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ABSTRACT 
 
The objective of this present numerical model is to investigate the effect of shape of stenosis on 
blood flow through an artery using power-law fluid model. Blood is modeled as power-law fluid 
in a uniform circular tube with an axially non-symmetric but radially symmetric stenosis. The 
expressions for dimensionless resistance to flow, wall shear stress and apparent viscosity have 
been obtained. The variation of resistance to flow, wall shear stress and apparent viscosity with 
stenosis shape parameter, stenosis length and stenosis size has been shown graphically. It has 
been found that the resistance to flow, wall shear stess and apparent viscosity decreases as 
stenosis shape parameter increases but increases as stenosis size and stenosis length increases. 
The significance of the present model over the existing models has been pointed out by  
comparing  the  results  with  other  theories  both  analytically  and  numerically. This 
information of blood could be useful in the development of new diagnosis tools for many 
diseases.     
 
Keywords: Stenosed artery, Power-law fluid model, Resistance to flow, Wall shear stress, 
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INTRODUCTION 
 
The hemodynamics behavior of the blood flow is influenced by the presence of the arterial 
stenosis. If the stenosis is present in an artery, normal blood flow is disturbed. The intimal 
thickening of stenotic artery was understood as an early process in the beginning of 
atherosclerosis. Atherosclerosis is the leading cause of death in many countries. There is 
considerable evidence that vascular fluid dynamics plays an important role in the development 
and progression of arterial stenosis, which is one of the most widespread diseases in human 
beings. The fluid mechanical study of blood flow in artery bears some important aspects due to 
the engineering interest as well as the feasible medical applications. Various investigators [1-4] 
have emphasized that the formation of intravascular plaques and the impingement of ligaments 
and spurs on the blood vessel wall are some of the major factors for the initiation and 
development of this vascular disease. The fruitful study of [5, 6] has pointed out that the 
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m=2,6,…11
…….. 

variation of resistance to flow and the wall shear stress with the axial distance are 
physiologically important quantities. [7,8] have shown theoretical results of for the velocity 
profiles, pressure drop, wall shearing stress and separation phenomena for special geometries for 
Newtonian model of blood. In the series of the papers [9-12] the effects on the cardiovascular 
system can be understood by studying the blood flow in its vicinity. In these studies the behavior 
of the blood has been considered as a Newtonian fluid. However, it may be noted that the blood 
does not behave as a Newtonian fluid under certain conditions. It is generally accepted that the 
blood, being a suspension of cells, behaves as a non-Newtonian fluid at low shear rate [13, 14]. It 
has been pointed out by [15] that the flow behaviour of blood in a tube of small diameter (less 
than 0.2 mm) and at less than 20sec - 1 shear rate, can be represented by a power-low fluid model. 
In these discussed models, the investigators have not dealt with the effect of stenosis shapes on 
resistance to flow wall shear stress and apparent viscosity. The published literature on the 
stenosis further reveals that very few studies are concerned with the problem of symmetric 
stenosis. In an actual situation, however, the increase in the arterial wall thickness would not be 
symmetrical. To generalize the problem further, an attempt is therefore made in the present 
investigation. Keeping these in view, in this paper, we have investigated the effects of stenosis 
shape parameter on resistance to flow, wall shear stress and apparent viscosity with stenosis size 
and stenosis length, in an artery by introducing blood as Power-law fluid model.  
 
Formulation of the problem 
 
In the present analysis, it is assumed that the stenosis develops in the arterial wall in an axially 
non-symmetric but radially symmetric manner and depends upon the axial distance z and the 
height of its growth. In such a case the radius of artery, R(z) can be written as follows [Fig (1)]:  

(m 1) m
0 0

0

R(z)
1 A[L (z d) (z d) ], d z d L

R

1, otherwise,

− = − − − − ≤ ≤ + 

= 

                          (1) 

where R(z) and R0 is the radius of  the artery with and without stenosis, respectively. L0 is the 
stenosis length and d indicates its location, m ≥ 2 is a parameter determining the stenosis shape 
and is referred to as stenosis shape parameter. Axially symmetric stenosis occurs when m = 2, 
and a parameter A is given by; 

m/(m -1)

m
0 0

δ m
A =

R L (m -1)
                                                                                                      (2) 

where δ denotes the maximum height of stenosis at z = d + L0 / m1 / (m – 1). The ratio of the 
stenosis height to the radius of the normal artery is much less than unity. 
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       Fig (1) Geometry of  Stenosis  
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Conservation equation and boundary condition 
 
