Pelagia Research Library

A Mathematical Model of Four Species Syn-Ecosymbiosis Comprising of Prey-Predation, Mutualism and Commensalisms-III (Two of the Four Species are washed out States)

R. Srilatha ${ }^{\mathbf{1}^{*}}$, B. Ravindra Reddy ${ }^{2}$ and N. Ch. Pattabhiramacharyulu ${ }^{3}$
${ }^{1}$ JNTUH, Kukatpally, Hyderabad, India
${ }^{2}$ JNTUH College of Engineering, Nachupally, Karimnagar, India
${ }^{3}$ Dept. of Mathematics, NIT, Warangal, India

Abstract

This investigation deals with a mathematical model of a four species $\left(S_{1,} S_{2}, S_{3}\right.$ and $\left.S_{4}\right)$ SynEcological system (Two of the four species are washed out states). S_{2} is a predator surviving on the prey S_{1} : the prey is a commensal to the host S_{3} which itself is in mutualism with the fourth species S_{4}. Further S_{2} and S_{4} are neutral. The model equations of the system constitute a set of four first order non-linear ordinary differential coupled equations. In all, there are sixteen equilibrium points. Criteria for the asymptotic stability of six of the sixteen equilibrium points: Two of the four species are washed out states only are established in this paper. The linearized equations for the perturbations over the equilibrium points are analyzed to establish the criteria for stability and the trajectories illustrated.

Key words: Equilibrium state, stability, Mutualism, Commensalisms.

INTRODUCTION

Mathematical modeling of ecosystems was initiated by Lotka [6] and by Volterra [12]. The general concept of modeling has been presented in the treatises of Meyer [7], Paul Colinvaux [8], Freedman [2], Kapur [3, 4]. The ecological interactions can be broadly classified as preypredation, competition, mutualism and so on. N.C. Srinivas [11] studied the competitive ecosystems of two species and three species with regard to limited and unlimited resources. Later, Lakshmi Narayan [5] has investigated the two species prey-predator models. Recently stability analysis of competitive species was investigated by Archana Reddy [1]. Local stability analysis for a two-species ecological mutualism model has been investigated by B. Ravindra Reddy et. al [9, 10].

2. Basic equations:

Notation Adopted:

$\mathrm{N}_{1}(\mathrm{t}) \quad: \quad$ The Population of the Prey $\left(\mathrm{S}_{1}\right)$
$\mathrm{N}_{2}(\mathrm{t})$: \quad The Population of the Predator $\left(\mathrm{S}_{2}\right)$
$\mathrm{N}_{3}(\mathrm{t})$: \quad The Population of the Host $\left(\mathrm{S}_{3}\right)$ of the Prey $\left(\mathrm{S}_{1}\right)$ and mutual to S_{4}
$\mathrm{N}_{4}(\mathrm{t}) \quad: \quad$ The Population of S_{4} mutual to S_{3}
t : Time instant
$\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}, \mathrm{a}_{4}$: Natural growth rates of $\mathrm{S}_{1}, \mathrm{~S}_{2}, \mathrm{~S}_{3}, \mathrm{~S}_{4}$
$\mathrm{a}_{11}, \mathrm{a}_{22}, \mathrm{a}_{33}, \mathrm{a}_{44}: \quad$ Self inhibition coefficients of $\mathrm{S}_{1}, \mathrm{~S}_{2}, \mathrm{~S}_{3}, \mathrm{~S}_{4}$
$\mathrm{a}_{12}, \mathrm{a}_{21}$: Interaction (Prey-Predator) coefficients of S_{1} due to S_{2} and S_{2} due to S_{1}
a_{13} : Coefficient for commensal for S_{1} due to the Host S_{3}
a_{34}, a_{43} : Mutually interaction between S_{3} and S_{4}
$\frac{a_{1}}{a_{11}}, \frac{a_{2}}{a_{22}}, \frac{a_{3}}{a_{33}}, \frac{a_{4}}{a_{44}}:$ Carrying capacities of $\mathrm{S}_{1}, \mathrm{~S}_{2}, \mathrm{~S}_{3}, \mathrm{~S}_{4}$

Further the variables $\mathrm{N}_{1}, \mathrm{~N}_{2}, \mathrm{~N}_{3}, \mathrm{~N}_{4}$ are non-negative and the model parameters $\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}, \mathrm{a}_{4} ; \mathrm{a}_{11}$, $a_{22}, a_{33}, a_{44} ; a_{12}, a_{21}, a_{13}, a_{24}$ are assumed to be non-negative constants.

The model equations for the growth rates of $S_{1}, S_{2}, S_{3}, S_{4}$ are

$$
\begin{align*}
& \frac{d N_{1}}{d t}=a_{1} N_{1}-a_{11} N_{1}^{2}-a_{12} N_{1} N_{2}+a_{13} N_{1} N_{3} \tag{2.1}\\
& \frac{d N_{2}}{d t}=a_{2} N_{2}-a_{22} N_{2}^{2}+a_{21} N_{2} N_{1} \tag{2.2}\\
& \frac{d N_{3}}{d t}=a_{3} N_{3}-a_{33} N_{3}^{2}+a_{34} N_{3} N_{4} \tag{2.3}\\
& \frac{d N_{4}}{d t}=a_{4} N_{4}-a_{44} N_{4}^{2}+a_{43} N_{4} N_{3} \tag{2.4}
\end{align*}
$$

3. Equilibrium States:

The system under investigation has sixteen equilibrium states are given by $\frac{d N_{i}}{d t}=0, i=1,2,3,4$
I. Fully washed out state:
(1) $\overline{N_{1}}=0, \overline{N_{2}}=0, \overline{N_{3}}=0, \overline{N_{4}}=0$
II. States in which three of the four species are washed out and fourth is surviving
(2) $\overline{N_{1}}=0, \overline{N_{2}}=0, \overline{N_{3}}=0, \overline{N_{4}}=\frac{a_{4}}{a_{44}}$
(3) $\overline{N_{1}}=0, \overline{N_{2}}=0, \overline{N_{3}}=\frac{a_{3}}{a_{33}}, \overline{N_{4}}=0$
(4) $\overline{N_{1}}=0, \overline{N_{2}}=\frac{a_{2}}{a_{22}}, \overline{N_{3}}=0, \overline{N_{4}}=0$
(5) $\overline{N_{1}}=\frac{a_{1}}{a_{11}}, \overline{N_{2}}=0, \overline{N_{3}}=0, \overline{N_{4}}=0$
III. States in which two of the four species are washed out while the other two are surviving
(6) $\overline{N_{1}}=0, \overline{N_{2}}=0, \overline{N_{3}}=\frac{a_{4} a_{34}+a_{3} a_{44}}{a_{33} a_{44}-a_{34} a_{43}}, \overline{N_{4}}=\frac{a_{3} a_{43}+a_{4} a_{33}}{a_{33} a_{44}-a_{34} a_{43}}$

