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ABSTRACT  
 
The present paper mathematically establishes that magnetothermohaline convection of the Veronis type in porous 
medium cannot manifest as oscillatory  motion of growing amplitude  in an initially bottom heavy configuration if 
the thermohaline Rayleigh number Rs , the Lewis number τ, the Prandtl number ��, the porosity �, satisfy the 

inequality Rs ≤  
���
�� +  ���

�  �
�′��� , where ��  and �′ are constants which depend upon porosity of the medium. It 

further establishes that this result is uniformly valid for the quite general nature of the bounding surfaces. A similar 
characterization theorem is also proved for magnetothermohaline   convection of the Stern type. 
_____________________________________________________________________________________________ 
 

INTRODUCTION 
 

The thermohaline convection problem has been extensively studied in the recent past on account of its interesting 
complexities as a double diffusive phenomenon  as well as its direct relevance in many problems of practical interest 
in the fields of oceanography, astrophysics, limnology and chemical engineering etc. [1]. Two fundamental 
configurations have been studied in the context of thermohaline convection problems, one by Veronis [2], wherein 
the temperature gradient is destabilizing and the concentration gradient is stabilizing; and another by Stern [3], 
wherein the temperature gradient is stabilizing and the concentration gradient is destabilizing. The main results of 
Veronis and Stern for their respective configuration are that both allow the occurrence of a steady motion or an 
oscillatory motion of growing amplitude, provided the destabilizing temperature gradient or the concentration 
gradient is sufficiently large. In case of Veronis’ configuration, oscillatory motions of growing amplitude are 
preferred mode of onset of instability whereas in case of Stern’s configuration, stationary convection is the preferred 
mode of onset of instability and these results are independent of the initially gravitationally stable or unstable 
character of the two configurations. Thus thermohaline configurations of Veronis and Stern type can further be 
classified into the following two classes: 
 
(i) the first class, in which thermohaline instability manifests itself  when the total density field is initially bottom 
heavy, and 
(ii) the second class, in which thermohaline instability manifests itself when the total density field is initially top 
heavy.   
 
Banerjee et al [4] derived a characterization theorem for the nonexistence of oscillatory motions of growing 
amplitude in an initially bottom heavy configuration of Veronis type. The essence of Banrjee et al’s theorem lies in 
that it provides a classification of the neutral or unstable thermohaline convection configuration of the Veronis and 
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Stern types into two classes, the bottom heavy class and the top heavy class, and then strikes a distinction between 
them by means of characterization theorems which disallow the existence of oscillatory motions in the former class. 
 
In recent years, many researchers have shown their keen interest in analyzing the onset of convection in a fluid layer 
subjected to a vertical temperature gradient in a porous medium [5,6,7,8,9,10,11]. The extension of these two 
important hydrodynamical theorems to the domains of convection in porous medium, due to its importance in the 
prediction of ground water movement in equifers, in the energy extraction process from the geothermal reservoirs, in 
assessing the effectiveness of fibrous insulations, drying of foods or other natural minerals and in nuclear 
engineering, is very much sought after in the present context. This paper, which mathematically analyses the 
hydrodynamic thermohaline convection-configuration of the Veronis and the Stern types in porous medium wherein 
a uniform magnetic field parallel to gravity is superimposed, may be regarded as a first step in this scheme of 
extended investigations. 
 
The present paper mathematically establishes that magnetothermohaline convection of the Veronis type in porous 
medium cannot manifest as oscillatory  motion of growing amplitude  in an initially bottom heavy configuration if 
the thermohaline Rayleigh number Rs, the Lewis number τ, the Prandtl number p�, the porosity �, satisfy the 

inequality Rs ≤  
�π�
�� + ��π

�  τ

�′��� , where P� and E′ are constants which depend upon porosity of the medium. It 

further establishes that this result is uniformly valid for the quite general nature of the bounding surfaces. A similar 
characterization theorem is also proved for magnetothermohaline   convection of the Stern type. 
 
