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ABSTRACT

Dynamics of an SEI model with acute and chronic stages were studied with mass action incidence by Yuan and Yang
[11]. They formulated and analyzed it especially for the case of Hepatitis C virus. A reinvestigation of this model is
presented in this paper to study the stability with a general nonlinear incidence rate in chronic stage. Basic
Reproduction number Ry has been obtained. When R, < 1, the disease free equilibrium point is globally stable. In
case Ry > 1, there exist endemic equilibrium, for which stability is also discussed.
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INTRODUCTION

Hepatitis C has been characterized as a diseaaddmng chronic stage. It is a viral infection oétliver which was
first recognized as a separate disease in 197%vaagreviously referred to as ‘non A - non B’ hématThe most
common symptom of acute hepatitis is fatigue anddgée. However, the diagnosis of hepatitis C fBadilt due to
the fact that vast majority of cases are asympt@mmahat’s why this is called ‘the silent epidem|d7]. R Colina
and C. Aazmbuja [13] analyzed the evidence ofitleeeasing diversification of Hepatitis C. As theis no
evidence for partial or temporary immunity, the ralsdprepared are with consideration that the tdeateecovered
individuals come back to the susceptible classe@gwstudies are there for the treatment of epidemith different
kind of incidence rates which measures the tramsiter of susceptible to get infected [3,8,16,19,2Bjlinear and
standard incidence rates have been frequently isethssical epidemic models [7]. Simple dynamiésiese
models seem related to such functions. Severatréift incidence rates have been proposed by résearin
epidemic models. Different models for mutually mstecting species are also studied [12,14]. A madgirey-
predator with a generalized transmission function dnsaturated zone has been analyzed by Mehta f]a
Capasso and Serio [18] introduced saturated inceleate g (1)S into epidemic models. This is impottbecause
the number of effective contacts between infectivdividuals and susceptible individuals may satirat high
infective levels due to crowding of infective initluals or due to protection measures by the suistepndividuals.

Non linear incidence rates of the fof31’S® were investigated by Liu et. al. [20,21] A veryngeal form of non

linear incidence rate was considered by Derrick &mabssche [23]. For acute and chronic states, Vewy
investigations have been appeared. Yuan and Yakjgsfddied it with mass action incidence. Globalgsis of an
epidemic model with acute and chronic stages ipgsed and analyzed by Luo and Xiang [5]. In anotkeent
contribution the dynamical behavior of an SEI modedhvestigated by Luo and Xiao [4]. They haveuassd that
acutely infected mass has the inhibition effecthdf susceptible individuals. Since the chronic ethgts for a
longer period, it must be responsible for this d®arnn the present paper we have reinvestigatetuel of Yuan
and Yang [11] with saturated incidence rate indhenic stage.
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2. The Mathematical Model:
Using the symbols, notations and basic assumptidrid0], the model we consider for reinvestigatican be

expressed as:

o pn-p1 - VY S_gsiqy
dt N (1+a,V) N
_— _B — y—V_S—dE—gE
dt N (1+a,V)N
di

—=¢E-(d+ K)I
pm (d+ k)
cii\t/ =kl -(d+a)V (2.2)
and for the total population
dN

=(b-d)N

o (P=a)

We consider the case b=d which implies that theufadion is stationary.

Setting N=1 and again using capital letters forabmpartments, we get the system as follows:

95 _pa-s-er—Y )stav

dt 1+a,V
dE yVv

— =Bl +——)S-(b+¢)E
g B gy ST 0re)
dl

— =¢eE-(b+ K)I

ot (b+k)

d—v—kl -(b+a)V

dt

With initial conditionsS(0)= § , E(OF & ,1(0F |, V(OF ¥

As S+E+I+V=1, replacing E=1-S-I-V and ignoring dEfale get the reduced system
dS

—=b(@-S I Sta Vv

G =P S Bl sk
dl =g(1-S- 1- V)= (b+ k)l

dV -(b+a)V (2.2)

Set Z={(S,I,V) € R: $>0, 0, V>0 and S+I+\< 1}. Clearly the set Z is an invariable set.

3. Equilibrium pointsand stability:
The system (2.2) has a disease free equilibriumt 5i(1, 0, 0) and if the basic reproduction numbgisR1, an
endemic equilibrium point P* (S*, I*, V*) exists vene

S*:1_[(b+k)(b+0(+s)+80(]l* = k %
e(b+a) b+a
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and I* is a positive root of the quadratic equation

[(b+k)(b+a+e)+ea] , [(b+k)(b+a+eg)+ea], B
Bagk (bra) 1=+ (b+ o) {{b +0) +\K} Hb +K)(b +9 ak —Beak]l

+(b+k)(b+e)(b+a)-e@(b+a)+yk)=0

(3.1
which has been obtained by setting the time deviestof (2.2) equal to zero. Here the basic repctdn number
Ryis defined as

__ EB(bra)+ky] _ Be N key
° (b+a)Ee+b)(b+ k) €+ b)(br k) (bro e+ b)(br K

The first tem in the sum represents a contributiiothe reproduction number due to secondary irdastgenerated
by an infective with acute hepatitis C.