This state can exist only when $a_{33} a_{44}-a_{34} a_{43}>0$.
(7) $\overline{N_{1}}=0, \overline{N_{2}}=\frac{a_{2}}{a_{22}}, \overline{N_{3}}=0, \overline{N_{4}}=\frac{a_{4}}{a_{44}}$ (8) $\overline{N_{1}}=0, \overline{N_{2}}=\frac{a_{2}}{a_{22}}, \overline{N_{3}}=\frac{a_{3}}{a_{33}}, \overline{N_{4}}=0$
(9) $\overline{N_{1}}=\frac{a_{1}}{a_{11}}, \overline{N_{2}}=0, \overline{N_{3}}=0, \overline{N_{4}}=\frac{a_{4}}{a_{44}}$
(10) $\overline{N_{1}}=\frac{a_{1} a_{33}+a_{3} a_{13}}{a_{11} a_{33}}, \overline{N_{2}}=0, \overline{N_{3}}=\frac{a_{3}}{a_{33}}, \overline{N_{4}}=0$
(11) $\overline{N_{1}}=\frac{a_{1} a_{22}-a_{2} a_{12}}{a_{11} a_{22}+a_{12} a_{21}}, \overline{N_{2}}=\frac{a_{1} a_{21}+a_{2} a_{11}}{a_{11} a_{22}+a_{12} a_{21}}, \overline{N_{3}}=0, \overline{N_{4}}=0$

This state can exist only when $a_{1} a_{22}-a_{2} a_{12}>0$
IV. States in which one of the four species is washed out while the other three are surviving
(12) $\overline{N_{1}}=0, \overline{N_{2}}=\frac{a_{2}}{a_{22}}, \overline{N_{3}}=\frac{a_{4} a_{34}+a_{3} a_{44}}{a_{33} a_{44}-a_{34} a_{43}}, \overline{N_{4}}=\frac{a_{4} a_{33}+a_{3} a_{43}}{a_{33} a_{44}-a_{34} a_{43}}$

$$
\begin{equation*}
\overline{N_{1}}=\frac{\alpha_{1}}{\alpha_{2}}, \overline{N_{2}}=0, \overline{N_{3}}=\frac{a_{4} a_{34}+a_{3} a_{44}}{a_{33} a_{44}-a_{34} a_{43}}, \overline{N_{4}}=\frac{a_{4} a_{33}+a_{3} a_{43}}{a_{33} a_{44}-a_{34} a_{43}} \tag{13}
\end{equation*}
$$

Where
$\alpha_{1}=a_{13}\left(a_{4} a_{34}+a_{3} a_{44}\right)+a_{1}\left(a_{33} a_{44}-a_{34} a_{43}\right), \alpha_{2}=a_{11}\left(a_{33} a_{44}-a_{34} a_{43}\right)$

$$
\begin{align*}
& \overline{N_{1}}=\frac{a_{1} a_{22}-a_{2} a_{12}}{a_{11} a_{22}+a_{12} a_{21}}, \overline{N_{2}}=\frac{a_{1} a_{21}+a_{2} a_{11}}{a_{11} a_{22}+a_{12} a_{21}}, \overline{N_{3}}=0, \overline{N_{4}}=\frac{a_{4}}{a_{44}} \tag{14}\\
& \overline{N_{1}}=\frac{\beta_{2}}{\beta_{1}}, \overline{N_{2}}=\frac{\beta_{3}}{\beta_{1}}, \overline{N_{3}}=\frac{a_{3}}{a_{33}}, \overline{N_{4}}=0 \tag{15}
\end{align*}
$$

Where

$$
\begin{aligned}
& \beta_{1}=a_{33}\left(a_{11} a_{22}+a_{12} a_{21}\right), \beta_{2}=a_{22}\left(a_{1} a_{33}+a_{3} a_{13}\right)-a_{2} a_{12} a_{33} \\
& \beta_{3}=a_{21}\left(a_{1} a_{33}+a_{3} a_{13}\right)+a_{2} a_{11} a_{33}
\end{aligned}
$$

V. The co-existent state (or) Normal steady state

$$
\begin{equation*}
\overline{N_{1}}=\frac{\gamma_{1}+a_{13} a_{22} \gamma_{2}}{\gamma_{3}}, \overline{N_{2}}=\frac{\gamma_{4}+a_{13} a_{21} \gamma_{2}}{\gamma_{3}}, \quad \overline{N_{3}}=\frac{a_{4} a_{34}+a_{3} a_{44}}{a_{33} a_{44}-a_{34} a_{43}}, \overline{N_{4}}=\frac{a_{4} a_{33}+a_{3} a_{43}}{a_{33} a_{44}-a_{34} a_{43}} \tag{16}
\end{equation*}
$$

Where

$$
\begin{aligned}
& \gamma_{1}=\left(a_{1} a_{22}+a_{2} a_{12}\right)\left(a_{33} a_{44}-a_{34} a_{43}\right), \gamma_{2}=a_{3} a_{44}+a_{4} a_{34} \\
& \gamma_{3}=\left(a_{11} a_{22}+a_{12} a_{21}\right)\left(a_{33} a_{44}-a_{34} a_{43}\right), \gamma_{4}=\left(a_{1} a_{21}-a_{2} a_{11}\right)\left(a_{33} a_{44}-a_{34} a_{43}\right)
\end{aligned}
$$

The present paper deals with two of the four species are washed out states only. The stability of the other equilibrium states will be presented in the forth coming communications.

