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ABSTRACT 
 
A model has been developed to simulate the fluid dynamics that occur when a nanodroplet falls onto a flat substrate. A 
numerical solution of the Navier–Stokes equation using a volume-of-fluid (VOF) technique was used to model 
deformation. Dynamic contact angle during droplet impact was obtained by molecular kinetic theory. This dynamic 
contact angle was then implemented in the numerical model used to simulate the process. The spreading behavior was 
analyzed for wettable, partially wettable and nonwettable surfaces. 
 
Keywords: nanodroplet impact, free surface flows, molecular kinetic theory, numerical simulation. 

_____________________________________________________________________________ 
 

INTRODUCTION 
 
Spreading of nanodroplets on solid surfaces is important in a wide variety of applications, including ink jet printing, 
DNA synthesis and etc [1-6]. Development of theoretically computational models, which can predict nanodroplet 
deposition, can potentially reduce the cost of the development of new process considerably. Computational fluid 
dynamics (CFD), based on the continuum Euler and Navier– Stokes equations for inviscid and viscous flow modeling, 
respectively, is the most common tool to simulate microdroplet impact on solid surface [7, 8]. 

 

Luckily, above 10 molecular diameters, systems can very often be described with continuum theory, which 
statistically averages the single interactions [9]. Deviations from the predictions of classical continuum theory have 
been observed for a liquid confined in a space smaller than 10 molecular diameters, especially in the microscopic layer 
in the vicinity of the moving contact line [9].  

 

In many applications where the phenomena of interest range from macro to nanoscale, the continuum-based equations 
(Euler/Navier–Stokes) will still be valid in large parts of the computational domain but continuum approaches fail to 
describe nanofluidic flows where the continuum equations have essential singularities, as in the moving contact-line 
problem [10,11]. 

 

For characterizing the spreading behavior of a nanodroplet, it is important to report the contact angles around the 
contact line. The development of new methods will enable the CFD simulation of larger domains which are subject to 
an interplay between the macroscopic dynamics of the bulk flow and microscopic and molecular kinetic (MK) at 
molecular scale around the fluid–solid contact line.  
 
A literature survey carried out by the author indicated lack of published data on the nanodroplet impact simulation by 
computational fluid dynamics and molecular kinetic theory (CFD-MK).  
 
There exists a considerable literature describing CFD models of microdroplet impact on a solid surface [7, 8, 12,13]. 
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In this research, a novel simulation by computational fluid dynamics and molecular kinetic theory (CFD-MK) is 
presented. The molecular contact angle couples with the continuum model by performing molecular dynamics contact 
angle around at the contact line of the macroscopic CFD solver, which is engaged to advance the simulation. 
 
NUMERICAL METHOD 

 
1.1. Governing Equations 
A schematic of a droplet impact on a surface is shown in Fig. 1. The mathematical description of the problem is 
formulated subject to these assumptions: 

 

(i) the droplet is spherical prior to impact, (ii) ) the system (above 10 molecular diameters) can be described with 
continuum theory, which statistically averages the single interactions [9], (iii) the liquid is incompressible and 
Newtonian, (iv) the liquid density, viscosity and surface tension are constant, (v) the flow during the impact is laminar 
[7, 8, 15], (vi) a single velocity characterizes fluid motion prior to the impact (which precludes considering an internal 
circulation of the fluid within the droplet prior to the impact), and (vii) the influence of the surrounding gas on the 
liquid during the impact is negligible (which implies that viscous stresses at the free surface are assumed to be zero). 
 
The equations of conservation of mass and momentum in the liquid may then be written as [7]: 
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where V
r

represents the velocity vector, P the pressure, ρ  the liquid density, τ~  the shear stress tensor, g
r

 the 

gravitational acceleration, and bF
r

 any body forces (per unit volume) acting on the fluid. 

