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ABSTRACT

The present paper dealswitha prey - preda model incorporating i) the predatos i
provided with an alternative food iraddition to the prey, ii) the prey is kiasted
under optimal conditions. The model is charactetizsy a pair of first order non-linear
differential equations. All the four equilibrium ipts of the model are identified and the criteria
for the stability are discussed .The possibility exdistence of bioeconomic equilibrium is
discussed. The optimal harvest policy is studieth wihe help of Pontryagin’s maximum
principle. Finally, some numerical examples arecdssed.

Key words: Prey, Predator, equilibrium points, stabilitypibomic equilibrium point, optimal
harvesting, threshold results, normal steady stateh-per-unit-effort.

INTRODUCTION

Ecology relates to the study of living beings itat®n to their living styles. Research in the area
of theoretical ecology was initiated by Lotka [6hda by Volterra [7].Since then many
mathematicians and ecologists contributed to tber of this area of knowledge as reported in
the treatises of Paul Colinvaux [13], Freedman [K&Jpur [2, 3] etc. Harvesting of multispecies
fisheries is an important area of study in fishemydeling. The issues and techniques related to
this field of study and the problem of combinedvesting of two ecologically independent
populations obeying the logistic law of growth atescussed in detail by Clark [11,12]..
Chaudhuri [9, 10] formulated an optimal control lgem for the combined harvesting of two
competing species. Models on the combined hangstira two-species prey-predator fishery
have been discussed by Chaudhuri and Saha Rayi¢&jgical and bionomic equilibria of a
multispecies fishery model with optimal harvestipglicy is discussed in detail by Kar and
Chaudhari [15]. Recently Archana Reddy [1] discdstee stability analysis of two interacting
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species with harvesting of both species. Lakshnmajdn and Pattabhiramacharyulu [4, 5] and
Shiva Reddy et al. [16,17] have discussed diffepeay-predator models in detail. Srilatha et al
[19,20] discussed a four species model with differombination of interactionsbetween the
them. Most of the mathematical models on the héng®f a multispecies fishery have so far
assumed that the species are affected by harvestlgg

A population model proposed by Kar and Chaudhar, Harvesting in a two-prey one-predator
fishery: Bioeconomic model, ANZIAM J.45 (2004), 4486) and this model motivated the
present investigation. In the present investigatwoa discussed a prey-predator model by taking
an alternative food for the predator and hamgsf the prey under optimal conditions. The
model is characterized by a pair of first ordertiarar differential equationg he existence of
the possible steady states along with their lotaikty is discussed. We derive the conditions
for global stability of the system using a Liapunfanction .The possibility of existence of
bioeconomic equilibrium is discussed. The optimaiviest policy is studied and the solution is
derived in the equilibrium case by using Pontryagmaximum principle [18]. Finally, some
numerical examples are discussed.

2. Mathematical Moddl.
The model equations for a two species prey-predatstem are given by the following system
of non-linear ordinary differential equations empig the following notation:

N,and N,are the populations of the prey and predator witural growth ratess and
a,respectively,a,, is rate of decrease of the prey due to insufficiead, a,, is rate of decrease
of the prey due to inhibition by the predatar,,is rate of increase of the predator due to
successful attacks on the pray,, is rate of decrease of the predator due to ir@afft food
other than the preyg, is the catch ability co-efficient of the preyjs the harvesting effort and
g,EN; is the catch-rate function based on the CPUE lfepée-unit-effort) hypothesis]. Further
both the variabledN,andN, are non-negative and the model parameters ,a,, a,,, a,,, Q,;,
a,,, G, Eand(a, - g E)are assumed to be non-negative constants.

dN

dtlz(ai_OaE) N-au N -a,NN, (2.1)
dN

ar = 2Nem@uN + AN, (22)

3. Equilibrium States.
The system under investigation has four equilibratates defined by

. The fully washed out state with the equilibrigint N, =0;N, =0 (3.1)
Il. The state in which, only the predator survigagen by Nl = O;N2 =% (3.2)
a22
— s i < _(a-af) < _
[II. The state in which, only the prey survives given by N = N, =0 (3.3)

al 1
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IV. The co-existent statagr mal steady state) given by

Nl — A8, — o,E) - azalz; Nz — a,a,,+ay(a,— g,6 (3.4)
alla22 + alﬂ 21 allaZZ + alﬂ 21
This state would exit only whera,, (a, - o,E) > ag,, (3.5)