4. Stability of two of the four species washed out equilibrium states:
 (SI. Nos 6, 7, 8, 9, 10, 11 in the above Equilibrium states)

4.1 Stability of the Equilibrium State 6

$\overline{N_{1}}=0, \overline{N_{2}}=0, \overline{N_{3}}=\frac{a_{4} a_{34}+a_{3} a_{44}}{a_{33} a_{44}-a_{34} a_{43}}, \overline{N_{4}}=\frac{a_{3} a_{43}+a_{4} a_{33}}{a_{33} a_{44}-a_{34} a_{43}}$
Let us consider small deviations $\mathrm{u}_{1}(\mathrm{t}), \mathrm{u}_{2}(\mathrm{t}), \mathrm{u}_{3}(\mathrm{t}), \mathrm{u}_{4}(\mathrm{t})$ from the steady state
i.e. $\quad N_{i}(t)=\bar{N}_{i}+u_{i}(t), i=1,2,3,4$

Substituting (4.1.1) in (2.1), (2.2), (2.3), (2.4) and neglecting products and higher powers of $u_{1}, u_{2}, u_{3}, u_{4}$, we get
$\frac{d u_{1}}{d t}=l_{1} u_{1}$
(4.1.2) $\quad \frac{d u_{2}}{d t}=a_{2} u_{2}$
$\frac{d u_{3}}{d t}=-a_{33} \overline{N_{3}} u_{3}+a_{34} \overline{N_{3}} u_{4} \ldots .$.
$\frac{d u_{4}}{d t}=a_{43} \overline{N_{4}} u_{3}-a_{44} \overline{N_{4}} u_{4}$

Here $l_{1}=a_{1}+a_{13} \overline{N_{3}}$
The characteristic equation of which is

$$
\begin{equation*}
\left(\lambda-l_{1}\right)\left(\lambda-a_{2}\right)\left[\lambda^{2}-\left(a_{33} \overline{N_{3}}+a_{44} \overline{N_{4}}\right) \lambda+\left(a_{33} a_{44}-a_{34} a_{43}\right) \overline{N_{3}} \overline{N_{4}}\right]=0 \tag{4.1.7}
\end{equation*}
$$

The characteristic roots of (4.1.7) are

$$
\lambda=l_{1}, \lambda=a_{2}, \lambda=\frac{-\left(a_{33} \bar{N}_{3}+a_{44} \bar{N}_{4}\right) \pm \sqrt{\left(a_{33} \bar{N}_{3}-a_{44} \bar{N}_{4}\right)^{2}+4 a_{34} a_{43} \bar{N}_{3} \bar{N}_{4}}}{2}
$$

Two roots of the equation (4.1.7) are positive and the other two roots are negative. Hence the equilibrium state is unstable.

The solutions of the equations (4.1.2), (4.1.3), (4.1.4), (4.1.5) are

$$
\begin{equation*}
u_{1}=u_{10} e^{e^{t}} \tag{4.1.8}
\end{equation*}
$$

$$
\begin{equation*}
u_{2}=u_{20} a^{a_{2} t} \tag{4.1.9}
\end{equation*}
$$

$$
\begin{align*}
& u_{3}=\left[\frac{u_{30}\left(\lambda_{3}+\mathrm{a}_{44} \bar{N}_{4}\right)+\mathrm{u}_{40} \mathrm{a}_{34} \overline{\mathrm{~N}}_{3}}{\lambda_{3}-\lambda_{4}}\right] \mathrm{e}^{\lambda_{3} \mathrm{t}}+\left[\frac{\mathrm{u}_{30}\left(\lambda_{4}+\mathrm{a}_{44} \overline{\mathrm{~N}}_{4}\right)+\mathrm{u}_{40} \mathrm{a}_{34} \overline{\mathrm{~N}}_{3}}{\lambda_{4}-\lambda_{3}}\right] \mathrm{e}^{\lambda_{4} \mathrm{t}} \tag{4.1.10}\\
& \mathrm{u}_{4}=\left[\frac{\mathrm{u}_{40}\left(\lambda_{3}+\mathrm{a}_{33} \overline{\mathrm{~N}}_{3}\right)+\mathrm{u}_{30} \mathrm{a}_{43} \overline{\mathrm{~N}}_{4}}{\lambda_{3}-\lambda_{4}}\right] \mathrm{e}^{\lambda_{3} \mathrm{t}}+\left[\frac{\mathrm{u}_{40}\left(\lambda_{4}+\mathrm{a}_{33} \overline{\mathrm{~N}}_{3}\right)+\mathrm{u}_{30} \mathrm{a}_{43} \overline{\mathrm{~N}}_{4}}{\lambda_{4}-\lambda_{3}}\right] \mathrm{e}^{\lambda_{4} \mathrm{t}}
\end{align*}
$$

where $u_{10}, u_{20}, u_{30}, u_{40}$ are the initial values of $u_{1}, u_{2}, u_{3}, u_{4}$ respectively.
There would arise in all 576 cases depending upon the ordering of the magnitudes of the growth rates $a_{1}, a_{2}, a_{3}, a_{4}$ and the initial values of the perturbations $u_{10}(t), u_{20}(t), u_{30}(t), u_{40}(t)$ of the species $S_{1}, S_{2}, S_{3}, S_{4}$. Of these 576 situations some typical variations are illustrated through respective solution curves that would facilitate to make some reasonable observations.
The solutions are illustrated in figures $1 \& 2$.

Case (i): If $\mathrm{u}_{30}<\mathrm{u}_{40}<\mathrm{u}_{10}<\mathrm{u}_{20}, a_{3}<l_{1}<a_{4}<a_{2}$
In this case initially the predator $\left(\mathrm{S}_{2}\right)$ dominates over the prey $\left(\mathrm{S}_{1}\right)$ till the time instant $t_{12}{ }^{*}$ and there after the dominance is reversed. It is evident both the species prey and Predator are going away from the equilibrium point while the other two species converge to the equilibrium point. Hence the equilibrium state is unstable.

