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ABSTRACT

In this paper, an attempt has been made to proaidapproximation method for the analysis of
fluid flow. The steady flow of a noniviscous corspiigle fluids were examined and it is
discovered that uniqueness of solution requires tha —p (pressure) be convex for subsonic
flow. For there to be flow, mass and momentum ipeisbnserved.

Key words: fluid flow, compressible fluids, subsonic flowfreamlines flow, mass and
momentum.

INTRODUCTION

The equations of hydrodynamics are highly nonlinead difficult to solve. It is therefore
necessary to study an associated extremum prisoigiech, if they exist, can by used to provide
an approximation method for the analysis of fluahs.

The unsteady pseudoplastic flow near a moving wa#l investigated by Bird 1959, and this has
resulted in much interest on non-Newtonian flowassanien et al, 1998 studied fluid flow and
heat transfer over a non-isothermal stretchingtsfidey showed that friction and heat transfer
rate exhibit strong dependence on the fluid paramaet

In this paper, the steady flow of a noniviscous poessible fluid was examined. The problem of
identification of the basic quantit)/ (U, ¢) related to the generalized Hamiltoni&h(x, ug,)

is a little less obvious that in some of the eelpplication, and so we shall develop the
canonical equations from the familiar equationdgdrodynamics. We considered the extreme
property of T (@), the trial function and examine the variationsvefocity hence we see that
uniqueness of solution requires that -be convex for subsonic flow equation. Hence theare

to be flud flow, mass and momentum must be congerve
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Three-D laminar flow problems using a control vokimpproach was solved by Sharma and
Patankar 2005. The key feature of this approac¢hat the computational overhead to solve for
the motion of rigid particle is very small. Therdwulation is convenient for handing irregular
geometries, Glowinski et al, 2001 discussed a nuetlogy that allows the direct numerical
simulation of incompressible viscous fluid flow pawoving rigid bodies. The method is
particularly well suited to the direct numericahsilation of particulate flow, such as the flow of
mixtures of rigid solid particulates and incompiklsviscous fluids, possibly non — Newtonian.
They presented the results of various numericabexyents, including the simulation of store
separation for rigid airfoils and of sedimentatamd fluidization phenomena in two and three
dimensions.

Decheng Wan and Stefan Turek,2007 investigated NoateSimulation of particulate flows
using a new moving mesh method combined with thisignid fictitious boundary method. The
fictitious boundary method for the implicit treatmeof Dirichlet boundary conditions with
applications to incompressible fluid was highlyates.

Blasco Jordi et al, 2009 developed a fictitious Domaarallel numerical method for direct
numerical simulation of the flow of rigid particl@s an incompressible viscous Newtonian fluid.
A simultaneous direction implicit algorithm is erapéd which gives the model a high level of
parallelization. The projection of fluid velocignto rigid motion on the particles is based on a
fast computational of linear and angular momenta,

Feng Zhi and Efstathios ,2009 developed a methoddiwing the heat transfer equations for the
computation of thermal convection in particulasMs. The numerical method makes use of a
finite difference method in combination with thenmarsed Boundary (IB) method for treating
the particulate phase.

M athematical Formulation
In the study of flow of a noniviscous compressithled in the absence of external forces, the
basic equations of conservation of mass and momeata

div(pV) = 0 1)
(V.grad)=-1/p grad P 2)

wherep = density, V = velocity ang is the pressure. Pressupeis a function ofp and entropy
Thus

p=9(0.S) 3)

conservation of entropy is expressed by
V.grad S=0 (4)

If entropy, S is constant everywhere in spaces litdmentropic hengeis a function of density
only. Flows could be irrotational meaning

Curl V=0 (5)
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Equation (2) can be written as

% grad V? +% grad P =0 or% vz + f%p = constant for a streamiline (6)
Sincep is a function ofp, equation (6) could be written as
fo)=3v>=0 )
But = —f'(p) = C? ®
where C = speed of sound in the fluid. Integragngation (8) yields
p=f (p) — pf (p) — 5pV? )

Bateman (1959) considered the case of homentrioptational flow in two dimensions. In two
dimensions/ = (V;, V,) and equation (5) becomes

aVx aVx

oy ox 0 (10)

To satisfy equation (10), the velocity poten@iatould be introduced such that

o9 _ o9 _
= g, =W (11)
Or gradp =V (12)

Equation (1), (7) and (12) could be rewritten as

_0H

-1 oH
grade = SU= 5, (13)
o 0H
-divu =0 = (24)
p2(p) —5U% =0 (15)
whereU =p" (16)

Densityp is a function of(]% + U%) 1/2 = U only and from equation (13) and (14), it follows

that the generalized Hamitoni&his a function olU only
Introducing

H (U{p}) = Ap) (17)
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then we can show by using equations (13) and (15)
Qp) + pf (p) = f(p) = 5pV? (18)

This is Hamiltonian which appears in the potent{&l,¢) of the variational problem. If we
assume homogeneous boundry conditions, we find that

U,@) = /{U.grad ¢ - f (p) — 5pV?} da (19)
=/{(~=divi)p - f -2 pv?}da (20)
whereA is some sufficiently simple region with boundaw
The functionall(¢,), wllere @, denotes a trial function,is given by
T(pe) = I{U(9e), ¢} (21)
whereU(p;) = p; grad ¢ = p:V; (22)

This is the solution of equation (13). Hence, frequation (9)

Tt = /e (grad ) Yy = f(p) = 3 piVi ) dA
=1{5pVZ - f (p}dA = —/p(p,)dA (23)

Density p; is a function of the trail functiop,
The functionM(U;), where U, denotes a trail function given by

MU, =1 {Uy¢U} (24)
whereg (U,)is the solution of equation (14), which actually imposes the constraint.

divU; =0 (25)
From equation (20)
MU, = = f (o) + SpiV2}dA = = fp(p) + pV2YdA (26)

It implies thatp, and V, are function of the trail functiod; subject to the constraidiv U, = 0
in A.

The variations o/, andV could be expanded by examining the extremum ptppél(¢,)
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1 22
Tlpo) = T9) = 5 € /81 8Vig2-0VidA + - (27)

wheree 6V, = V; — V;
CONCLUSION

Considering the discussion of Sewell (1963), wedaliered that uniqueness of solution requires
that -p be convex. This is ensured if

3%p
aVian

0V, v <0 (28)

From equation (9)

62p ViVj

vV, =p( oz dij) (29)

Hence, equation (28) is satisfied by subsonic flowthis case, we have the minimum principle

T(p) <T(¢:) (30)

for ¢, sufficiently close to the exact solutign
For subsonic flow, the complementary maximum pplecis given by

MU < MU) =T(p) (31)
For U, sufficiently close to the exact soluti€h

We have considered the extremum principle§ (@) and the variations of velocity, andV.
The associated complementary variational principlegh regard to the equations of
compressible fluid flow was highly considered.
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