The equation of motion for laminar and incompressible, steady, fully-developed, one-
dimensional flow of blood whose viscosity varies along the radial direction in an artery reduces 
to [4]: 

P 1 (rτ )
0 ,

r r z

P
0 ,

r

∂ ∂ = − + ∂ ∂ 


∂ = −
∂ 

                                                                                                     (3) 

where (z, r) are co-ordinates with z measured along the  axis and r measured normal to the axis 
of the artery.  
Following boundary conditions are introduced to solve the above equations, 

0

L

u / r  =  0          a t r  =  0

u  =  0                a t  r  =  R (z )

   is  f in i te        a t  r  =  0         

P  =  P              a t  z  =  0

P  =  P              a t  z  =  L

τ

∂ ∂









                                                                                  (4)                                                                   

                                                                                                         
Analysis of the problem 
 
Power-law fluid: Non-Newtonian fluid is that of power-law fluid which have constitutive 
equation, 

c

1 /n
d u

= f ( ) ,
d r µ

Rd p
w h e r e  τ

d z 2

τ
τ


   − =        

 = −  
  

                                                                             (5) 

Where u is the axial velocity, µ is the viscosity of fluid, (-dp/dz) is the pressure gradient and n is 
the flow behaviour index of the fluid. 
Solving for u from equation (3), (5) and using the boundary conditions (4), we have, 

C

1 /n
1 /ndu P

= [(r - R ) ],
d r 2µ

 
 
 

                                                                                (6) 

The volumetric flow rate Q can be defined as, 
R R

0 0

d u
Q 2 π u r d r π r d r ,

d r
 = = −∫ ∫  
 

                                                        (7) 

By the help of equations (6) and (7) we have,  

[(1 /n ) 1 ]1 /nP nπ
Q ( ) (R )

2µ (3 n 1 )
+ =  + 

                                                                       (8) 

From equation (8) pressure gradient is written as follows, 
n

3 n 1

d p (3 n 1 ) 1
2µ Q

d z nπ (R ) +

+ = −  
 

                                                                          (9) 

Integrating equation (9) using the condition P = P0 at z = 0 and P = PL at z = L. We have, 
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( ) ( )
n
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L 3n +10 1 3n00
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(3n 1) 2µ dzP P Q
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+
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 
                                           (10) 

The resistance to flow (resistive impedance) is denoted by λ and defined as follows, 

L 0
P - P

λ =
Q

                                                                                                                  (11) 

The resistance to flow from equation (11) using equations (10) can write as: 

( )
n d Ld L0

3n 1 3n 10 0 0 d L00 0

(3n 1)Q 2µ dz
λ dz dz

nπ Q R R R

+

+ + +

 
+   = + +∫ ∫ ∫      

 

                     (12) 

When there is no stenosis in artery then R = R0, the resistance to flow,   
n

3n 1N
0

(3n 1) 2µ
λ Q L

nπ Q R +
+ =  

 
                                                                               (13) 

From equation (11) and (12) the ratio of (λ0 / λN) is given as; 

( )

d L
0

0 0
3n 1

0N d R /R

λ L 1 dz
λ = 1

λ L L

+

+= − + ∫                                                               (14) 

Now the ratio of shearing stress at the wall can be written as; 
3n

0R

N

Rτ

τ R

−
 

=  
 

                                                                                                           (15) 

R
3n

N

0

τ 1

τ δ1-
R

τ
 
  
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= =                                                                                                    (16) 

The  apparent  viscosity  (µo/µ)  is  defined  as  follows ; 

0
4

0

µ 1
=

µ (R/R ) f(y)
                                                                                                          (17) 

 
RESULTS AND DISCUSSION 

 
In order to have estimate of the quantitative effects of stenosis shape parameter (m= 2...11), 
stenosis size, stenosis length on resistance to flow, wall shear stress and apparent viscosity, 
computer codes were developed and to evaluate the analytical results obtained for resistance to 
blood flow, wall shear stress apparent viscosity for diseased system associated with stenosis due 
to the local deposition of lipids have been determine. The results are shown in Fig 2-10 by using 
the values of parameter based on experimental data in stenosed artery. 
 