4. Stability of the Equilibrium States
To investigate the stability of the equilibrium teta we consider small perturbatioms W, in

N;andN, overN; and N respectively, so that

N, = Nl +U; ;N = Nz + Uy (41)

By substituting (4.1) in (2.1) & (2.2) and neglegi second and higher powers of the
perturbationsl;, b, we get the equations of the perturbed state

dt
where
A= (a1:q1E)_2a11 1—0’12N2 _iIZN]_ B (4.3)
0’21N2 a2+a21N1—2a22N2
The characteristic equation for the system isletf A=A 1] =0 (4.4)

The equilibrium state istable only when the roots of the equation (4.4) are tiegan case they
are real or have negative real parts in case tfeeganplex.

The equilibrium points 1, I, and Ill are found tmnstable, so we restricted our study to the
normal steady state only.

4.1 Stability of the normal steady state:
In this case the characteristic equation is

/12+ (allﬁl +a22N2)A + [alla22+alg 2] NINZ = O (45)

Since the sum of the roots of (4.5) is negative the product of the roots is positive, the roots
of which can be noted to be negative .Hence thexestent equilibrium state sable.
The solutions curves are:

ulO(/]1+a22N2) — U 12|_\|1 e/]lt + ulO(AZ +0’22N2) — U 12|_\|1 e/]zt (4.6)
Al —/]2 Az _Al

u1:
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u.= uzo(A1+a11N1)+ uga 21|_\|2 e/11t + UZO(/]2+a11N1) +tug 21_N2 e/]zt 4.7)
? A=A, A=A

Where A, A,are the roots of the equation (4.5)

5. Global stability
Let us consider the following Liapunov’s function

V(MJNg:rm—T%—TQm{%%]+{rg—?@—?@m{%%}} (5.1)

1 2

where I' is positive constant ,to be chosen later
Differentiating V w.r.to ‘t’ we get

9¥=(M‘quM+{“9:&de (5.2)
dt N, ) dt N, ) dt

Substituting (2.1) and (2.2) in (5.2), we get

%%:Lﬂh“h;@r_auﬁm_ﬂq(M_TgyrPH(N;WQ(N;T@—a¢{N;?ﬂ?

Choosingl =92 and with some algebraic manipulation yields
21

av -~ a. =
E:_all(Nl_ Nl)z_a_lzazz(Nz_ N2)2<0' (5.3)
21

Therefore , the equilibrium poiriN:, N.)is globallyasymptotically stable.

6. Bionomic equilibrium

The term bionomic equilibrium is an amalgamatiorthed concepts of biological equilibrium as
well as economic equilibrium. The economic equilibr is said to be achieved when the total
revenue obtained by selling the harvested biomagsale the total cost for the effort devoted to
harvesting.

Let ¢, = fishing cost per unit effort of the prey, =price per unit biomass of the prey. The net
economic revenue for the prey at any tineegiven by

R=(paN-g)E (6.1
The biological equilibrium is((N,)_,(N,), .(E),) . where(N,)_.(N,), .(E),are the positive
solutions of (a,—9E) N-a,,N’~a,N,N,=0 (6.2)
a,N,-a,,N; +a,N,N,=0 (6.3)
and(p,g,N,- ) E=0 (6.4)
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From (6.4), we have

N). - ¢} (B, =0=(N,), =— 6.5
{Pa(N). -} (B.=0=(N,), » (6.5)

_1 G
From (6.3) and (6.5), N,) =— ” 6.6
rom (6.3) and (6.5), we ge{iN,)_ aﬂ(aﬁa plqu (6.6)
From (6.2), (6.5) & (6.6), we get (E)_ =i£al—a'n—cl —a,( Nz)w] (6.7)

4 PG

. - G
Itis clear that{E) >0 if | & —ay, (N, 6.8
is clear tha{E) >0 i (al a plqj>0'( ). (6.8)

Thus the bionomic equilibriui(N, ), ,(N,), .(E), ) exists, if inequality (6.8) holds.

