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ABSTRACT

Beginning with the Einstein Field equations, we characterize gravitational waves by expressing the one dimensional
wave equation in terms of Lie derivatives for the space-time general relativity. A condition for a radiative
gravitational field is obtained. This condition proves to be satisfied for the exact solution, including plane waves as
well as approximate sol utions.
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INTRODUCTION

Our starting point is the Einstein field equatiafigeneral relativity written as; where

G, =V, (EFE)

where G, =R, - R is the Einstein tensorR=g*R,

tensor. y=8n1G/c*, G being the Newtonian gravitational constant. Fog thoment we consider three basic
important properties of the above equation.

20 is the Ricci tensorT , is the energy-momentum

1) The equation (EFE) is a tensor equation. Thigeisessarily so, since the principle of invarianoder coordinate
transformations must hold, in other words theagigns of physics must look the same in any frafireference.
2) We can interpret equation (EFE) more simply as;

Tensor representing geometry of space = Tensor representing energy content of space

i.e. it is the presence of matter in space thabdisthe neighbouring geometry. Most equationsnathematical
physics can be interpreted similarly.

3) The solution to equation (EFE) is a geometrataéct, namely a line element given by

ds’ = g, dx“dx’ 1)
where g, is the metric tensor to be solved for in (EFE).

In this paper we discuss the notion of gravitatiomaves, the existence of which has now been géperecepted
[Kenyon I.R (1990), Roos M. (2003)] In particulageavitational wave is a solution of the time degmt Einstein
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field equations (EFE). Such solutions do exist; @ear, there is need give a more precise definifosuch waves.
Consider for example the case of electromagneticewavhere all solutions of the time dependent Mdbsve
equations do not always represent an electromagnetve. In the same manner in general relativipt, all time
dependent solutions represent a wave.

The properties of gravitational waves are such they travel through space-time at the speed bt,ligroducing
ripples of curvature, an oscillatory stretching agdeezing of space-time. Any matter passing throut feel this
effect; however the waves act on an exceedinglykerescale. In contrast to the electromagnetic fieldich is a
vector field, the gravitational field is a tensaid.

2.0 Weak fidd limit
In order to study gravitational waves in generédtigity it is necessary that we place ourselvesam the source.
This implies that we implement a linear approximatidue to the weak nature of the field, in otherdsahe metric

tensorg with signature(+ - - —) is perturbed in Minkowski’'s space-time; i.e.

gy;; :/7;“/ +h/1v; h/ll/ <1 (2)

where h, is a small increment tg,, .
Far away from the gravitational source, the EF@&rigten;

h, =n%h

wiap —

0 3.1
where “;” denotes covariant derivative and

=h% =0 (3.2)

Hﬂﬂ = haﬁ _%,7 aB hge (4)
Wave solutions exist [Roos M. (2003), Peebles, E.,JRatra, B. (2003)], for equations (3) andlthe element (1)
is written

ds? = c?dt - (1+h,, ) dx?+(1-h,, ) dy?+ 2h, dxdy - dz* (5)
where

h, =bcos{£(z—ct)+¢}

c
a,b,p,¢ being constants. We observe here that our coamﬁrare(;x", xl,xz,x3) =(ct,x,y,z).
The metric tensor is thus;

a  2h, 0 00
0 -(1+h,) 0 0 0
9, =0 0 (1-h,) 0 © (7)
0 0 0 0 O
0 0 0 0 -

It then follows that the metrig is a function of time, more precisely
9w :g/lV[(Z_Ct)'Xy] (8)

for waves propagating along the z-axis.
3.0 TheLiederivative fromulation
Our objective is to try to generalize this conocafpgravitational wave.
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Consider the one dimensional wave equation propagatong the z-axis;

ASY

10 0% _o 4
s =) O

z

(o))

v being the speed of propagation. On the other famdve travelling in vacuum with the speed oftigh=1)
can be written in the space time coordina(txg, Xl, X2,x3) of general relativity as;

62¢ B 62¢ =926-0% =0 10
o) o) YT G0

We will now reformulate the above equation in thmce time(R“,g)of general relativity without employing

d’Alembert’s differential operatarg,, = g”ﬂaaaﬂ as is normally the approach [Gerssen , J. et @04g.

To this end we define two vector fielda'} (time-like) and{v'} (space-like) in the specified system of coordinates

by;
u'=04; V' =04 (11)

Hence the second order Lie derivativesgofvith respect ta andv are;
12p=uo (ud,¢)=0zp (12)
12¢=v',(via,¢) =02 (13)

It then follows from the above that;

03¢ -03p=(r:-12)¢ (14)
Hence equation (10) can be written

(i2-22)p=0 (15)
where the vector field andv commute from the construction, i.e[u,v] =uw-w=0.

Conversely if the space-timéR“,g)of general relativity possesses a space-like veiottat u and a space-like

vector fieldv such that they commute, then there exists a sysfecoordinates satisfying equation (11). It then
follows that equation (15) reduces locally to a dimaensional wave equation (9). Since equation {[@®)lves lie
derivatives and we seek an equation for the gridmital potentialy, we propose the following definition.

Definition: The space-time( R, g) of general relativity is said to be radiativethiere exists two vector fields

(time-like) andv (space-like) inR* such that
(i2-12)g=0 (16)

It is obvious from the above definition that theotwector fields commute, moreover there exist adesysof
coordinates satisfying equation (11). In this syst# coordinates equation (16) becomes;

039, =039, =0 17)
The above equation has general solution
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0, (X%, x°) (18)
=h, (x° —xs,xl,x2)+ f, (x°+ x3,x1,x2)

Here h andf are two symmetric tensors of the same dimension, d&s representing the progressive radiating
gravitational potential anéithe receding counterpart. For an acceptable palysaiution we setf , =0in which

case equation (18) becomes;
U (xo,xl,xz,xg) =h,, (x°— x3 xtx 2) (19)

It is worthy of note that all known exact solutidnsluding plane waves as well as approximate gwmistsatisfy the
given definition.
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