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Abstract
Background and objectives: Breast cancer is one of the most common cancers in women and 7% of breast cancer 
cases in the United States occur in women under the age of 40. Early diagnosis and intervention are essential not 
only for better patient prognosis, but also to reduce the ever increasing burden on the healthcare system across 
the globe. The current gold standard for breast cancer diagnosis, mammography, is limited in its capacity to detect 
breast cancer in early stages especially with younger women with dense breast tissue. Additionally, there is limited 
accessibility and affordability of mammography in low and middle income countries. Thermography, on the other 
hand, can detect cancer in very early stages and in this paper; we discuss an AI-powered thermography based 
breast cancer prediction tool.
Methods: The proposed method involves data pre-processing, data augmentation, a detailed training strategy, 
and a post-processing risk calculation step. The proposed algorithm was trained using 1600 images from breast 
thermography databases to detect abnormalities in the breast tissue.
Results: On our dataset, we obtained an accuracy of 93%, 95% precision with >90% specificity and sensitivity, 
which is a significant breakthrough in using thermography as a potential screening for breast cancer. Additionally, 
with the risk calculator, the model can predict the risk of developing breast cancer in the future
Conclusion: The high accuracy of our proposed model and the risk prediction capabilities enable the AI-powered 
screening tool by AI Talos to become the computer aided diagnostic system that supports screening and early 
detection of breast cancer especially in younger population.
Keywords: Transfection breast cancer screening; Thermography; CNN; Deep learning; Artificial intelligence

INTRODUCTION
The Breast cancer is one of the world’s most prevalent cancers. 
According to the World Health Organization, in 2020, there 
were 2.3 million women diagnosed with breast cancer and 
685,000 deaths globally [1]. The average risk of a woman, in 
the US, developing breast cancer in her lifetime is ~13% [2]. 
Though breast cancer is more common in women, 1% of all 
diagnosed cases occur in men [3]. The breast cancer mortality 
rates are higher in low and middle income countries than the 
developed countries because of two main reasons late diag-
nosis at advanced stages of the disease and limited access to 

affordable medical care [4,5]. Additionally, 7% of breast can-
cer cases occur in women under 40 years of age in the United 
States, and the disease tends to be more aggressive in younger 
women [6]. However, breast cancer screening by mammog-
raphy is recommended to the general population at/after 40 
years of age [7,8]. Detection of breast cancer at early stages is 
important for a better prognosis. Research studies have sug-
gested that early diagnosis and medical intervention signifi-
cantly reduces the long term breast cancer mortality rate [9].

Early detection of breast cancer is hugely dependent on clinical 
examination and imaging modalities, such as mammography, 
ultrasound, thermography, breast magnetic resonance imag-
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ing (MRI) and histopathology imaging. Mammography is the 
gold standard screening tool for breast cancer, and patients 
with equivocal screening results usually require further confir-
mation by diagnostic imaging, such as breast MRI or biopsy or 
combination [10]. However, one of the limitations of the gold 
standard technique (s) is the inaccessibility in low and middle 
income countries. Additionally, these techniques fail to detect 
breast cancer is young women (<40 years) who have dense 
breast tissue [11]. Contrary to the gold standard diagnostic mo-
dalities, thermography can detect physiological changes even 
in dense breast tissue and is currently used as an adjunctive 
tool in breast cancer screening [12,13].

Thermography
Infrared imaging or thermography is a fast, non-invasive, 
non-contact, radiation free method to measure temperature 
distribution on the surface of the body using an infrared cam-
era. A visual map, called a thermo gram, of the temperature 
distribution on the surface of the body is created. The infrared 
cameras have a sensitivity of detecting temperature differenc-
es up to 0.025°C, which equips the cameras to detect minor 
variations in temperature [14]. The reliability of IR cameras to 
measure actual body temperatures and the fundamentals of 
thermography have been described in previous studies [15-
20]. Thermography was first used in 1956 for the diagnosis of 
breast cancer [21]. The principle of thermography in cancer de-
tection is that the tumor cells have an increased blood supply 
due to angiogenesis and an increased metabolic rate [22,23], 
which creates a temperature spike on the surface of the breast. 
This temperature spike is easily detectable by an infrared cam-
era [24-26].

Related Work
Earlier studies have shown that abnormal breast thermogram 
is associated with an increased risk of breast cancer, and, in 
fact, is the earliest sign of breast cancer [27-29]. In comparison 
to mammograms, thermography can detect abnormal activity 
in the breast tissue at an early stage or in dense tissue [30,31]. 
Visual inspection and interpretation of thermograms by clini-
cians to identify suspicious areas is a time consuming task and 
the effective interpretation of the thermograms is dependent 
on the expertise of the clinician. There is also a degree of intra 
and inter observer variability among clinicians leading to an 
observational bias and/or interpretational failures resulting in 
false positives and false negatives. Recent research studies on 
breast cancer detection using thermography have focused on 
developing computer aided methods for faster and more accu-
rate detection of the tumor even in early stages of the disease 
[32-36]. Computer aided detection and computer aided diag-
nosis systems have been adopted as second opinion tools for 
interpretation of imaging techniques by clinicians. These tools 
rely on image analysis, machine learning, deep learning, or a 
combination approach [37,38]. In the past decade, research-
ers have focused on developing breast cancer diagnostic tools 
using various machine learning techniques. In this paper, we 
discuss an AI-powered thermography based prediction tool.