4. Dynamical behavior:
The variation matrix of the system at the disease équilibrium point is

b B -y+a
J=|—¢€ —-€+b+k) -¢
0 K —(b+a)

The characteristic equation of it can be written as
A®+AA?+BA +C =0 where
A =(a+3b+e+k),

B=[(a+b)(2b+e+k)+ (k+ b)€+ b)-PBe]
C=(a+b)(k+ b)g+ b)-eP(a+b)+ ky}

Here A > 0 is obvious. WhengR 1, then C>0 which further implies
(o +b)(k+b)E+ b)-eB @ + b)> 0 ie. (k+b)E+b)-ep>0

Hence B > 0. Now we calculate AB-C:
AB -C

=(a+3b+e+K)[(a+b)(2b+e+ k)+ (k+ b)e+ b)-Pe } [0+ b)(k+ b)é+ b)-e b+ by k}]

After simple algebraic calculations it reduces to

[(a+3b+e+k)(a+b)(2b+te+ k)+eky ]+ (2b+e+ k)[(k+ b)E+ b)Pe

which is > 0 as the last bracket is positive irecBsis < 1.

Hence by the Routh — Herwitz theorem the diseasedquilibrium point is locally stable fopR< 1 .
Lemma 4.1 (se€[10]). Assuming f : [0x) — R is bounded, k& L*(0,:0), then

|imsup‘j; K@)f (t-8)d6| <|fT [[K||, . . where 1= limsup|f() |

too

(0,) "
Theorem 4.2. When R <1, the disease-free equilibriurg(®, 0, 0) is globally stable.

Proof. Since, WhenR, < 1 the point Ris locally stable, it is sufficient to show th&} is attractive globally for R
<1. We note that the global attractiveness0$ Rquivalent to that of the disease-free equilior{1, 0, 0, 0) of

system (2.2).
The second equation of (2.2) yields
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dE
Pl Gl (1+ V)) (b+e)E

First we solve the comparative equation

< (B! (1+—VV)) (b +€)x , which gives

x(t) =E, (OOt 4 J-; (€] +ﬁ)x—(b+s)(t_s)ds
o

By the comparative principle, we have

. . t VV(t S) alb+e)s g
msupE(t)stqrpsu;jOBl(t )+(1+ V(i S))] d

4.1)
From Lemma 4.1 we have

!imsupE(t)sB limsup[l(t)+ Vt"msupV(t)]': ECOEIT
— 00 to oo o0
B

= IlmsupE(t)<

too

. Y . ‘
btllroro] supl(t)lrsTth%lTsupV(t) 4.2)

By the last equation of (2.2), we have
t

v(t) = ETONV, +k[ eIt -S)dS
0
Therefore,ltim supV(t)< ktlim SUpI(t)J' GRS
— 00 - 00 O

_ ko
= mltlm supl(t) (4.3)

By Substituting lim sup.,., E(t) of inequality (4.2) for the right side of theequality (4.3), we get

. B . vk
ItlmsupE(t)s €+bt|LTSUp|(t}F—(€+ b)(br o) IJmsupI(t (4.4)

By the second equation of (2.2), we obtain

t
I(t) =1 £~ *"5+ EI E(S)e “ S ds Therefore,

B

Itlmsupl(t)s <D

tIim sup E(t) (4.5)

By (4.4), we have

Be ek
limsupE(t)< [m ()+( + b)(b+a )(b+ k)t~

JimsupE(tF R limsup@)

(4.6)

By the inequality (4.6) and by,R 1, we have
I|msupE(t) 0 and so limE(tF

to o0
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By (4.3) and (4.5) we have
I|ml(t) =0 and so limV(t)= C

to o0

Therefore, From S(t)+E(t)+I(t)+V(t) =1, it followthat lim_,., S(t)=1.
Hence when §X1, the disease-free equilibriurg(®, 0, 0) is globally stable.

WhenR>1, C=(a+b)(k+ b)g+ b)-e{3(a + b)+ ky}<0, therefore the disease free equilibrium point is

unstable. In case R 1, to see the stability of the endemic point,find the variation matrix at the endemic point
P*(S*, I*, V¥)

y\/* \8*
~b-BI*- = -+
g 1+a,V* B L+a,v*) 2
J*= —€ —(e+b+k) —€
0 k ~(b+a)

The characteristic equation of the matrix J* is

o W sy YKS® =
(=b=pI*-7 " NI(b +a+MN)(e+b+k +A) +ek] +g(b +a+NBS +(1+O(1V*)2+ ok]

On simplifying we get this equation as
A2 +EA?+ FA + G= O where

E=pl*+— t(a+e+30+K)>0
T+ o,V ™

_ W W*
F=(a+b)@I*+ +e+2b+Kk)+ (B1*+ +b)(b+€+k)—eBS*+ke
(a+b)@ 1+a,V* )+ 6 1+a,V* ) )=eb

1

— * VV* - * * W* - \8*
G = (o + b)[(B! +1+0(1V* +b)(b +& +k) —eBS*] +k[(a +b) + I +1+0(1V* (1+0(1V*)2]

Note that the value of G can be rearranged as

G=(a+b)p(b+e+k)+ek +(B* +— Ly ab)(b +e+) +&) ~8+ Bab) +_b(1+;<vw)

= @+D)(k+ Db+ &)+ B1*+ L yi(a+b)(b +e+k) +ek} ~SH fab) +— L3

v (1+0( V*)
=@+ Ty (00 +2+40) +8 {( a-D)(k )b +9 SR a) +1+—v*)3]
ky

this sum, if S*< 1/R the factor[(a +b)(k + b)(b+¢€)—-eS*{B(a +b) + }] is positive and so is

(1+0,V%)
G. Thus we conclude the above in the following thea

Theorem 4.3;: When R > 1, the endemic equilibrium point P*(S*, I*, Vi a stable node or focus when G > 0 and
EF-G > 0. P*is unstable node or focus when G « B&-G < 0. P* is center of the linear system if&F=0.
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