Fig. 1

Case (ii): If $\mathrm{u}_{20}<\mathrm{u}_{40}<\mathrm{u}_{10}<\mathrm{u}_{30}, a_{2}<a_{4}<a_{3}<l_{1}$
In this case initially the host $\left(\mathrm{S}_{3}\right)$ of S_{1} dominates over the prey $\left(\mathrm{S}_{1}\right), \mathrm{S}_{4}$ and the predator $\left(\mathrm{S}_{2}\right)$ till the time instant $t_{13}{ }^{*}, t_{43}{ }^{*}, t_{23}{ }^{*}$ respectively and there after the dominance is reversed. Also S_{4} dominated over by the predator $\left(\mathrm{S}_{2}\right)$ till the time instant $t_{24}{ }^{*}$ and there after the dominance is reversed.

Fig. 2

4.2 Stability of the Equilibrium State 7

$\overline{N_{1}}=0, \overline{N_{2}}=\frac{a_{2}}{a_{22}}, \overline{N_{3}}=0, \overline{N_{4}}=\frac{a_{4}}{a_{44}}$
Substituting (4.1.1) in (2.1), (2.2), (2.3), (2.4) and neglecting products and higher powers of $u_{1}, u_{2}, u_{3}, u_{4}$, we get
$\frac{d u_{1}}{d t}=r_{1} u_{1}$

$$
\begin{equation*}
\frac{d u_{3}}{d t}=l_{3} u_{3} \tag{4.2.3}
\end{equation*}
$$

$$
\begin{align*}
& \frac{d u_{2}}{d t}=-a_{2} u_{2}+\frac{a_{21} a_{2}}{a_{22}} u_{1} \tag{4.2.1}\\
& \frac{d u_{4}}{d t}=-a_{4} u_{4}+\frac{a_{43} a_{4}}{a_{44}} u_{3} \tag{4.2.2}
\end{align*}
$$

Here $r_{1}=a_{1}-\frac{a_{12} a_{2}}{a_{22}}, l_{3}=a_{3}+\frac{a_{34} a_{4}}{a_{44}}$
The characteristic equation of which is

$$
\begin{equation*}
\left(\lambda-r_{1}\right)\left(\lambda+a_{2}\right)\left(\lambda-l_{3}\right)\left(\lambda+a_{4}\right)=0 \tag{4.2.6}
\end{equation*}
$$

Case (A): When $r_{1}<0$ (i.e., when $a_{1}<\frac{a_{12} a_{2}}{a_{22}}$)

The roots $r_{1},-a_{2},-a_{4}$ are negative and l_{3} is positive.
Hence the equilibrium state is unstable.
The solutions of the equations (4.2.1) (4.2.2), (4.2.3), (4.2.4) are

$$
\begin{align*}
& u_{1}=u_{10} e^{r_{t}} \tag{4.2.7}\\
& u_{2}=\left[u_{20}-\frac{a_{21} a_{2} u_{10}}{a_{22}\left(r_{1}+a_{2}\right)}\right] e^{-a_{2} t}+\frac{a_{21} a_{2} u_{10}}{a_{22}\left(r_{1}+a_{2}\right)} e^{r_{1} t} \tag{4.2.8}\\
& u_{3}=u_{30} e^{l_{t} t} \tag{4.2.9}\\
& u_{4}=\left[u_{40}-\frac{a_{43} a_{4} u_{30}}{a_{44}\left(l_{3}+a_{4}\right)}\right] e^{-a_{4} t}+\frac{a_{43} a_{4} u_{30}}{a_{44}\left(l_{3}+a_{4}\right)} e^{l_{3} t} \tag{4.2.10}
\end{align*}
$$

The solution curves are as shown in figures $3 \& 4$.
Case (i): If $\mathrm{u}_{10}<\mathrm{u}_{20}<\mathrm{u}_{30}<\mathrm{u}_{40}$ and $a_{4}<l_{3}<a_{2}<r_{1}$
In this case initially S_{4} dominates over the Host $\left(\mathrm{S}_{3}\right)$ of S_{1} till the time instant t_{34}^{*} and there after the dominance is reversed. Also the commensal species is observed to be going away from the equilibrium point while the other three species converge to the equilibrium point. Hence the equilibrium state is unstable.

Case (ii): If $u_{20}<u_{30}<u_{40}<u_{10}$ and $l_{3}<a_{4}<r_{1}<a_{2}$.
In this case initially the Prey $\left(\mathrm{S}_{1}\right)$ dominates over S_{4}, the host $\left(\mathrm{S}_{3}\right)$ of S_{1} and the Predator $\left(\mathrm{S}_{2}\right)$ till the time instant $t_{41}^{*}, t_{31}^{*}, t_{21}^{*}$ respectively and there after the dominance is reversed. Also S_{4} dominates over the Host $\left(\mathrm{S}_{3}\right)$ of S_{1} till the time instant t_{34}^{*} and there after the dominance is reversed.

Case (B): When $r_{1}>0$ (i.e., when $a_{1}>\frac{a_{12} a_{2}}{a_{22}}$)
The roots $-a_{2},-a_{4}$ are negative and r_{1}, l_{3} are positive.
Hence the equilibrium state is unstable.
In this case the solutions are same as in case (A) and the solutions are illustrated in figures $5 \& 6$. Case (i): If $u_{20}<u_{30}<u_{10}<u_{40}$ and $r_{1}<l_{3}<a_{2}<a_{4}$.

In this case initially S_{4} dominates over the Prey $\left(S_{1}\right)$ and the Host $\left(S_{3}\right)$ of S_{1} till the time instant t_{14}^{*}, t_{34}^{*} respectively and there after the dominance is reversed. Also the Prey $\left(\mathrm{S}_{1}\right)$ dominates the Host $\left(\mathrm{S}_{3}\right)$ of S_{1} till the time instant t_{31}^{*} and there after the dominance is reversed.

Fig. 5

Case (ii): If $u_{40}<u_{30}<u_{20}<u_{10}$ and $a_{2}<r_{1}<l_{3}<a_{4}$.
In this case initially the Predator $\left(\mathrm{S}_{2}\right)$ dominates over the Host $\left(\mathrm{S}_{3}\right)$ of S_{1} and S_{4} till the time instant t_{32}^{*}, t_{42}^{*} respectively and the dominance gets reversed there after. Also the Prey $\left(\mathrm{S}_{1}\right)$ dominates the Host $\left(\mathrm{S}_{3}\right)$ of S_{1} till the time instant t_{31}^{*} and there after the dominance is reversed.