1. FORMULATION OF THE PROBLEM 
An infinite horizontal porous layer filled with a viscous fluid is statically confined between two horizontal 
boundaries z = 0 and z = d, maintained at constant temperatures T0 and T1 (< T0 ) and solute concentrations S0 and 
S1(< S0) at the lower and upper boundaries respectively in the presence of a uniform vertical magnetic field acting 
opposite to the direction of gravity. It is further assumed that the saturating fluid and the porous layer are 
incompressible and that the porous medium is a constant porosity medium. The problem is to investigate the 
stability of this initial stationary state.  
 
Let the origin be taken on the lower boundary z = 0 with the positive direction of the z-axis along the vertically 
upward direction. Then the basic hydrodynamic equations that govern the problem are given by: 
 
Equation of Continuity ��
�� +  � 

�! +  �"
�# = 0        (1) 

 
Equations of Motion 1ϵ ∂u∂t + 1ϵ� +u ∂u∂x + v ∂u∂y +  w ∂u∂z1 − µ34πρ5 +H� ∂H�∂x + H� ∂H�∂y + H7 ∂H�∂z   1 

= − 
8

89 + �
ρ: + µ;|=|�

>πρ:     1 − 
ν

?� u                                                            (2) 

�
�

� 
�@ + �

�� Au � 
�� + v � 

�! +  w � 
�#B − µ;�πρ: AH� �=��� + H� �=��! +  H7 �=��#   B      

     = − 
8

8C + �
ρ: +  µ;|=|�

>πρ:     1 − 
ν

?� v                 (3) 

 �
�

�"
�@ + �

�� Au �"
�� + v �"

�! +  w �"
�# B − µ;�πρ: AH� �=D�� + H� �=D�! + H7 �=D�#   B      

    = − 
8

8E + �
ρ: +  µ;|F|�

>πρ:     1 − 
ν

?� w − 
ρ

ρ: g                                             (4) 

 
Equation of Heat Conduction      E �G

�@ + u �G
�� +  v �G

�! + w �G
�# = κG ∇�T       (5) 

 
Equation of Mass Diffusion  E′ �J

�@ + u �J
�� +  v �J

�! + w �J
�# = κJ ∇�S       (6) 
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Equation of Magnetic Induction  

 ϵ �=��@ + u �=��� +  v �=��! + w �=��#  = H� ��
�� + H� ��

�! +  H7 ��
�# +ϵη∇�H�   (7) 

 

 ϵ �=��@ + u �=��� +  v �=��! + w �=��#  = H� � 
�� + H� � 

�! + H7 � 
�# +ϵη∇�H�   (8) 

 

 ϵ �=D�@ + u �=D�� +  v �=D�! + w �=D�#  = H� �"
�� + H� �"

�! +  H7 �"
�#  +ϵη∇�H7   (9) 

 
 
Equation of Solenoidal character of the Magnetic Field  
 

   
�=��� + �=��! + �=D�#  =0       (10) 

 
Equation of State  
 
 ρ =  ρ5[1+ α (T0−T) − γ(S0−S)],       (11) 
 
where u, v, w are the components of velocity in the x, y, z-directions respectively, H�, H�, H7 are components of 

magnetic field H in x, y, z-directions and  
�
ρ: + µ;|F|�

>πρ:   is the modified magnetohydrodynamic pressure. Further t, L, 

T, S, �, M�, µ3, ν, κG , κJ and  η, are, respectively, the time, the density, the temperature, the concentration, the 
porosity of the porous medium, the permeability of the porous medium, the magnetic permeability, the kinematic 
viscosity, the thermal diffusivity, the mass diffusivity and the resistivity; and α and γ are respectively the 

coefficients of volume expansion due to temperature and concentration variation . Here E =  ϵ + N1 − ϵO ρPQP
ρ:QR is a 

constant and E′ is also a constant analogous to E but corresponding to concentration rather than heat, where ρS, CS 
and ρ5, CV stand for density and heat capacity of the solid (porous matrix) material and fluid respectively. The suffix 
‘0’ denotes the values of the various parameters at some suitably chosen reference temperature T5  and 
concentration S5. 
 