AI-Powered Breast Cancer Prediction Tool by AI 
Talos
AI Talos is inspired by the gigantic bronze warrior from Greek 
mythology, Talos, who was programmed to guard the island 
of Crete. AI Talos has developed a novel computer aided diag-
nostic system to detect early signs of breast cancer in thermo-
grams with deep learning guided algorithms at its core. Deep 
learning focuses on knowledge inference mechanisms from 
data and one of the most influential deep learning networks is 
the Convolutional Neural Network (CNN) [39].

Earlier research studies have shown promising results using 
CNN in imaging applications for breast cancer diagnosis [40-
45]. Zuluaga-Gomez et al. have discussed a CNN based meth-
odology for diagnosis of breast cancer using thermograms 
that highlights the benefits of data augmentation and CNNs 
in breast thermograms [46]. We have developed a novel CNN 
based methodology that predicts the risk of cancer in breast 
thermograms with a higher accuracy and specificity.

METHODS
Dataset Description
The thermal images have been obtained from two public da-
tabases-Databases for Mastology Research (DMR) Database 
[47-49] from Brazil, and Digital Infrared Analysis (DIA) from 
Hospital General de México in Mexico [50]. The DMR-IR data-
base contains infrared images along with the clinical data from 
patients of the Hospital Universitário Antônio Pedro (HUAP) of 
the Fluminense Federal University in Brazil. The infrared imag-
es are captured using a FLIR thermal camera model SC-620. The 
DMR-IR database followed the previously described [24,51]. 
Thermal image acquisition protocol to ensure that quality of 
database is maintained. The details for the DIA database are 
not available. Online search using the PubMed database was 
followed in this study. The snowball method was also used to 
extract other publications. The keywords used included terms 
describing various delivery methodologies and the factors that 
influence transfection efficiency. Thanks to the efforts of a large 
number of researchers and new ideas for improving equipment 
and strategies. Due to the exponential growth of papers pub-
lished in the field and space limitations, only articles between 
2015 and March 2022 were retrieved. Titles in non-English lan-
guage were excluded. After vigorous screening and detailed 
evaluation, only 136 articles were selected for data extraction.

CNN Methodology
Our database is composed of 3200 images from 95 patients, 
where 2100 images were normal and 1100 images had anom-
alies in the breast tissue. 1600 images were used to train the 
dataset, 640 for validation, and the remaining 960 were used 
as a test set. Table 1 shows the distribution of splitting of the 
3200 image database across normal breast images and breast 
images with anomalies. We trained different models from the 
same architecture with different depth and parameters togeth-
er and used different steps for data pre-processing. Finally, we 
chose the best model. Using a novel formula, we also estimat-
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ed the risk of breast cancer using five images for each input. 
We have created a cloud based panel, called Talos Cloud, to 
store patients’ records in the EHR system which is password 

protected to ensure data safety and compliance with HIPAA.

The technology behind the model has 4 phases. The pictorial 
representative is shown in Figure 1.

Table 1: Distribution of splitting of the 3200-image database across normal breast images and breast images with anomalies

Total Images Splitting

Training Validation Testing

3200 1600 640 960

Normal Breast Tissue 2100 1050 420 630

Breast Tissue with Anomalies 1100 550 220 330

Figure 1: The detailed approach of the four phases of technology behind the AI- powered model using breast thermograms

Figure 2: The detailed workflow of the proposed model

Phase 1 Data Pre-Processing and Data Augmen-
tation
This phase is essential to extract the region of interest for our 
proposed CNN. During pre-processing, we removed any un-
wanted area of the thermogram by different methods, such 
as eliminating watermarks, cropping, resizing, and normaliz-
ing thermal breast images. In the data augmentation step, we 
generated new images by methods, including horizontal and/
or vertical flipping, rotation, zoom, and normalization for noise.

Phase 2 the Training Strategy
The CNN presented is based on the structure of the previously 
described VGG16 neural network [52]. Several depths of the 
neural network were tested, ranging from 1 to 5 convolution-

al sections, and each depth was followed by a fully connected 
section with two layers (Figure 2). For the depth-1 configura-
tion, the CNNs had an input of dimension 224 × 224 pixels. The 
thermal images were resized to this size. They were convolved 
by 3 × 3 filters to produce 64 channels of dimension 224 × 224 
pixels. The outputs were then passed through a set of ReLU 
(Rectified Linear Activation Unit) activations. The process was 
repeated with an identical convolution, ReLU activation, and 
then pooled to produce 64 channels of dimension 112 × 112 
pixels. The output was next passed through a 1 × 1 convolution 
to produce two channels of 112 × 112 pixels. The result was 
processed through a fully connected layer with 4096 outputs, 
ReLU activation, and dropout, a second identical fully con-
nected layer, and finally a layer with two outputs and sigmoid 
activation that computes the classification probability for two 
different classes. 
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For depth-2 configuration, the first convolution layer was simi-
lar to depth-1. After the first pool, two more convolutions were 
added that produced 128 channels of size 112 × 112 pixels, 
reduced to 128 × 56 × 56 pixels. The next layers had similar 
structures as in the 1-layer configuration, where the input to 
the first fully connected layer was 8 × 56 × 56 pixels. We built 
the configurations with 3, 4, and 5 layers using the same meth-
odology.