Fig. 6

4.3 Stability of the Equilibrium State 8

$\overline{N_{1}}=0, \overline{N_{2}}=\frac{a_{2}}{a_{22}}, \overline{N_{3}}=\frac{a_{3}}{a_{33}}, \overline{N_{4}}=0$
Substituting (4.1.1) in (2.1), (2.2), (2.3), (2.4) and neglecting products and higher powers of $u_{1}, u_{2}, u_{3}, u_{4}$, we get
$\frac{d u_{1}}{d t}=s_{1} u_{1}$

$$
\begin{align*}
& \frac{d u_{2}}{d t}=-a_{2} u_{2}+\frac{a_{21} a_{2}}{a_{22}} u_{1} \tag{4.3.1}\\
& \frac{d u_{4}}{d t}=n_{4} u_{4} \tag{4.3.4}\\
& n_{4}=a_{4}+\frac{a_{43} a_{3}}{a_{33}}
\end{align*}
$$

$\frac{d u_{3}}{d t}=-a_{3} u_{3}+\frac{a_{34} a_{3}}{a_{33}} u_{4}$
Here $s_{1}=a_{1}+\frac{a_{13} a_{3}}{a_{33}}-\frac{a_{12} a_{2}}{a_{22}} \ldots$
The characteristic equation of which is
$\left(\lambda-s_{1}\right)\left(\lambda+a_{2}\right)\left(\lambda+a_{3}\right)\left(\lambda-n_{4}\right)=0$
Case (A): When $s_{1}<0$ (i.e., when $a_{1}+\frac{a_{13} a_{3}}{a_{33}}<\frac{a_{12} a_{2}}{a_{22}}$)
The roots $s_{1},-a_{2},-a_{3}$ are negative and n_{4} is positive.
Hence the equilibrium state is unstable.
The solutions of the equations (4.3.1) (4.3.2), (4.3.3), (4.3.4) are

$$
\begin{align*}
& u_{1}=u_{10} e^{s_{1} t} \tag{4.3.8}\\
& u_{2}=\left[u_{20}-\frac{a_{21} a_{2} u_{10}}{a_{22}\left(s_{1}+a_{2}\right)}\right] e^{-a_{2} t}+\frac{a_{21} a_{2} u_{10}}{a_{22}\left(s_{1}+a_{2}\right)} e^{s_{1 t} t} \tag{4.3.9}\\
& u_{3}=\left[u_{30}-\frac{a_{3} a_{34} u_{40}}{a_{33}\left(n_{4}+a_{3}\right)}\right] e^{-a_{3} t}+\frac{a_{3} a_{34} u_{40}}{a_{33}\left(n_{4}+a_{3}\right)} e^{n_{4} t} \tag{4.3.10}\\
& u_{4}=u_{40} e_{4}^{n_{4} t} \tag{4.3.11}
\end{align*}
$$

The solution curves are exhibited in figures $7 \& 8$.
Case (i): If $u_{10}<u_{40}<u_{20}<u_{30}$ and $a_{2}<a_{3}<s_{1}<n_{4}$
In this case initially the Host $\left(\mathrm{S}_{3}\right)$ of S_{1} dominates over S_{4} till the time instant t_{43}^{*} and there after the dominance is reversed. Also the Predator $\left(\mathrm{S}_{2}\right)$ dominates over the S_{4} till the time instant t_{42}^{*} and there after the dominance is reversed.

Fig. 7

Case (ii): If $u_{40}<u_{10}<u_{20}<u_{30}$ and $a_{3}<n_{4}<a_{2}<s_{1}$
In this case initially the Prey $\left(\mathrm{S}_{1}\right)$ dominates over S_{4} till the time instant t_{41}^{*} and there after the dominance is reversed. Also the Predator $\left(\mathrm{S}_{2}\right)$ dominates over the S_{4} till the time instant t_{42}^{*} and there after the dominance is reversed. Similarly the Host $\left(S_{3}\right)$ of S_{1} dominates over S_{4} till the time instant t_{43}^{*} and the dominance is gets reversed there after.

Fig. 8

Case (B): When $s_{1}>0$ (i.e., when $a_{1}+\frac{a_{13} a_{3}}{a_{33}}>\frac{a_{12} a_{2}}{a_{22}}$)
The roots $-a_{2},-a_{3}$ are negative and s_{1}, n_{4} are positive.
Hence the equilibrium state is unstable.
In this case the solutions are same as in case (A) and the solutions are illustrated in figures 9 \& 10.

Case (i): If $\mathrm{u}_{10}<\mathrm{u}_{20}<\mathrm{u}_{30}<\mathrm{u}_{40}$ and $s_{1}<a_{2}<a_{3}<n_{4}$
In this case initially the Host $\left(\mathrm{S}_{3}\right)$ of S_{1} dominates the Predator $\left(\mathrm{S}_{2}\right)$ and Prey $\left(\mathrm{S}_{1}\right)$ till the time instant t_{13}^{*}, t_{23}^{*} respectively and there after the dominance is reversed. Also the Predator $\left(\mathrm{S}_{2}\right)$ dominates over the Prey $\left(\mathrm{S}_{1}\right)$ till the time instant t_{12}^{*} and the dominance gets reversed there after. Similarly S_{4} dominates over the Predator $\left(\mathrm{S}_{2}\right)$ and the Prey $\left(\mathrm{S}_{1}\right)$ till the time instant t_{24}^{*}, t_{14}^{*} respectively and there after the dominance is reversed.

Case (ii): If $u_{20}<u_{30}<u_{40}<u_{10}$ and $a_{3}<n_{4}<s_{1}<a_{2}$

In this case initially the Host $\left(S_{3}\right)$ of S_{1} dominates the Predator $\left(S_{2}\right)$ till the time instant t_{23}^{*} and there after the dominance is reversed. Also S_{4} dominates over the Predator $\left(S_{2}\right)$ till the time instant t_{24}^{*} and there after the dominance is reversed.