The basic state is assumed to be quiescent state and is given by 

   W
Nu, v, wO ≡ N0, 0, 0Op         ≡   pNzOT        ≡  TNzOS         ≡  SNzONH�, H�, H7O ≡ N0, 0, HO
ρ         ≡  ρNzO YZ

[
Z\

                    (12) 

 
Thus the basic state solution on the basis of the basic state is given by 

W
Nu, v, wO = N0, 0, 0O

                   p + µ;|=|�
>πρ:     =   P = p5 −  gρ5  Nz + αβ#�

� − γδ#�
� O

T          =  T5 − βzS          =  S5 − δzNH�, H�, H7O = N0, 0, HO
ρ =  ρ5[1 +  α NT5 − TO  −  γNS5 − SO]

     
YZ
Z[
ZZ
\

    (13) 

 
Assume small perturbations around the basic state and let u′, v′, w ′, P′, θ′,ϕ′, h�′ , h!′ , h#′   denote, respectively, the 
perturbations in three components of velocity, pressure, temperature, concentration and three components of 
magnetic field intensity. Then the linearized perturbation equations are given by 
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��′
�� + � ′

�! + �"′
�# = 0,        (14) 

 
�
�

��′
�@ − µ;=

�πρ:  �bc′�#     = − 
�
ρ:

��′
��   − 

ν

?� u′ ,      (15)  

 
�
�

� ′
�@ − µ;=

�πρ:  �bd′�#     = − 
�
ρ:

��′
�!   − 

ν

?� v′ ,      (16) 

 
�
�

�"′
�@ − µ;=

�πρ:  �be′�#     = − 
�
ρ:

��′
�#   + gαθ′ −gγϕ′ − 

ν

?�  w ′ ,     (17) 

  E �θ′
�@  −βw ′ = κG ∇�θ′ ,        (18) 

E′ �f′
�@  −δw′=κJ ∇�ϕ′ ,        (19) 

                     ϵ �bc′�@      =   H
��′
�#  + ϵη∇�h�′ ,       (20) 

           ϵ �bd′�@     =   H
� ′
�#   + ϵη∇�h!′        (21) 

           ϵ �be′�@     =   H
�"′
�#   + ϵη∇�h#′        (22) 

and 
 

 
�bc′�� +  �bd′�! + �be′�#  =0.        (23) 

 
Now we analyze the perturbations  u′, v′, w ′, P′, θ′, ϕ′, h�′ , h!′  and h#′  into two-dimensional periodic waves. We 
assume, to all quantities describing the perturbation, a dependence on x, y, and t of the form 
 F′(x,y,z,t ) = F′′(z)exp[i(kx x+ky y) + nt],                                                           (24) 
 
where kx  and ky are the wave numbers along the x- and y- directions, respectively, and  

k = ijk�� + k!�k is the resultant wave number. Following the normal mode analysis,               Eqs. (14) – (23) thus, 

becomes  
 

ik�u′′ + ik!v′′ + 
l"′′
l#  = 0,        (25) 

 �
� nu′′ − 

µ;=
�πρ:  lbc′′l#   = − i 

?c�′′
ρ:  − 

ν

?� u′′,       (26) 

 
�
� nv′′ − 

µ;=
�πρ:  lbd′′l#   = − i 

?d�′′
ρ:  − 

ν

?� v′′,       (27) 

 �
� nw ′′  − 

µ;=
�πρ:  lbe′′l#   = − 

�
ρ: 

l�′′
l#   + gαθ′′ − gγϕ′′ − 

ν

?� w ′′,     (28) 

 

Enθ′′ − β w ′′ = κG A l�
l#�  − k�B θ′′,       (29) 

 

