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ABSTRACT

The present paper mathematically establishes that magnetothermohaline convection of the Veronis type in porous
medium cannot manifest as oscillatory motion of growing amplitude in an initially bottom heavy configuration if
the thermohaline Rayleigh number R;, the Lewis number z, the Prandtl number p,, the porosity €, satisfy the

4m? 27t 1

inequality Ry < P—l+ T Fen where P, and E’ are constants which depend upon porosity of the medium. It
1

further establishes that this result is uniformly valid for the quite general nature of the bounding surfaces. A similar
characterization theoremis also proved for magnetothermohaline convection of the Stern type.

INTRODUCTION

The thermohaline convection problem has been eixysstudied in the recent past on account ofriteresting
complexities as a double diffusive phenomenon elsas its direct relevance in many problems otfcal interest
in the fields of oceanography, astrophysics, liogygl and chemical engineering etc. [1]. Two fundatalen
configurations have been studied in the contexthefmohaline convection problems, one by Veron]s\iderein
the temperature gradient is destabilizing and thecentration gradient is stabilizing; and anotherStern [3],
wherein the temperature gradient is stabilizing #redconcentration gradient is destabilizing. Themresults of
Veronis and Stern for their respective configurataye that both allow the occurrence of a steadtiammr an
oscillatory motion of growing amplitude, providetet destabilizing temperature gradient or the canagan
gradient is sufficiently large. In case of Veroninfiguration, oscillatory motions of growing aritptle are
preferred mode of onset of instability whereasdaecof Stern’s configuration, stationary convectsthe preferred
mode of onset of instability and these results intdeependent of the initially gravitationally stabde unstable
character of the two configurations. Thus thermiolgatonfigurations of Veronis and Stern type carihier be
classified into the following two classes:

(i) the first class, in which thermohaline insté@iimanifests itself when the total density fiétdinitially bottom
heavy, and

(i) the second class, in which thermohaline ingiitsgbmanifests itself when the total density fiell initially top
heavy.

Banerjee et al [4] derived a characterization teeorfor the nonexistence of oscillatory motions obwgng
amplitude in an initially bottom heavy configuratiof Veronis type. The essence of Banrjee et hEstem lies in
that it provides a classification of the neutralumstable thermohaline convection configurationhef Veronis and
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Stern types into two classes, the bottom heavys@dasl the top heavy class, and then strikes andiisth between
them by means of characterization theorems whisalldiw the existence of oscillatory motions in tbiamer class.

In recent years, many researchers have shownkibeir interest in analyzing the onset of convedtioa fluid layer
subjected to a vertical temperature gradient inoeoys medium [5,6,7,8,9,10,11]. The extension @séhtwo
important hydrodynamical theorems to the domainsarivection in porous medium, due to its importaimcéhe
prediction of ground water movement in equiferghi@ energy extraction process from the geotheresarvoirs, in
assessing the effectiveness of fibrous insulatiatrging of foods or other natural minerals and iaclear
engineering, is very much sought after in the presmntext. This paper, which mathematically anedyshe
hydrodynamic thermohaline convection-configuratodrihe Veronis and the Stern types in porous medidnmarein
a uniform magnetic field parallel to gravity is supnposed, may be regarded as a first step instttieme of
extended investigations.

The present paper mathematically establishes thgneatothermohaline convection of the Veronis typg@arous

medium cannot manifest as oscillatory motion afwjng amplitude in an initially bottom heavy caniration if

the thermohaline Rayleigh numbet, Rhe Lewis numbet, the Prandtl numbep,, the porositye, satisfy the
2 4 ’ . . .

inequality R < 4Pi+ 274“ ﬁ , whereP, andE are constants which depend upon porosity of thdiune It

1 1

further establishes that this result is uniformdyfid for the quite general nature of the boundindaces. A similar

characterization theorem is also proved for maghetmohaline convection of the Stern type.

1. FORMULATION OF THE PROBLEM

An infinite horizontal porous layer filled with aiscous fluid is statically confined between two ikontal
boundaries z = 0 and z = d, maintained at constanperatures gfand T (< Tp) and solute concentrationg &d
Si(< &) at the lower and upper boundaries respectivelhénpresence of a uniform vertical magnetic fiatting
opposite to the direction of gravity. It is furtheassumed that the saturating fluid and the poreysrlare
incompressible and that the porous medium is ataohgorosity medium. The problem is to investigdie
stability of this initial stationary state.