Fig. 10

4.4 Stability of the Equilibrium State 9

$\overline{N_{1}}=\frac{a_{1}}{a_{11}}, \overline{N_{2}}=0, \overline{N_{3}}=0, \overline{N_{4}}=\frac{a_{4}}{a_{44}}$
Substituting (4.1.1) in (2.1), (2.2), (2.3), (2.4) and neglecting products and higher powers of $\mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{3}, \mathrm{u}_{4}$, we get
$\frac{d u_{1}}{d t}=-a_{1} u_{1}-\frac{a_{12} a_{1}}{a_{11}} u_{2}+\frac{a_{13} a_{1}}{a_{11}} u_{3}$
$\frac{d u_{2}}{d t}=q_{2} u_{2}$
$\frac{d u_{3}}{d t}=l_{3} u_{3}$

$$
\begin{equation*}
\frac{d u_{4}}{d t}=-a_{4} u_{4}+\frac{a_{43} a_{4}}{a_{44}} u_{3} \tag{4.4.2}
\end{equation*}
$$

Here $q_{2}=a_{2}+\frac{a_{21} a_{1}}{a_{11}}, l_{3}=a_{3}+\frac{a_{34} a_{4}}{a_{44}}$
The characteristic equation of which is
$\left(\lambda+a_{1}\right)\left(\lambda-q_{2}\right)\left(\lambda-l_{3}\right)\left(\lambda+a_{4}\right)=0$
The roots q_{2}, l_{3} are positive and $-a_{1},-a_{4}$ are negative.
Hence the equilibrium state is unstable.
The solutions of the equations (4.4.1) (4.4.2), (4.4.3), (4.4.4) are

$$
\begin{align*}
& u_{1}=\left[u_{10}-\frac{a_{13} a_{1} u_{30}}{a_{11}\left(l_{3}+a_{1}\right)}+\frac{a_{12} a_{1} u_{20}}{a_{11}\left(q_{2}+a_{1}\right)}\right] e^{-a_{1} t}+\frac{a_{13} a_{1} u_{30}}{a_{11}\left(l_{3}+a_{1}\right)} e^{b_{3 t}}-\frac{a_{12} a_{1} u_{20}}{a_{11}\left(q_{2}+a_{1}\right)} e^{q_{2} t} \\
& \ldots(4.4 .7) \tag{4.4.9}\\
& u_{2}=u_{20} q^{q_{2} t} \tag{4.4.10}\\
& u_{4}=\left[u_{40}-\frac{a_{43} a_{4} u_{30}}{a_{44}\left(l_{3}+a_{4}\right)}\right] e^{-a_{4} t}+\frac{a_{43} a_{4} u_{30}}{a_{44}\left(l_{3}+a_{4}\right)} e^{b_{3} t}=u_{30} e^{k_{5} t}
\end{align*}
$$

The solution curves are as shown in figures $11 \& 12$.

Case (i): If $u_{20}<u_{30}<u_{10}<u_{40}$ and $a_{1}<a_{4}<l_{3}<q_{2}$
In this case initially the Prey $\left(\mathrm{S}_{1}\right)$ dominates over the Host $\left(\mathrm{S}_{3}\right)$ of S_{1} and the Predator $\left(\mathrm{S}_{2}\right)$ till the time instant t_{31}^{*}, t_{21}^{*} respectively and there after the dominance is reversed. Also S_{4} dominates over the Host $\left(\mathrm{S}_{3}\right)$ of S_{1} and the Predator $\left(\mathrm{S}_{2}\right)$ till the time instant t_{34}^{*}, t_{24}^{*} respectively and there after the dominance is reversed. Similarly the host $\left(\mathrm{S}_{3}\right)$ of S_{1} dominates over the Predator $\left(\mathrm{S}_{2}\right)$ till the time instant t_{21}^{*} and there after the dominance is reversed.

Case (ii): If $u_{30}<u_{40}<u_{10}<u_{20}$ and $q_{2}<l_{3}<a_{1}<a_{4}$.
In this case initially the Prey $\left(\mathrm{S}_{1}\right)$ dominates over S_{4}, and the host $\left(\mathrm{S}_{3}\right)$ of S_{1} till the time instant t_{41}^{*}, t_{31}^{*} respectively and there after the dominance is reversed. Also S_{4} dominates over the Host $\left(\mathrm{S}_{3}\right)$ of S_{1} till the time instant t_{34}^{*} and there after the dominance is reversed.

Fig. 12

4.5 Stability of the Equilibrium State 10

$\overline{N_{1}}=\frac{a_{1} a_{33}+a_{3} a_{13}}{a_{11} a_{33}}, \overline{N_{2}}=0, \overline{N_{3}}=\frac{a_{3}}{a_{33}}, \overline{N_{4}}=0$

Substituting (4.1.1) in (2.1), (2.2), (2.3), (2.4) and neglecting products and higher powers of $\mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{3}, \mathrm{u}_{4}$, we get
$\frac{d u_{1}}{d t}=M_{1} u_{1}-a_{12} \overline{N_{1}} u_{2}+a_{13} \bar{N}_{1} u_{3}$
$\frac{d u_{2}}{d t}=r_{2} u_{2}$
$\frac{d u_{3}}{d t}=-a_{3} u_{3}+\frac{a_{34} a_{3}}{a_{33}} u_{4} \quad \ldots$ (4.5.3) $\quad \frac{d u_{4}}{d t}=n_{4} u_{4}$
Here $M_{1}=-a_{1}-\frac{a_{3} a_{13}}{a_{33}}$

$$
\begin{equation*}
r_{2}=a_{2}+a_{21} \overline{N_{1}}, n_{4}=a_{4}+a_{43} \overline{N_{3}} \tag{4.5.5}
\end{equation*}
$$

