a N N N N q EN

a N N N N

δ λ α α

λ α α

−= − + − − −

+ − +
             (7.2) 

Where λ1, λ2 are the adjoint variables. 
 
Let us assume that the control constraints are not binding i.e. the optimal solution does not occur 
at( )max

E . At ( )max
E we have a singular control. 

 
By Pontryagin’s maximum principle, 

0
H

E

∂ =
∂

  ;    1

1

d H

dt N

λ ∂= −
∂

  ;  2

2

d H

dt N

λ ∂= −
∂

 

( ) 1
1 1 1 1 1 1 1 1 1

1 1

0 0t t cH
e p q N c q N e p

E q N
δ δλ λ− −  ∂ = ⇒ − − = ⇒ = − ∂                                 (7.3)  

( ) ( ){ }1
1 1 1 1 1 11 1 12 2 2 21 2

1

2td H
e p q E a q E N N N

dt N
δλ λ α α λ α−∂= − = − + − − − +  ∂

 

( )1
1 11 1 2 21 2 1 1

td
N N e p q E

dt
δλ λ α λ α −⇒ = − −                                                             (7.4) 



K. Lakshmi Narayan et al                                             Adv. Appl. Sci. Res., 2011, 2 (4):451-459  
 _____________________________________________________________________________ 

456 
Pelagia Research Library 

( ) ( ){ }1
1 12 1 2 2 21 1 22 2

2

2
d H

N a N N
dt N

λ λ α λ α α∂= − = − − + + −
∂

 

( )2
1 12 1 2 22 2

d
N N

dt

λ λ α λ α⇒ = +                                                                             (7.5) 

From (7.3) & (7.5), we get   2
2 22 2 1

td
N Ae

dt
δλ λ α −− =  

Where     1
11 12 1

11

c
A N p

q N
α

 
= − 

 
 

Whose solution is given by ( )
1

2
222

tA
e

N
δλ

α δ
−= −

+
                                          (7.6) 

From (7.4) & (7.6), we get    

1
1 11 1 2

td
N A e

dt
δλ λ α −− = −  

Where     ( )
21 21

2 1 1
222

A N
A p q E

N

α
α δ

 
 = −
 +
 

 

Whose solution is given by ( )
2

1
111

tA
e

N
δλ

α δ
−=

+
                                            (7.7) 

From (7.3) & (7.7), we get a singular path  

( )
1 2

1
1 11 11

c A
p

q N Nα δ
 

− = 
+ 

                                                                               (7.8) 

Thus (7.8) can be written as  

F ( 1N ) = ( )
1 2

1
1 11 11

c A
p

q N Nα δ
 

− − 
+ 

 

There exist a unique positive root 1N  = ( )1N δ of F ( 1N ) = 0 in the interval 0 < 1N < k1, if the 

following hold F (0)<0, F (k1) > 0, 1( )F N′ ) > 0 for 1N > 0. 

For 1N  = ( )1N δ  

we get      ( )2N δ = 1
2 21

22 1 1

1 c
a

p q
α

α
 

+ 
 

                                                            (7.9) 

and( ) ( )1
1 11 12 2

1 1 1

1 c
E a N

q p qδ δα α
 

= − − 
 

                                                          (7.10) 

Hence once the optimal equilibrium ( ) ( )( )1 2,N Nδ δ
is determined, the optimal harvesting effort 

( )E δ can be determined. 

From (7.3), (7.6) and (7.7), we found that λ1, λ2 do not vary with time in optimal equilibrium. 
Hence they remain bounded ast → ∞ .  
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From (7.8), we also note that  

( )
1 2

1

1 1 11 1

0
c A

p
q N Nα δ

 
− = 

+ 
→ asδ → ∞  

Thus, the net economic revenue of the prey1R = 0. 

 
This implies that if the discount rate increases, then the net economic revenue decreases and even 
may tend to zero if the discount rate tend to infinity. Thus it has been concluded that high interest 
rate will cause high inflation rate. This conclusion was also drawn by Clark [11] in the combined 
harvesting of two ecologically independent populations and by Chaudhuri [8] in the combined 
harvesting of two competing species.                                                                                                               
 
9.   Numerical Examples 
Let 

11 12 21 221 2 13; 0.1; 0.12; 1.5; 0.03; 0.4; 0.02 & 20.a a q Eα α α α= = = = = = = =  

 
Fig. 4 

 
Fig. 5 
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(i) Fig.4 shows the variation of the populations against the time and (ii) Fig.5 shows the 
trajectory corresponding to  the prey and predator populations beginning with N1=30 and N2=20. 
 
 (2) Let 

11 12 21 221 2 18; 0.01; 0.3; 1.5; 0.12; 0.14; 0.04 & 5.a a q Eα α α α= = = = = = = =  

 
Fig. 6 

 
Fig. 7 

 
(i) Fig.6 shows the variation of the populations against the time and (ii) Fig.7 shows the 
trajectory corresponding to  the prey and predator populations beginning with N1=20 and N2=45. 
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