 

The flow equations have been written in an Eulerian frame of reference, and thus a solution of these equations must be 
coupled with some methodology for following the deforming liquid-gas interface. The VOF technique is applied to 
track the time evolution of the liquid free surface. A color function, f, is introduced to represent the volume fraction of 
liquid in a computational cell. If the control volume is filled with liquid alone, the color function is unity. When only 
air exists in the control volume, f takes on a value of zero. When both liquid and gas are present, the color function 
value lies between zero and one. The advection of function f is governed by [7]: 
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The volume force, bF
r

, appearing in Eq. (2), consists of the gravitational force and the surface tension force which is 

given as [14] 
 
                                  (4) 
 
 

by means of the CSF model. In this equation, n̂  represents a unit vector normal to the interface directed into the 

liquid, γ  represents the liquid-gas surface tension and k the total curvature of the interface, δ  is the Dirac delta 

function, and x
r

 and y
r

 are position vectors. The integration is performed over some area of free surface S. k and n̂  

are geometric characteristics of the surface, and may be written in terms of  f: 
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Expressed as a body force, surface tension is then incorporated into Eq. (2) via the term bF
r

 . To reduce the size of the 

computational domain, symmetric boundaries are applied when possible. Along a symmetric boundary, fluid velocity 
obeys slip and no penetration conditions. Boundary conditions are also imposed at the liquid free surface, denoted by 
subscript s. The boundary condition on velocity is the zero shear stress condition: 
 

0s =τ                                                                               (6) 

 
and since the surface tension force has been included in Eq. (2), the boundary condition on pressure reduces to: 
 

0ps =                                                                              (7) 

 
A boundary condition for f is unnecessary since f is a Lagrangian invariant. Initial condition for f is defined by 
specifying a droplet diameter Do. Fluid velocity within the droplet is characterized by a single impact velocity and the 
initial pressure within the droplet is defined by the Laplace equation: 
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1.2. Molecular-kinetic (M-K) theory 
The molecular-kinetic theory of wetting, as developed by Blake & Haynes [15], uses the theory of absolute reaction 
rates and asserts that the essential contact line motion takes place by jumping of molecules along the solid surface 
from the liquid to the vapour side of the contact line. According to this theory, the macroscopic behaviour of the 
wetting line depends on the overall statistics of the individual molecular displacements, which occur within the 
three-phase zone where the fluid– fluid interface meets the solid surface. The molecular-kinetic theory postulates that 
the entire energy dissipation occurs at the moving contact line. The wetting line moves with velocity VCL, and the 
liquid exhibits a dynamic advancing contact angle θ such that θ >θE, where θE is the equilibrium contact angle. 
According to this theory, the velocity of the contact line is determined by the frequency κ and length λ of the individual 
molecular displacements that occur along its length. In the simplest model, these displacements take place at the 
adsorption sites on the solid surface. The length of the molecular displacement λ is influenced by the size of the liquid 
molecules and depends strongly on the spacing of the successive adsorption sites on the target surface. For the liquid 
molecules moving forward, the frequency of molecular displacement is κ+, and for those moving backwards, the 
frequency is κ−. The contact line velocity is then given by VCL =(κ+ − κ−)λ=κλ, where κ is the net frequency of 
molecular displacement (jump frequency). For the contact line to move, work must be done to overcome the energy 
barriers to molecular displacement in the preferred direction. This work is done by the surface tension force, which is 
σ(cos θE − cos θ), as expressed per unit length of the contact line. The work done by this force is entirely within the 
contact point zone and any dissipation outside of this zone is neglected in the model. Combining these ideas and using 
Frenkel–Eyring activated rate theory of transport in liquids, the following relationship between θ and VCL was 
obtained by Bayer and Megaridis [16]: 
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where k, T denote, respectively, Boltzmann’s constant and the absolute temperature. The quantity n is the number of 
adsorption sites per unit area on the surface and is related to λ by λ∼n −1/2. the solid/liquid interaction frequency κs is : 
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Where -∆GS is the contribution arising from the retarding influence of the solid surface, NA is Avogadro’s number and 
h stands for Planck’s constant [16]. 
 
2. Numerical Procedure 
Figure 2 illustrates a typical mesh where velocities are specified at the centre of cell faces and pressure at each cell 
centre. Equations (1) and (2) are solved with a two-step projection method, in which a forward Euler time 
discretization of the momentum equation is divided into two steps: 
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In the first step, using Eq. (11), an interim velocity V ′
r

is computed explicitly from convective, viscous, gravitational 

and body force accelerations of the known field nV
r

 for a timestep t∆ . In the second step, using Eq. (12), nV
r

 is 
projected onto a divergence-free velocity field. Combining Eq. (12) with Eq. (1) at the new time level (n+1) yields a 
Poisson equation for pressure: 
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The RHS of Eq. (11) is discretized according to the conventions typical of the finite volume method. Integrating Eq. 