Let the origin be taken on the lower boundary z with the positive direction of the z-axis along thertically
upward direction. Then the basic hydrodynamic dquoatthat govern the problem are given by:

Equation of Continuity

du ov ow
x oy + i 0 (1)

Equations of Motion
10du 1( du Jdu 6u> Mo (H 0H; 0H, 6H1>

Ea+€—2 u&+va—y+ W% _4np0 1E+H2W+ H3E
) @
it a(em Ve wE) s (G T 1, T )

=5 (B )y ®

2
=2 ) e @

Equation of Heat Conduction
EZ—I+uZ—I+ VZ—;+W%:KTV2T (5)
Equation of Mass Diffusion
E'§+u§+ vg—;+wg:KSVZS (6)
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Equation of Magnetic Induction

LI (U L. R [ UM T [ S TR
Eat+uax+vay+waz H10x+H20y+ H3az+'5nVH1 )
My | (OHp | OHy o JOH 0V 0V oy Vo
Eat+uax+vay+waz H10x+H26y+ H3az+enVH2 (8)
Mg | (BMg  OHa L OHy g dw g dw g O g
Eat+uax+vay+waz H16X+H26y+ H3az+enVH3 9)
Equation of Solenoidal character of the Magnetald-i
OHy | OHy | OH3 _
T ™ + = 0 (10)
Equation of State
p= poll+a(Te-T) =v(S—=S)I, (11)

where u, v, w are the components of velocity in xhe, z-directions respectivelif,, H,, H; are components of

2
magnetic fieldH in x, y, z-directions andpB + % is the modified magnetohydrodynamic pressure.Heurt, p,
o TPo

T, S, € ky, 1, v, k7, kgand n, are, respectively, the time, the density, theperature, the concentration, the
porosity of the porous medium, the permeabilityttid porous medium, the magnetic permeability, tinerkatic
viscosity, the thermal diffusivity, the mass diffiity and the resistivity; andr and y are respectively the

coefficients of volume expansion due to temperaamé concentration variation . HeFe= € + (1 — e)';s—cS is a
o-f

constant and’ is also a constant analogous to E but correspgridirconcentration rather than heat, where,
andp,, Cs stand for density and heat capacity of the sg@atqus matrix) material and fluid respectively. Tufix

‘0’ denotes the values of the various parameterssahe suitably chosen reference temperaffyeand
concentratiors,.

The basic state is assumed to be quiescent stis given by
(u,v,w) = (0,0,0)

p = p(»

T =T

S = S(2) (12)
(Hy, Hp, Hy) = (0,0,H) |

P = p(2)

Thus the basic state solution on the basis of #isectstate is given by
(u,v,w) =(0,0,0)

BelHI 2 _ o2

op
8mpg = P=Po ~ 8P (Z+T 2)
T =T, — Bz (13)
S = Sy — 6z

(Hl! HZ! HS) = (O' 0! H)
p=pll+ a(To—T) — v(So —S)]

Assume small perturbations around the basic stadeletu’, v/, w', P, 0,9, h;, hy, h, denote, respectively, the

perturbations in three components of velocity, gpues, temperature, concentration and three comp®nahn
magnetic field intensity. Then the linearized pdsation equations are given by
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0x ay 0z
1ou _meH Ohy _ _10p _ v
€ ot 4mp, 0z po 0x kg '
16V_ueH0hy __16p_v
edt 4amp, 0z pydy kg
19w peH dhg 1 dp e
€ 0t 4mp, 0z Py 0z @0 —grd k W
a0’ '
E— —-PBw =« V
C ot p VO,
¥
B2 —sw=xs V24,
dhy u 2
= l-fL+
at 0z envehy,
oh, v
y — 2
= = I-fL +enV<h
at 0z -y
6hz w 21
2 = +
€ I-Laz envV<h,
and

ohy , ohy  oh, _
ox dy + 0z =0.