Phase 3 Performance Metrics
We evaluated our model using defined performance metrics 
calculated from the confusion matrix shown in Table 2. The re-
sults are shown in Tables 3 and 4.

Table 2: Confusion Matrix

Total Test Samples Predicted Posi-
tives

Predicted Nega-
tives

Actual Positives True Positives False Negatives
Actual Negatives False Positives True Negatives

Table 3: Confusion Matrix data for depth-2 model during training, valida-
tion, and testing steps

Label Training Validation Testing

True Positive False Neg-
ative 1019 31 378 42 586 44

False Pos-
itive

True Neg-
ative 5 545 28 192 30 300

Table 4: Performance Metrics for the depth-2 model during training, val-
idation, and testing steps

Training Validation Testing

Accuracy 97.8 89.1 92.3

Sensitivity 97 90 93

Specificity 99.1 87.3 90.9

Precision 99.5 93.1 95.1

F1 Score 98.2 91.5 94

•	 Accuracy: Shows how often the result is correct, and is cal-
culated

•	 Sensitivity: It is the proportion of positive data points that 
are predicted positive correctly, and is calculated

•	 Specificity: It is the proportion of negative data points that 
are predicted negative correctly, and is calculated

•	 Precision: Reflects how reliable the model is in classifying 
samples as positive, and is calculated

•	 F1 Score: It is calculated

Phase 4 Post-Processing
During the post-processing step, we used a novel formula to es-
timate the risk of having breast cancer as low , medium, or high 
risk. The outputs were probabilistic and needed calibration to 
obtain a more realistic risk prediction score. We used five imag-
es and calculated the risk using the calibrated number for each 
image, and then calculated the overall risk.

Code Availability
The CNN model, training and validation data, and post-process-
ing data are proprietary to AI Talos, and thus they are not made 
available

RESULTS AND DISCUSSION
The ROC curves for all depths are shown in Figure 3. The model 
in depth-2 yielded the best results when evaluated using the 
performance metrics. Depth-2 had 93% accuracy, 93% sensitiv-
ity, 91% specificity, and 95% precision.

Figure 3: Receiver Operating Characteristics (ROC) Curves for all depths. The depth-2 showed the most promising results
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The post-processing step calculated the risk of having breast 
cancer and categorized the risk as low (1-5), medium (5-7), or 
high (7-11). The representative images for low and high risk are 
shown in Figures 4 and 5, respectively. The model yielded a 

high score of 10.36, which is a high risk for having breast can-
cer (Figure 5). This was corroborated with clinical evidence for 
the particular case, where the diagnosis of breast cancer was 
confirmed by biopsy and histopathology

Figure 5: Representative image of the (A) input breast thermograms of an individual confirmed to have breast cancer, and the (B) output result from 
the AI Talos model showing high-risk score of 10.36

Figure 4: Representative image of the (A) input breast thermograms of a healthy individual, and the (B) output result from the AI Talos model show-
ing low-risk score of 2.30

CONCLUSION
Early detection of breast cancer is essential for a better progno-
sis. Since the current gold standard diagnostic modality, mam-
mography, doesn’t detect breast cancer at the early stages, it is 
important to develop better diagnostic modalities. Thermogra-
phy, with its ability to detect early anomalies in the breast tis-
sue, can be supplemented with computer aided detection and 
diagnosis systems to become one such modality. In this paper, 
we proposed a CNN based model to aid detection of anom-
alies in thermal images of breast tissue. Our model also esti-
mates a risk of having breast cancer, which is critical for follow 
up screenings for breast cancer. Physicians prefer systems that 
can not only detect malignant tumors with high accuracy, but 
also predict the risk of developing such tumors in the future. 
Additionally, thermography has the advantages of being an 
affordable, non-invasive, portable and painless diagnostic mo-
dality, thus making it a potential viable alternative to currently 
used mammography. This will have a significant impact in low 
and middle income countries with limited access to affordable 

healthcare. A low cost thermography based AI-powered di-
agnostic system will enable early detection of breast cancer, 
which will in turn lower the load on the already limited medical 
infrastructure in these communities. To summarize, with a high 
accuracy of 93% and risk prediction capabilities, the screening 
tool developed by AI Talos has the potential to become the 
computer aided diagnostic system that physicians can depend 
on for early diagnosis of breast cancer.
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