Fig.2 reveals the variation of resistance to flow (λ) with stenosis shape parameter (m). It is 
observed that the resistance to flow (λ) decreases as stenosis shape parameter (m) increases, 
maximum resistance to flow (λ) occurs at (m = 2), i. e. in case of symmetric stenosis. The result 
is consisting with the result of [14]. Fig.3 consists the variation of resistance to flow (λ) with 
stenosis size (δ/R0). It is evident that resistance to flow increases as stenosis size increases. 
Resistance to flow increase as stenosis grows or radius of artery decreases (this referred to as 
Fahraeus-Lindquist effect in very thin tubes). It is also shown in fig.4 that the resistance to flow 
increases with increasing value of stenosis length. Pontrelli [9] has found that the resistance of 
blood in diabetic patients is higher than in non-diabetic patients, resulting higher resistance to 
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blood flow in the presence of magnetic effect. Thus diabetic patients with higher resistance to 
flow are more prone to high blood pressure. Therefore the resistance to blood flow in case of 
diabetic patients may be reduced by reducing viscosity of the plasma. These results are 
consistent with the observation of [12]. In Fig.5 the variation of wall shear stress (τ) with 
stenosis shape parameter (m) has been shown. This figure depicts that wall shear stress (τ) 
decreases as stenosis shape parameter (m) increases.  As the stenosis grows, the wall shearing 
stress (τ) increases in the stenotic region. These results are similar with the results of [16]. Fig.6 
describes the variation of wall shear stress (τ) with stenosis size. This figure depicts that wall 
shear stress (τ) increases as stenosis size increases. These results are consistent to the observation 
of [12].  
 

Fig.2  Variation of resistance to flow w ith stenosis shape parameter 
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Fig.3  Variation of resistance to flow with stenosis size
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Fig.7 reveals the variation wall shear stress with stenosis length for different values of stenosis 
size (δ/R0). Graph depicts that wall shear stress increases as stenosis length increases. To capture 
the results for apparent viscosity with stenosis shape parameter, stenosis size, stenosis length, the 
graphs have been plotted in fig.8, fig.9, and fig.10. Apparent viscosity decreases as stenosis 
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shape parameter increases, it is shown in fig.8, but decreases as stenosis size and stenosis length 
increases it is shown in fig. 9 and fig.10. 
 

Fig.4 Variation of resistance to flow with stenosis length  
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Fig.5 Variation of Wall shear stress with stenosis shape 
parameter
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Fig.6 Variation of wall shear stress  with stenosis size 
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Fig.7 Variation of wall shear stress with stenosis length
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Fig.9  Variation of apparent viscosity with stenosis size
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CONCLUSION 
 
In his paper, we have studied the effect of stenosis shape parameter on resistance to blood flow, 
wall shear stress and apparent viscosity in an artery by introducing blood as Power-law fluid 
model. It has been concluded that the resistance to blood flow, wall shear stress and apparent 
viscosity increases as stenosis size and stenosis length increases but decreases as stenosis shape 
parameter increases. So it has shown that the results were greatly influenced by the change of 
stenosis shape parameter. In an artery flow, the viscosity of blood found to vary with the arterial 
radius decreasing with it. One may recollect that the diabetic patients are more prone to the 
various types of cardiovascular diseases. The viscosity of the diabetic patients is higher than that 
of normal. Therefore the blood viscosity of diabetic patients is lowered by  regular  dose  of  
aspirin  or  injecting  saline  water  in  order  to  dilute  the  blood. This model is able to predict 
the main characteristics of the physiological flows and may have some interest in biomedical 
application.      
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