(14)
(15)
(16)
7)
(18)
(19)
(20)
(21)
(22)

(23)

Now we analyze the perturbations, v, w', P', 8, ¢, hy, hy andh, into two-dimensional periodic waves. We

assume, to all quantities describing the pertuobath dependence on x, y, and t of the form

F(x,y,z,t) =F'(2)expli(k x+k, y) + nt],
where k and k are the wave numbers along the x- and y- direstioespectively, and

k= /(k;‘; +k2) is the resultant wave number. Following the normatle analysis,
becomes

. woo v dw'

|kXLl + |kyV +E = 0,

1w pH dhy _  keP' v

- -——— = =-j=—-—u,

€ 4np, dz Po kq

1 v pH dhy kP

€ 4mp, dz Po ki '

1 v pgH dhy 1 dp’ " v
-nw ——4——= =-—— + - -—w
€ 4mp, dz po dz 0 ard kq !

Eno' -Bw" = kg (;—ZZZ - kz) 0,

Eng’ -8 w =xs (S —k2) ¢,

_,du d? P
ne h), = Hd_z”+€n(d_zzz —K?)hy,
d d
ne hy = K- +en(= — k2 )y,
dw’ d?
ne hz_ Hd_ + GH(E — kz) hZ,
vy dhy _
and kyhy+ ikyhy+ - - 0,
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(24)

(25)

(26)

(27)

(28)

(29)

(30)

(31)

(32)

(33)
(34)

Egs. (14) — (23) thus
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a? a?

dZ
ﬁ—l— W = —kz and VZZE - kz . (35)

F
where —=n,
at

Now multiplying equations (26) and (27) ki iand k, respectively; adding the resulting equations asidgiEgs.
(25) and (34), we obtain
1 _dw' | pH d?h, _ P, v dw’

_lpdw Ml dhy P yp, vdw 36
e dz  4mp, dz?2  p, ky dz (36)

Now eliminating P between (28) and (36), we get

n v L2 n_ keH H d L2 12 _
(B4 (G —1e) w= et £ (55— 1) b, — 1 (gad — gva) (37)
Also equations (29), (30), and (33) can be writisn
d? 2 Em\ v Bw'
(G- -g)o-5 (38)
a2 En\ ,»_ 3w
(G - -S) =% (39
@ 2 _n)y =_Hdw
and (4> -k - ;) h, =-L (40)

Now using the following non-dimensional parameters

- - xs nd* gapd* o _ grod* _ HeH?d? pd*
a= kd'Z* a’ - ! pl ’pz pl d2 ’D d v ’R* KTV KTV - 4-1tp0vn r W KT

w" ,e*:e" , *_—¢> " andh _we by,
3 Hxr

we can write Egs. (37) — (40) in the following ndimensional form(dropping the asterisks for sinipfic

(2+5) (@2 —a®w =—Ra% + Rea’¢ +QD(D? —adh, , (41)
(D2 —a%? —Eop,)0 = -w, (42)
(02 —a? —EoB) g = -2 (43)
(D? —a% -6 p,)h, ===Dw. (44)

The Eqs. (41)-(44) are to be solved by using thleviing boundary conditions:
w=0=¢p=Dw=h=0atz=0andatz=1, (45)
(when both the boundaries are rigid padectly conducting)
w=0=¢p=DW=h=0atz=0andatz=1. (46)
(when both the boundaries are free and perfeottglacting)

MATHEMATICAL ANALYSIS
T 1[4 T e
Theoreml. fR>0,R>0,Q > O P2 <1,p>0,p#0 and B<—+ 274 Teps’ then a necessary condition for
1

the existence of nontrivial solutlon (‘ﬁ/,,cb h, , o) of Egs. (41) — (44) with boundary conditions (45)46) is that
Rs<R.
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Proof: Multiplying Eqg. (41) by w* (the superscript * ledenotes the complex conjugation) and integrattireg
resulting equation over vertical range of z, weaobt

(+ Pll) [} w* (D?- &) w dz = - R&J, w*6 dz+ Ra’ [ w*$ dz + Q[ w'D(D? - D)h,dz.  (47)
Making use of Egs. (42) — (44) and the fact thal)w{ 0 = w(1), we can write

-R& [ w*8dz=R4[ 0 (D*- & Es*py) 0* dz, (48)
R [, w* ¢ dz=Rea’t [, ¢ (D* - & —@) $* dz, (49)