The characteristic equation of which is $\left(\lambda+M_{1}\right)\left(\lambda-r_{2}\right)\left(\lambda+a_{3}\right)\left(\lambda-n_{4}\right)=0$
The roots r_{2}, n_{4} are positive and $-M_{1},-a_{3}$ are negative.
Hence the equilibrium state is unstable.
The solutions of the equations (4.5.1) (4.5.2), (4.5.3), (4.5.4) are

$$
\begin{aligned}
u_{1}= & \left\{u_{10}+\left[\frac{a_{12} \bar{N}_{1} u_{20}\left(-a_{3}+M_{1}\right)-a_{13} \bar{N}_{1} u_{30}\left(r_{2}+M_{1}\right)}{\left(r_{2}+M_{1}\right)\left(-a_{3}+M_{1}\right)}\right]\right\} e^{-M_{1} t} \\
& +\left[\frac{a_{13} \overline{N_{1}}\left[\left(u_{30}-\eta_{7}\right) e^{-a_{3} t}+\eta_{7} e^{n_{4} t}\right]\left(r_{2}+M_{1}\right)-a_{12} \overline{N_{1}} u_{20} 0^{r_{2} t}\left(-a_{3}+M_{1}\right)}{\left(r_{2}+M_{1}\right)\left(-a_{3}+M_{1}\right)}\right]
\end{aligned}
$$

$$
\begin{align*}
& u_{2}=u_{20} 0^{r_{2} t} \tag{4.5.9}\\
& u_{3}=\left[u_{30}-\frac{a_{34} a_{3} u_{40}}{a_{33}\left(n_{4}+a_{3}\right)}\right] e^{-a_{3} t}+\frac{a_{34} a_{3} u_{40}}{a_{33}\left(n_{4}+a_{3}\right)} e^{n_{4} t} \tag{4.5.10}\\
& u_{4}=u_{40} 0^{n_{4} t} \tag{4.5.11}
\end{align*}
$$

Where $\eta_{7}=\frac{a_{34} a_{3} u_{40}}{a_{33}\left(n_{4}+a_{3}\right)}$
The solution curves are exhibited in figures $13 \& 14$.
Case (i): If $u_{20}<u_{30}<u_{40}<u_{10}$ and $a_{3}<M_{1}<n_{4}<r_{2}$
In this case initially the Host $\left(\mathrm{S}_{3}\right)$ of S_{1} dominates over the Predator $\left(\mathrm{S}_{2}\right)$ till the time instant t_{23}^{*} and there after the dominance is reversed.

Fig. 14
Case (ii): If $u_{10}<u_{40}<u_{20}<u_{30}$ and $a_{3}<M_{1}<r_{2}<n_{4}$
In this case initially the Host $\left(\mathrm{S}_{3}\right)$ of S_{1} dominates over the Predator $\left(\mathrm{S}_{2}\right), \mathrm{S}_{4}$ and the Prey $\left(\mathrm{S}_{1}\right)$, till the time instant $t_{23}^{*}, t_{43}^{*}, t_{13}^{*}$ respectively and there after the dominance is reversed. Also the Predator $\left(\mathrm{S}_{2}\right)$ dominates over the Prey $\left(\mathrm{S}_{1}\right)$ till the time instant t_{21}^{*} and there after the dominance is reversed. And the Predator $\left(\mathrm{S}_{2}\right)$ dominates over S_{4} till the time instant t_{42}^{*} and the dominance is gets reversed there after. Similarly S_{4} dominates the Prey $\left(\mathrm{S}_{1}\right)$ till the time instant t_{14}^{*} and there after the dominance is reversed.

4.6 Stability of the Equilibrium State 11

$\overline{N_{1}}=\frac{a_{1} a_{22}-a_{2} a_{12}}{a_{11} a_{22}+a_{12} a_{21}}, \overline{N_{2}}=\frac{a_{1} a_{21}+a_{2} a_{11}}{a_{11} a_{22}+a_{12} a_{21}}, \overline{N_{3}}=0, \overline{N_{4}}=0$
Substituting (4.1.1) in (2.1), (2.2), (2.3), (2.4) and neglecting products and higher powers of $u_{1}, u_{2}, u_{3}, u_{4}$, we get

$$
\begin{align*}
\frac{d u_{1}}{d t} & =-a_{11} \bar{N}_{1} u_{1}-a_{12} \bar{N}_{1} u_{2}+a_{13} \bar{N}_{1} u_{3} \tag{4.6.1}\\
\frac{d u_{2}}{d t} & =a_{21} \bar{N}_{2} u_{1}-a_{22} \bar{N}_{2} u_{2} \tag{4.6.2}\\
\frac{d u_{3}}{d t} & =a_{3} u_{3} \tag{4.6.3}\\
\frac{d u_{4}}{d t} & =a_{4} u_{4} \tag{4.6.4}
\end{align*}
$$

The characteristic equation of which is

$$
\begin{equation*}
\left[\lambda^{2}+\left(a_{11} \overline{\mathbf{N}}_{1}+\mathrm{a}_{22} \overline{\mathrm{~N}}_{2}\right) \lambda+\mathrm{a}_{12} \mathrm{a}_{21} \overline{\mathrm{~N}}_{1} \overline{\mathrm{~N}}_{2}\right]\left(\lambda-\mathrm{a}_{3}\right)\left(\lambda-\mathrm{a}_{4}\right)=0 \tag{4.6.5}
\end{equation*}
$$

The characteristic roots of (4.6.5) are

$$
\begin{equation*}
\lambda=\frac{-\left(a_{11} \bar{N}_{1}+a_{22} \bar{N}_{2}\right) \pm \sqrt{\left(a_{11} \bar{N}_{1}+a_{22} \bar{N}_{2}\right)^{2}-4 a_{12} a_{21} \bar{N}_{1} \bar{N}_{2}}}{2}, \lambda=\mathrm{a}_{3}, \lambda=\mathrm{a}_{4} \tag{4.6.6}
\end{equation*}
$$