E′nϕ′′ − δ w ′′ = κJ A l�
l#�  − k�B ϕ′′,        (30) 

 
 

nϵ h�′′  = H
l�′′
l#  + ϵηA l�

l#�  − k�B h�′′  ,       (31) 

nϵ h!′′  = H
l ′′
l#  + ϵηA l�

l#�  − k�B h!′′  ,       (32) 

nϵ h#′′= H
l"′′
l#  + ϵηA l�

l#�  − k�B h#′′ ,       (33) 

and   ik�h�′′+ ik!h!′′+ 
lbe′′l#  = 0 ,       (34) 
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where       
�
�@ = n,  

��
��� +  ��

�!� = −k�      and    ∇�= 
l�

l#�  − k� .      (35) 

 
 
Now multiplying equations (26) and (27) by ik� and ik! respectively; adding the resulting equations and using Eqs. 
(25) and (34), we obtain 

− 
�
� n 

l"′′
l#  + 

µ;=
�πρ: 

l�be′′l#�  = 
�′′
ρ: k�+ 

ν

?� 
l"′′
l# .      (36) 

 
Now eliminating P″ between (28) and (36), we get 

Am
� + ν

?�B A l�
l#� − k�B w ′′= 

µ;=
�πρ: 

l
l# A l�

l#� − k�B h#′′ − k�jgαθ′′ − gγϕ′′k   (37) 

 
Also equations (29), (30), and (33) can be written as 

A l�
l#�  − k� − �m

κn B θ′′− 
β "′′ 
κn         (38) 

 

A l�
l#�  − k� − �′m

κo B ϕ′′= − 
δ"′′  
κo         (39) 

 

and   A l�
l#�  − k� − m

η
B h#′′      = − 

=
�η 

l"′′
l#       (40) 

 
Now using the following non-dimensional parameters  
 

a = kd, p∗ = 
#
l , r∗= 

κo
κn ,  p�= 

ν

κn , p�= 
ν

η
 , p�= 

?�l� , D∗= d l
l# , σ∗= 

ml�
ν

 , R∗= 
vαβl
κn ν  , RS∗= 

vγδl
κn ν  ,      Q∗= 

µ;=�l�
�πρ:ν η  ,  w∗= 

βl�
κn  

w′′ , θ∗= θ′′ , ϕ∗= 
β

δ
 ϕ ′′ and  h#∗= 

ηβl
=κn h#″  , 

 
we can write Eqs. (37) – (40) in the following non-dimensional form(dropping the asterisks for simplicity)  
 

    Aσ� + �
��B ND� − a�Ow  = −R a�θ + RSa�ϕ + Q DND� − a�Oh# ,      (41) 

 
 ND� − a� − E σp�Oθ  = − w,       (42) 
 

 AD� − a� − �′σ ��
τ

B ϕ = − 
"
τ
 ,       (43) 

 

 ND� − a� − σ p�Oh#  = − 
�
� Dw .         (44) 

 
The Eqs. (41)-(44) are to be solved by using the following boundary conditions: 
 
w = θ = ϕ = Dw = hz = 0 at z = 0 and at z = 1,     (45) 
 
           (when both the boundaries are rigid and perfectly conducting) 
 
w = θ = ϕ = D2w = hz = 0 at z = 0 and at z = 1.     (46) 
 
 (when both the boundaries are free and perfectly conducting) 
 
MATHEMATICAL ANALYSIS 

Theorem1. If R > 0, Rs > 0, Q > 0, 
τ���′�� ≤ 1, pr ≥ 0, pi ≠ 0 and Rs ≤ 

�π�
�� + ��π

�
τ

�′��� , then a necessary condition for 

the existence of nontrivial solution (w, θ, ϕ, h# , σ) of Eqs. (41) – (44) with boundary conditions (45) or (46) is that 
Rs < R. 
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Proof:   Multiplying Eq. (41) by w* (the superscript * here denotes the complex conjugation) and integrating the 
resulting equation over vertical range of z, we obtain 
 Aσ� + �

��B z w�5 * (D2 − a2) w dz = − Ra2 z w�5 *θ dz + Rsa
2 z w�5 *ϕ dz + Q z w�5 *D(D2 − a2)hz dz. (47) 

 
Making use of Eqs. (42) – (44) and the fact that w(0) = 0 = w(1), we can write  
 

−R a2 z w�5 * θ dz = R a2 z θ
�5  (D2 − a2 – Eσ*p1) θ* dz ,     (48) 

 

Rsa
2 z w�5 * ϕ dz = −RSa�τz ϕ�5  (D2 − a2 – 

�′σ∗��
τ

) ϕ* dz ,    (49) 

 

Qz w�5 * D (D2 − a2) hz dz =Q |w∗ND� − a�Oh#|5� −Q z Dw�5 * (D2 − a2) hz
 dz 

    = −Q z Dw�5 * (D2 − a2) hz
 dz 

 

= Q� z ND�  −  a�Oh#�5 ND�  −  a� − σ∗p�Oh#∗  dz.                                                                 (50) 
 
Combining Eqs. (47) – (50), we get  
 

  Aσ� + �
��B z w�5 * (D2 − a2) w dz =  Ra2 z θ

�5  (D2 − a2 – Eσ*p1) θ* dz  

 

− Rsa
2
 τ

 z ϕ�5  (D2 − a2 − 
�′σ∗��
τ

) ϕ* dz  

 

+ Qϵ z ND�  −  a�Oh#�5 ND�  −  a� − σ∗p�Oh#∗  dz.                                                                (51) 
 
Integrating the various terms of Eq. (51), by parts, for an appropriate number of times and making use of either of 
the boundary conditions (45) or (46), it follows that  
 Aσ� + �

��B z N|Dw|� +  a�|w|�O dz�5  = Ra2z N|Dθ|� + a�|θ|� +  Ep� σ∗|θ|�O dz�5    

− Rsa
2
 τ

 z A|Dϕ|� + a�|ϕ|� +  �′σ∗��
τ

|ϕ|�B  dz�5               

− Qϵ [z |ND�  −  a�O hz|��5  dz + p�{∗ z N|Dh#|� + a�|h#|�O dz�5 ].                              (52) 
 
Equating the real and imaginary parts of both sides of Eq.(52) and cancelling σ i (≠0) throughout from the imaginary 
part, we get 
 Aσ|� + �

��B z N|Dw|� +  a�|w|�O dz�5  =  Ra2 z N|Dθ|� +  a�|θ|� +  Ep� σ}|θ|�O dz�5    

− Rsa
2
 τ

 z A|Dϕ|� + a�|ϕ|� +  �′σ|��
τ

|ϕ|�B  dz�5      − Qϵ [z |ND�  −  a�O hz|��5  dz  + 

p�σ} z N|Dh#|� + a�|h#|�O dz�5 ],                                                                                      (53) 
 
and  
 

 
�
� z N|Dw|� + a�|w|�O dz�5  =  − R a2 E p�  

 z |θ|� dz�5  + Rs a
2
 E′p� z |ϕ|� dz�5  

+ Qϵp� z N|Dh#|� + a�|h#|�O dz�5  .                                              (54) 
 
We write Eq. (53) in the alternative form  
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Aσ|� + �
��B z N|Dw|� +  a�|w|�O dz�5  =  Ra2 z N|Dθ|� +  a�|θ|�O dz�5                   − Rs a

2
 τ

 

z N|Dϕ|� + a�|ϕ|� O dz�5  − Qϵ z |ND�  −  a�O hz|��5  dz  + σ}[Ra� E p� z |θ|� dz�5 − RS a� E′p� z |ϕ|� dz�5  −
Qϵp� z N|Dh#|� +  a�|h#|�O dz]�5          (55) 
 
and derive the validity of the theorem from the resulting inequality obtained by replacing each one of the terms of 
this equation by  its appropriate estimate. 
 