QJ, w* D (D?- &) h, dz =Q|w"(D? — a®)h, |} —Q [] Dw* (D>~ &) h,dz
=-QJ, Dw* (D*- &) h,dz

=Qe [,(D? — a*)h, (D? — a% — ¢"py)h; dz. (50)
Combining Egs. (47) — (50), we get

(E+2)J; we (D*- @) wdz= RA[; 0 (D*- & - Es*py) 0% dz

€ P;
- R&T [} b (02— & - 572 ¢ iz
+ Qe fol(DZ — a®)h, (D* — a® — o"p,)h; dz. (51)

Integrating the various terms of Eq. (51), by pdidsan appropriate number of times and makingaissther of
the boundary conditions (45) or (46), it followsth

(2+5) J, ADWI? + a?|wl?) dz = RE[, (IDOJ? + a2[0]? + Ep, o°[0[2) dz

- R [ (IDOI2 + a2(¢f2 + Z22 [9]2) dz
~ Qe [[;1(D? — a2) hz|? dz +p,o” [ (IDh, |2 + a2|h,|?) dz]. (52)

Equating the real and imaginary parts of both saldsq.(52) and cancelling; (#0) throughout from the imaginary
part, we get

(2 +2) [ADWI2 + a?wl?) dz = R [}(IDOJ? + a2[6[2 + Epy o, 0]%) dz

Rt [) (IDGP* + a?lpl? + 22|92 dz —Q[ND* - ) hzl? dz +
P20 J, (IDh,|? + a%|h,|?) dz], (53)
and

= J,(pw[? + a%|w|?)dz= ~R&Ep, [,10/?dz + R&Ep, [ |d|? dz
+Qep, [, (IDh,[2 + a2|h,|?) dz. 54

We write Eqg. (53) in the alternative form
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(% +5) [y Uowi? + a?lw]) dz= R& [ (IDOJ2 + a210]?) dz - Relt
J,(IDI? + 2%|p[2) dz — Qe f,1(D? — a?) hz|? dz +o,[Ra® Ep, [;10]> dz — Ry a? E'p; [} 1|2 dz —
Qep, [, (IDh,|? + a?|h,|?) dz] (55)

and derive the validity of the theorem from theutisg inequality obtained by replacing each onghaf terms of
this equation by its appropriate estimate.

We first note that since W, ¢ and h satisfy w(0)=0=w(1)0(0)=0 =6(1), ¢ (0)=0 =¢ (1) and h (0) =0 = h (1),
we have by the Rayleigh- Ritz inequality [12]

[, IDw2dz > 72 [|w|? dz (56)
f01|De|2 dz > n? f01|9|2 dz (57)
[Do2dz > w2 [)19)* dz (58)
J,IDh,|?dz > = [}|h,|? dz (59)

Utilizing inequality (56), we have

J,(DwWI* + a?w|?) dz > (@ +a?) [, |wl|? dz. (60)

Sinceo, > 0, we have
= [, (Dw? + a2|w|?) dz >0 (61)

Multiplying equation (42) by* throughout and integrating the various terms lom left hand side of the resulting
equation, by parts, for an appropriate numbermés by making use of the boundary condition§,ame have from
the real part of the final equation

J, (IDOI? + a2(6]?)dz + o, Ep, [ |0|?dz =Real part of, w 6* dz

< |fyw o e

< J, 1w 6°| dz
< [JIwl 16| dz

< [JIwl [6] dz

102 Y2100

< [JyIwi? dz] " [J, 1012 dz
(Using Cauchy- Schwartz inequality)

]1/2

and combining this inequality with the inequalis7§ and the fact that. > 0, we get
1/2 1/2
(w2 +a?) ;1012 dz < [f}Iwl dz] " [f, 1012 dz]

which implies that

1 1/2 1 1 1/2
[ ae] < s [fwi de] (62)
and thusf, (ID8J? + a2|9|2)dz§(nTlaz)follw|2 dz . (63)