Two roots of the equation (4.6.5) are positive and the other two roots are negative. Hence the equilibrium state is unstable.
The trajectories are given by

$$
\begin{align*}
& \mathrm{u}_{1}=\left[\frac{\mathrm{a}_{12} \overline{\mathrm{~N}}_{1}\left(\mathrm{u}_{10}+\mathrm{u}_{20}\right)-\mathrm{a}_{13} \overline{\mathrm{~N}}_{1} \mathrm{u}_{30}-\phi_{1}\left(\lambda_{2}-\mathrm{a}_{3}\right)}{\lambda_{2}-\lambda_{1}}\right] \mathrm{e}^{\lambda_{1} \mathrm{t}} \tag{4.6.7}\\
&+\left[\frac{\left(\mathrm{u}_{10}-\phi_{1}\right)\left(\lambda_{2}-\lambda_{1}\right)-\mathrm{a}_{12} \overline{\mathrm{~N}}_{1}\left(\mathrm{u}_{10}+\mathrm{u}_{20}\right)+\mathrm{a}_{13} \overline{\mathrm{~N}}_{1} \mathrm{u}_{30}+\phi_{1}\left(\lambda_{2}-\mathrm{a}_{3}\right)}{\lambda_{2}-\lambda_{1}}\right] \mathrm{e}^{\lambda_{2} \mathrm{t}}+\phi_{1} \mathrm{e}^{\mathrm{a}_{3} \mathrm{t}} \\
& \mathrm{u}_{2}=\left[\frac{\mathrm{a}_{12} \overline{\mathrm{~N}}_{1}\left(\mathrm{u}_{10}+\mathrm{u}_{20}\right)-\mathrm{a}_{13} \overline{\mathrm{~N}}_{1} \mathrm{u}_{30}-\phi_{1}\left(\lambda_{2}-\mathrm{a}_{3}\right)}{\lambda_{2}-\lambda_{1}}\right] \xi_{1} \mathrm{e}^{\lambda_{1} \mathrm{t}} \tag{4.6.8}\\
&+\left[\frac{\left(\mathrm{u}_{10}-\phi_{1}\right)\left(\lambda_{2}-\lambda_{1}\right)-\mathrm{a}_{12} \overline{\mathrm{~N}}_{1}\left(\mathrm{u}_{10}+\mathrm{u}_{20}\right)+\mathrm{a}_{13} \overline{\mathrm{~N}}_{1} \mathrm{u}_{30}+\phi_{1}\left(\lambda_{2}-\mathrm{a}_{3}\right)}{\lambda_{2}-\lambda_{1}}\right] \xi_{2} \mathrm{e}^{\lambda_{2} \mathrm{t}}+\phi_{2} \mathrm{e}^{\mathrm{a}_{3} \mathrm{t}} \\
&----(4.6 .9) \tag{4.6.9}
\end{align*}
$$

Here
$\phi_{1}=\frac{\beta_{2}}{a_{3}{ }^{2}+\psi_{1} a_{3}+\beta_{1}}, \quad \phi_{2}=\frac{a_{13} \bar{N}_{1} u_{30}-\phi_{1}\left(a_{3}+P_{3}\right)}{a_{12} \bar{N}_{1}}, \quad P_{3}=a_{11} \bar{N}_{1}$
$\beta_{1}=\left(\mathrm{a}_{11} \mathrm{a}_{22}+\mathrm{a}_{12} \mathrm{a}_{21}\right) \overline{\mathrm{N}}_{1} \overline{\mathrm{~N}}_{2}, \quad \beta_{2}=\mathrm{u}_{30} \mathrm{a}_{13} \overline{\mathrm{~N}}_{1}\left(\mathrm{a}_{3}+\mathrm{a}_{22} \overline{\mathrm{~N}}_{2}\right)$
$\psi_{1}=a_{11} \bar{N}_{1}+a_{22} \bar{N}_{2}, \quad \xi_{1}=\frac{-\left(\lambda_{1}+P_{3}\right)}{a_{12} \bar{N}_{1}}, \quad \xi_{2}=\frac{-\left(\lambda_{2}+P_{3}\right)}{a_{12} \bar{N}_{1}}$
The solutions are illustrated in figures $15 \& 16$.
Case (i): If $u_{20}<u_{10}<u_{40}<u_{30}$ and $a_{2}<a_{1}<a_{4}<a_{3}$ In this case initially the host $\left(\mathrm{S}_{3}\right)$ of S_{1} dominates over S_{4}, the prey $\left(\mathrm{S}_{1}\right)$ and the predator $\left(\mathrm{S}_{2}\right)$ in natural growth rate as well as in its initial population strength. It is evident that all the four species going away from the equilibrium point. Hence the equilibrium state is unstable as shown in figure.

Fig. 15

Case (ii): If $u_{30}<u_{40}<u_{20}<u_{10}, a_{3}<a_{2}<a_{1}<a_{4}$
In this case initially the prey $\left(\mathrm{S}_{1}\right)$ dominates over S_{4} and the host $\left(\mathrm{S}_{3}\right)$ of S_{1} till the time instant $t_{41}{ }^{*}, t_{31}{ }^{*}$ respectively and there after the dominance is reversed. Also the predator $\left(\mathrm{S}_{2}\right)$ dominates
over S_{4} and the host $\left(\mathrm{S}_{3}\right)$ of S_{1} till the time instant $t_{42}{ }^{*}, t_{32}{ }^{*}$ respectively and there after the dominance is reversed.

Fig. 16

REFERENCES

[1] Archana Reddy R, on the stability of some mathematical models in biosciencesinteracting species, Ph.D thesis, 2009, JNTU.
[2] Freedman HI, Deterministic Mathematical Models in Population Ecology, Marcel - Decker, New York, 1980.
[3] Kapur JN, Mathematical Modeling, Wiley - Eastern, 1988.
[4] Kapur JN, Mathematical Models in Biology and Medicine Affiliated East -West, 1985.
[5] Lakshmi Narayan K, A Mathematical study of Prey-Predator Ecological Models with a partial covers for the prey and alternative food for the predator, Ph.D thesis, 2004, J.N.T.University.
[6] Lotka AJ, Elements of Physical biology, Williams and Wilkins, Baltimore, 1925.
[7] Meyer WJ, Concepts of Mathematical Modeling, Mc Graw - Hill, 1985.
[8] Paul Colinvaux, Ecology, John Wiley and Sons Inc., New York, 1986.
[9] Ravindra Reddy B, Lakshminarayan K and Pattabhiramacharyulu NCh, Advances in Theoretical and Applied Mathematics, Vol.5, No. 2 (2010), 121-132.
[10] Ravindra Reddy B, Lakshminarayan K and Pattabhiramacharyulu NCh, International J. of Math. Sci \& Engg. Appls. (IJMSEA), Vol. 4, No. III (August, 2010), 97-106.
[11] Trinova NC, Some Mathematical aspects of modeling in Bio Medical Sciences, Ph.D thesis, 1991, Kakatiya University.
[12] Volterra V, Leconssen la theorie mathematique de la leitte pou lavie, Gauthier-Villars, Paris, 1931.