(11) over a control volume j,iΩ  yields: 
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Applying Gauss' theorem to convert the first two volume integrals on the RHS to integrals over the control volume 

surface j,iS  and assuming that the other integrands are constant throughout j,iΩ , Eq. (14) becomes: 
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where Sn̂  is the unit outward normal to j,iS . 

 
Following algorithm advances the solution by one timestep. Given velocity, pressure, and volume fraction fields at the 
time level n : 

1. evaluate V ′
r

 using Eq. (11) 

2. solve Eq. (13) implicitly for 1nP + , incorporating boundary conditions on P 

3. evaluate 1nV +
r

 using Eq. (12) 

4. apply boundary conditions on 1nV +
r

 
5. evalute θ from molecular-kinetic theory by using Eq. (9) 

6. evaluate jin ,

r
 and n̂  from θ  

7. evaluate a new fluid volume distribution f n+1  using Eq. (3) and obtain the new shape of  liquid-gas free surface 
using Youngs' algorithm [17] 

8. reapply boundary conditions on 1nV +
r

 
 
Repetition of these steps allowed advancing the solution through an arbitrary time interval. The computational domain 
encompassed the initial droplet and sufficient volume for the droplet spreading during the impingement. The mesh 
size was determined on the basis of a mesh refinement study in which the grid spacing was progressively decreased 
until further reductions made no significant changes in the predicted shape during the impact. The droplet was 
discretized using a computational mesh, with a uniform grid spacing equal to 1/30 of the droplet radius. Numerical 
computations were performed on a Pentium 4 computer. Typical CPU times ranged from four to five hours.   
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RESULTS AND DISCUSSION 

 
We now present the results of simulations dealing with the spontaneous spreading of a nanodroplet on flat surfaces 
with different wetting characteristics. 
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Figure 3 shows images from our simulation at various times for the dynamic spreading of a 6 nm droplet on wettable 
surface. In addition figure 4 and 5 show images for partially wettable and non-wettable surfaces where the diameter 
(D0) of the argon nanodroplet was 6 nm and the initial velocity(V0) 1.25ms−1. 

 

Based on the images presented in figures 3 and 4, and the temporal evolution of spreading diameter in figure 5, the 
overall spreading process can be divided into two stages: an advancing stage during which the droplet base expands 
and the spreading diameter increases rapidly to nearly its maximum value, followed by a receding stage [5, 6, 11] 
during which the droplet base shrinks, i.e. the contact diameter decreases. The spreading behavior during these two 
stages is well captured by simulations. For the non-wettable surface, the receding stage is followed by the droplet 
bouncing off from the surface. The bounce-off is also well captured by simulations, as indicated by a comparison of 
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the images in figures 3 and 4, and of the temporal variation of spreading diameters for the non-wettable case in figure 
5. 

 

Dividing maximum lateral spread diameter by the initial nanodroplet diameter results in the nondimensional 
maximum lateral spread ratio denoted by Dm/Do. The Dm/Do evolution was investigated in simulations by analyzing 
the images taken from the side. We measured the nondimensional maximum lateral spread ratio versus time for all of 
their simulation conditions. The results of simulations are shown in Figs. 6-8 where the measured variation of Dm/Do 
versus t  is plotted. The droplet diameter and impact velocity was held constant. The surface wetting characteristics, 
however, was changed. the value of θ0 was 20°, 74° and 135°, respectively. 
 

CONCLUSION 
 
We have developed a CFD-MK (computational fluid dynamics and molecular kinetic theory) model of free surface 
fluid flow and applied it to simulating the impact of a nanodroplet onto a flat surface. The volume-of-fluid (VOF) 
technique is used to track the free-surface of the liquid. Dynamic contact angles are applied as a boundary condition at 
the liquid – solid contact lines and evaluated by molecular kinetic theory equation. We simulated impact of argon 
nanodroplets onto wettable, partial wettable and nonwettable surfaces. 
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