Utilizing inequality (58), we have
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Rt [, (IDOI? + a2|p|?) dz > Ridt(n? +a?) [, |p|?dz
T 1'[2 2 .
> TE 2 2 [, (IDWI? + a?|wl?) dz - Qep, [, (IDh, |2 + a|h,[2) dz] (using Eq. (54))
T nZ 252 .
> L [hwl? dz - Qep, [, (IDh, |2 + a?lh,|) dz  (using Eq. (56)) (64)
Further, since h(0) =0 = h(1), we have

fy IDh,|%dz = — f'h;D?h,dz < |- [} h;D?h,dz | < [} Ih;D?h,|dz
1112 1 2 1 2 Y211 o 12 /2
< JyIh;||D?h,|dz <[ Ih,|[D?h,Idz < [fh,I* dz] = [f;1D?h, [ de]
(Using Cauchy- Schwartz inequality)
1/2 1/2
<[ 1ohal? dz]  [[ID%h [ de]

(using inequality (59))
so that we have

J,ID?h,|? dz>n? [} |Dh,|?dz , (65)
and thus we can write

Qe [;'1(D? — a®)h,|? dz = Q@ (ID?h,|+ 2a%|Dh,|? + a*|h,|?) dz

Qe [n® [, (IDh,|+ a?|Dh,|? +a?|Dh,|? + a*|h,|?) dz]

Qe [(n? + a?) [ Dh,|? dz +n%a? [ |h,|?dz + a* [,'|h,|? dz]

Qe (n° + @) [ (IDh,|> + a?|h,|?) dz. (66)

Y

%

%

Hence we can write

- Rt [, (ID$I? + a%|p|?) dz - Qe [, [(D? — a®)h,|? dz
_1(1:2+ @2 1, g 2 2 TP 1 2 2 2
< o Jo lwl?dz + Qe(n” + )[_E'pl 1] J, (IDh,|* + a*|h,|?) dz . (67)

Also, from Eg. (54) and the fact that> 0, we obtain
o[R &Epy J, 1612 dz -~ R EE'p, [;19%dz ~ Qe p, [, (IDh,|* + a%|h,[)dz] <0 (68)

Now, if permissible, let R> R. Then in that case, we derive from Eq. (55) iaedualities (60), (61), (63), (67) and
(68) that

(m?+a?) 1 (m?+ a?)? R a2 1, 5
+ —
[ P; E'pie (m2+a?) ] fO lwl*dz

~Qe(n? +a?)[ = ~1] [ (IDh,|? + a?[h,[?) dz < 0 (69)

(m?+a?)?2  t(m?+a?)3 1 2
+ -—
T~ RelfyIwltdz

a1 TP2 9] [}(IDh,|? + a2|h,|?) dz <O (70)

a2 E'py

—QG
Since %5 1, Eq. (70) clearly implies that
1

(m?+a?)? 1 (n?+a?)?

}
a2p; E'piea?

R > (71)
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So that we necessarily have

4m? 27t 1
Ry> — + 7 ,
P; 4 E'epy

2, 2\2 2, 2\3 4 2
Since the minimum value o(f;—a) is 4n’ (for & = %) and the minimum value & is% (for & :% ). Hence

. &
if
4m? 27t 1
Rs< —+ — ——,
P; 4 E'epy

then we must havesR R, and this completes the proof of the theorem.

Theorem 1 can be stated in an equivalent form agfretothermohaline convection of the Veronis typ@arous
medium cannot manifest as oscillatory motion ofugng amplitude in an initially bottom heavy configtion if R

. T, P, €, P, and E satisfy the inequality
4m? 271t T

R< —+ .
S= p; 4 E'epy

Further, this result is uniformly valid for any cbmation of rigid and free boundaries.

A similar theorem can be proved for magnetotherainb convection of Stern [ 3] type in the porousdinm as
follows:

Theorem 2. IfR<O,R<0,Q>O,;T2S 1,06,>0,0,#0 and
1

4n?  27mt 1
IR| <1 (P_l + o ?pl), then we must hayR| < |Ry| .

Proof. Replacing R andspby — |R| and 4R,| , respectively, in Egs. (41) — (44) and proceedimgctly as in
Theorem 1, we get the desired result.

Theorem 2 can be stated in an equivalent formMagnetothermohaline convection of Stern type cammanhifest

itself as oscillatory motions of growing amplitugtean initially bottom heavy configuration if R, €, p;, P, and E

2 4
satisfy the inequalityR| <t (4Pi + 277“ ﬁ)’. Further, this result is uniformly valid for argpmbination of rigid
1 1

and free boundaries.
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