We first note that since w, θ,  ϕ and hz satisfy w(0)=0=w(1), θ(0)=0 =θ(1),  ϕ (0)=0 = ϕ (1) and hz (0) = 0 = hz (1), 
we have by the Rayleigh- Ritz inequality [12] 
 

   z |Dw|��5  dz   ≥     ~� z |w|��5  dz                (56) 
 

   z |Dθ|��5  dz   ≥      ~� z |θ|��5   dz                (57) 
 

   z |Dϕ|��5  dz  ≥       ~� z |ϕ|��5  dz                (58) 
 

   z |Dh#|��5  dz  ≥      ~� z |h#|��5  dz                (59) 
 
Utilizing inequality (56), we have 
 

 z N|Dw|� +  a�|w|�O dz�5    ≥    (~� + ��O z |w|��5  dz.               (60) 
 
Since σ} ≥ 0, we have 
 

     
σ|�  z N|Dw|� +  a�|w|�O dz�5  ≥ 0                               (61) 

 
Multiplying equation (42) by θ* throughout and integrating the various terms on the left hand side of the resulting 
equation, by parts, for an appropriate number of times by making use of the boundary conditions on θ, we have from 
the real part of the final equation 
 

  z  N|Dθ|� + a�|θ|�Odz�5  + σ} E p� z |θ|��5 dz =Real part of z w�5  θ* dz  

≤ �z w�5  θ∗ dz� 
       ≤ z |w θ∗|�5  dz 

≤ z |w|�5  |θ∗| dz 

≤ z |w|�5  |θ| dz 

≤ �z |w|��5  dz��/� �z |θ|��5  dz��/�
 , 

(Using Cauchy- Schwartz inequality) 
 
and combining this inequality with the inequality (57) and the fact that σ} ≥ 0, we get 

(~� + ��O z |θ|��5  dz   ≤ �z |w|��5  dz��/� �z |θ|��5  dz��/�
 

 
which implies that 

 �z |θ|��5  dz��/�
  ≤ 

�
Nπ����O �z |w|��5  dz��/�

,     (62) 

 

and thus z  N|Dθ|� + a�|θ|�Odz�5  ≤ 
�

Nπ����O z |w|��5  dz .                             (63) 

 
Utilizing inequality (58), we have 
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Rs a
2
 τ

 z N|Dϕ|� + a�|ϕ|� O dz�5   ≥  Rs a
2
 τNπ� + a�O z |ϕ|�dz�5  

≥ 
τ Nπ�� ��O

�′ ���  [
�
� z N|Dw|� +  a�|w|�O dz�5  − Qϵp� z N|Dh#|� +  a�|h#|�O dz�5 ]  (using Eq. (54)) 

≥ 
τ Nπ�� ��O�

�′ ���   z |w|� dz�5  − Qϵp2 z N|Dh#|� +  a�|h#|�O dz�5  (using Eq. (56))               (64) 

 
Further, since hz (0) = 0 = hz (1), we have 
 

 z  |Dh#|�dz�5 =  − z h#∗D�h#dz ≤  �− z h#∗D�h#dz  �5 ��5  ≤ z |h#∗D�h#|dz  �5  

≤ z |h#∗||D�h#|dz  �5 ≤z |h#||D�h#|dz  �5  ≤ �z |h#|��5  dz��/� �z |D�h#|��5  dz��/�
 

        (Using Cauchy- Schwartz inequality) 

      ≤ 
�
� �z |Dh#|��5  dz��/� �z |D�h#|��5  dz��/�

, 

          (using inequality (59)) 
so that we have 
 

   z |D�h#|��5  dz ≥ π� z  |Dh#|�dz�5  ,                   (65) 
 
and thus we can write 
 

Qϵ z |ND� − a�Oh#|��5  dz = Qϵz N |D� h#|��5 + 2 a�|Dh#|� +  a�|h#|� ) dz 

  ≥   Qϵ [π� z N |D h#|��5 +  a�|Dh#|� + a�|Dh#|� +  a�|h#|� ) dz] 