7. Optimal harvesting policy
The present valugof a continuous time-stream of revenues is gisen b

J =j0we'5‘( nqN- ¢) Ed (7.1)

Wheres denotes the instantaneous annual rate of discOumtproblem is to maximiz&subject
to the state equations (2.1) & (2.2) and controhsta@ints 0< E<(E) __ by invoking

Pontryagin’s maximum principle.
The Hamiltonian for the problem is given by
H =e_5t( RqN- 9) E+A1( aN-ay, l\i_alz NN- q EI\)

+A, (azNz _azzsz + 0’21N1N2)
Where/;, /1, are the adjoint variables.

(7.2)

Let us assume that the control constraints ardinding i.e. the optimal solution does not occur

at(E) _ . At (E)__ we have a singular control.
By Pontryagin’s maximum principle,
a_H:O, dA, __oH | d4, __oH
oE " dt AN, ' dt 0N,
oH ot = G
—=0=>e€ -¢)-A =0=>1.= &
= (RAN-¢)-AaN . ( v%M] (7.3)
dA oH _
d—t1= —m=—{e % pq E+/]1[( a-q 3_2011 N_alz '\ﬂ’”‘ 2(0’ 21 N)}
1

dA _

= d_tl = (AlallNl_ApﬂN P ’ plqle (7.4)
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dA oH
dtl = _aNz = _{/]1(_0/12N1) +/12(a2+021N 1 2a 22N ;}
dA
= tz =(Aa,N, +A0,N ) (7.5)

From (7.3) & (7.5), we get%—)zazzNz = Ag”

Where A :alzﬁl( p-—2 J

0, N1
Whose solution is given by, = —_L e’ (7.6)
(0’22N2 +5)

From (7.4) & (7.6), we get
dA _
d_tl_Alaanz -Ag g
Where A, =| pq E—&

(0’22N2 +5)
Whose solution is given by, = _Le“’t (7.7)

(a'llNl +5)
From (7.3) & (7.7), we get a singular path
& |- A (7.8)

pl_q1N1 _(allﬁl+5)
Thus (7.8) can be written as
F(N1)=(p1— ‘ij- A
0y N2 (allN1+5)
There exist a unique positive rodh = (N,),of F (N:) = 0 in the interval 0 &< ky, if the
following holdF (0)<0, F (ky) > 0,F'(N1)) > 0 for Ni> 0.

Forﬁl=(Nl)5
1 G
weget (N :—( +a —] (7.9)
(N-), a2 g,
and(E), :i[a1 R ( NZ)J} (7.10)
G PG

Hence once the optimal equilibriufgN,),,(N,),)is determined, the optimal harvesting effort

(E)Jcan be determined.

From (7.3), (7.6) and (7.7), we found that/, do not vary with time in optimal equilibrium.
Hence they remain boundedtas .
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From (7.8), we also note that

C |_ A
p———= |= —= - 0asd - o
( qlNlJ (allNl+5)

Thus, the net economic revenue of the [Rey0.

This implies that if the discount rate increaskentthe net economic revenue decreases and even
may tend to zero if the discount rate tend to ibfinThus it has been concluded that high interest
rate will cause high inflation rate. This conclusiwas also drawn by Clark [11] in the combined
harvesting of two ecologically independent popoladi and by Chaudhuri [8] in the combined
harvesting of two competing species.

9. Numerical Examples
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30 J T T 7
: i | =—prey
- predatar
\L
gg_.'.\,l T
5 S
=
% 45|
|
|
|
10 FL
b
g ik T
1] 1 2 3 4 5 B ¥ a8 g o
time
Fig. 4
20 T T
} ! -//,
: /,-
. ok
: o
- ; ‘/ :
- 15 E e LI o
b= L X 2
= ; : 7
3 . e
== p o
% 1 3 ./‘/
2 : : o
= s
€ . o
&gk SR b
| g
o, :
s :
A B
S :
b i
& ;
5 o I I i 1
18 20 2 24 26 28 an
prey populaticn
Fig.5

457
Pelagia Research Library



K. Lakshmi Narayan et al Adv. Appl. Sci. Res., 2011, 2 (4):451-459

(i) Fig.4 shows the variation of the populations agfaithe time andii) Fig.5 shows the
trajectory corresponding to the prey and predatmulations beginning with /430 and N=20.

(2) Leta, =80 =0.0La_=0.3a,= 150 = 0.1% = 0.14= 0.04&=
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(i) Fig.6 shows the variation of the populations agfaithe time andii) Fig.7 shows the
trajectory corresponding to the prey and predadqulations beginning with 420 and N=45.
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