  ≥   Qϵ [Nπ� + a�O z |Dh#|��5  dz + π�a� z |h#|��5 dz +  a� z |h#|��5  dz] 

  ≥   Qϵ Nπ2 + a2O z N|Dh#|� +  a�|h#|�O dz�5  .     (66) 
 
Hence we can write 
 

− Rs a
2
 τ

 z N|Dϕ|� +  a�|ϕ|� O dz�5  − Qϵ z |ND� − a�Oh#|��5  dz  

≤ − 
τ Nπ2� a2O2

E′ p1�  z |w|��5 dz + QϵNπ2 + a2O[ τ p2

E′ p1
 −1] z N|Dh#|� + a�|h#|�O dz�5  .  (67)     

 
Also, from Eq. (54) and the fact that σr ≥ 0, we obtain  
 

σr [R a2E p� z |θ|� dz�5  − Rs a
2
 E�p� z |ϕ|�dz�5  − Qϵ p� z N|Dh#|� +  a�|h#|�Odz�5 ] ≤ 0 (68) 

 
 Now, if permissible, let Rs ≥ R. Then in that case, we derive from Eq. (55) and inequalities (60), (61), (63), (67) and 
(68) that  
 

 [
N�����O

��  + 
� N��� ��O�

�����  − 
�P ��

N�����O ] z |w|��5 dz  

  −QϵNπ� + a�O[  � ���� �� −1] z N|Dh#|� +  a�|h#|�O dz�5  < 0               (69) 

  

 [
N�����O�

����  + � N��� ��OD
����� ��  − Rs ] z |w|��5 dz  

−Qϵ N�����O�
�� [ � ���� �� −1] z N|Dh#|� +  a�|h#|�O dz�5  < 0                (70) 

 
Since  

τ p2

E′ p1
 ≤ 1, Eq. (70) clearly implies that  

 

 Rs > 
N�����O�

����  +
� N��� ��OD

����� ��  ,                   (71) 
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So that we necessarily have  
 

Rs >  
���
�� +  ���

�  �
����� , 

Since the minimum value of  
Nπ2�a2O2

a2  is 4π2 (for a2 = π2) and the minimum value of 
Nπ2�a2O3

a2  is 
27π4

4
 (for a2 = 

π2

2
 ). Hence 

if 

Rs ≤  
���
�� + ���

�  �
����� , then we must have Rs < R, and this completes the proof of the theorem. 

 
Theorem 1 can be stated in an equivalent form as ‘magnetothermohaline convection of the Veronis type in porous 
medium cannot manifest as oscillatory motion of growing amplitude in an initially bottom heavy configuration if Rs 

, τ, p1, � , P� and E′ satisfy the inequality  
 

Rs ≤  
���
�� + ���

�  �
����� . 

 
Further, this result is uniformly valid for any combination of rigid and free boundaries. 
 
 A similar theorem can be proved for magnetothermohaline convection of Stern [ 3] type in the porous medium as 
follows: 
 
Theorem 2. If R < 0, Rs < 0, Q > 0, 

����� ≤ 1, σr ≥ 0, σi ≠ 0 and  

 

|R| ≤ τ (
���
�� +  ���

�  �
����O, then we must have|R| < |Rs| .  

 
Proof. Replacing R and Rs by − |R| and −|Rs| , respectively, in Eqs. (41) – (44) and proceeding exactly as in 
Theorem 1, we get the desired result. 
 
Theorem 2 can be stated in an equivalent form as ‘ Magnetothermohaline convection of Stern type cannot manifest 
itself as oscillatory motions of growing amplitude in an initially bottom heavy configuration if R, τ, ϵ, p�, P� and E 

satisfy the inequality |R| ≤ τ (
���
�� + ���

�  �
����O’. Further, this result is uniformly valid for any combination of rigid 

and free boundaries. 
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