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ABSTRACT

This investigation deals with a mathematical model of a four species (S, & S and &) Syn-
Ecological system (Two of the four species are washed out states). S iS a predator
surviving on the prey S;: the prey is a commensal to the host S; which itself is in mutualism with
the fourth species S;. Further S, and S, are neutral. The model equations of the system constitute
a set of four first order non-linear ordinary differential coupled equations. In all, there are
sixteen equilibrium points. Criteria for the asymptotic stability of six of the sixteen equilibrium
points. Two of the four species are washed out states only are established in this paper. The
linearized equations for the perturbations over the equilibrium points are analyzed to establish
the criteria for stability and the trajectories illustrated.

Key words: Equilibrium state, stability, Mutualism, Commensals.

INTRODUCTION

Mathematical modeling of ecosystems was initiatgdLbtka [6] and by Volterra [12]. The
general concept of modeling has been presentdaitraatises of Meyer [7], Paul Colinvaux [8],
Freedman [2], Kapur [3, 4]. The ecological intéi@ts can be broadly classified as prey-
predation, competition, mutualism and so on. NS@nivas [11] studied the competitive eco-
systems of two species and three species with degdimited and unlimited resources. Later,
Lakshmi Narayan [5] has investigated the two sgeprey-predator models. Recently stability
analysis of competitive species was investigated\tmphana Reddy [1]. Local stability analysis
for a two-species ecological mutualism model hanhkravestigated by B. Ravindra Reddy et. al
[9, 10].
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2. Basic equations:
Notation Adopted:

Na(t) The Population of the Prey,{S

No(t) The Population of the Predator)S

N3(t) The Population of the Host{)Sof the Prey (9
and mutual tq S

Ng(t) The Population of Smutual to

t : Time instant

a,&,a,a . Natural growth rates 0SS, S5, &

01,802,833,4 . Self inhibition coefficients of $S, S, &

ai2,&1 . Interaction (Prey-Predator) coefficients qfdsie to $and S dueto $
ay3: Coefficient for commensal for; Slue to the HostsS
as4, 3. Mutually interaction betweens;@nd S

& % 8

all 22 a33 a 44

: Carrying capacities ofiSS, S5, &

Further the variables NN, N3, N4 are non-negative and the model parametgrag,aas, &, a,
o, &3, g, &2, D1, &3, &g are assumed to be non-negative constants.

The model equations for the growth rates 9f$, S5, & are

le_aiN -a, NN +a,NN (2.1)
dgiz =a,N,-a,,N/+a,NN, e X
%=a3N3—a33N;+a34N;\14 . (23)
dcli\':4 =a,N,-a,N/+a, NN, (2.4)

3. Equilibrium States:
The system under investigation has sixteen eqihbstates are given by

N _oi=123: (3.1)
dt

l. Fully washed out state:
(1) N;=0,N,=0,N;=0N,=C

. States in which three of the four species are e@siut and fourth is surviving

2) N,=0,N,=0N,=ON,=% (3) N,=0,N,=0,N,=-2 N, =C
44 3
4) N,=0,N,=2 N,=0N,=0 (5) N,=-—2,N,=0,N,=0N,= 0
Ay 2y,

[I1.  States in which two of the four species are wash#dvhile the other two are surviving
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N =0N =0N_ d,a,tad,, a§43+a?-33
(6) Nl—O N2—0N3 N

A3, ~ A3 43 Az, aR

This state can exist only whagpa,,—a,a,,>0.

& oot 8, o a8 a8
YN =0N, =2 N.=0N. = (8N =0N,=-2 N.=% N.=0
() 1 2 a22 3 4 a44 () 1 2 a22 3 a33 4
@ N, =2 N,=0N,=0N,="2

ail 44

(10) N =18 3713 N =0, =— N,=0
4
E'l E"33 El33

a <~ _ ap,ta AN
(11) N — a1a22 2a12 2 - le ?‘11’N — 0,N4: O
a11a22+a12aﬂ alg 22+a 19 21

This state can exist only whexa,,—a.a,,>0
V.  States in which one of the four species is washedavhile the other three are surviving

(12) N =ON, =22 N =%ty - _ 8857884
1 11 N2 yINg

2 a3ﬁ44_a3@43, ) agdag,

— _ . + o N
(13) N= N =0N, = 2Putdfu [ _ 38384
a, A3y~ A3 43 aa,ag,

Where

a=a(8@,tag,)+tafa g, af ha Fa (B & 52 )
(14) Nl 8y, ~aA, N _ag,tag, o N, —ON _a,

a11a'22+a'1?'21 lg' 22+a l@ 21 a 4.
(15) N, = 'BzN '33N—3N-0
ﬂ ﬂl a33

Where
ﬂ1 = 333(3-1@22"'3-12'i 2)' B —a 2§aq ;3aa )3_3- aa
Bs=a,(agstag;)tag g,

V. The co-existent state (or) Normal steady state

(16) le y1+ai3a22y2,W2=y4+a1§ 21/2’ N3= &3, tagd,, N a@33+a§43
Vs Vs A58, ~ A3 43 Az ma @ g

Where

:(aia22+a2alz)(a3§ wAR LY Faa gag g
=(a@ptaa)(@g., a8 by r(@3 728 )@ & 2 8, )

The present paper deals with two of the four spgeaie washed out states only. The stability of
the other equilibrium states will be presentechm forth coming communications.
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4, Stability of two of the four species washed out equilibrium states:
(8. Nos 6, 7, 8, 9, 10, 11 in the above Equilibrium states)

4.1  Stability of the Equilibrium State 6
E:O’WZ: QE:M ,E: aggtafds

B339, ~ Az 43 A8 4 AR g4
Let us consider small deviationgt), u,(t), u,( 9, u,( ) from the steady state
ie. N (t)=N +u(t),i=1234 - (4.1.1)

Substituting (4.1.1) in (2.1), (2.2), (2.3), (2.4hd neglecting products and higher powers
ofu,, u,, u,, u,, we get
du du, _

d_tl=|lu1 ...... (412) E—azuz (413)
du, = _ — N du, _ —
E——a33N3u3+a34Ny4 ...... (4.1.4) E—a43N4U3_a44Ny4 .. (4.15)
Herel, = a1+ai?,ﬁ3 .. (4.1.6)

The characteristic equation of which is
(A=) _az)[/‘z —(@apNzta,N A+ (@3 a2 N N ]: 0 . (4.1.7)
The characteristic roots of (4.1.7) are

PRI CH LW P ENCHIELWID L § I
T 2

Two roots of the equation (4.1.7) are positive #rother two roots are negative.
Hence the equilibrium state usistable.

The solutions of the equations (4.1.2), (4.1.31.4), (4.1.5) are

u, = u, e ... (4.1.8) U, =u,e ... (4.1.9)
Lo Use (A5 84 N,) + U 02, N, s Ug{A § auN}+ u,ay,N & . (4.1.10)
, A, o, .. (4.1,

U = Uyo ()‘3+ a33N3)+ UgoBu3N, &t + u4(()‘ T a3;N),+ UgoBs5N Qut 4.1.11
, i, Y .. (4.1,

where uo, W, Uso, Wy are the initial values ofiuw, u, U, respectively.

There would arise in all 576 cases depending upermtdering of the magnitudes of the growth
rates @ &, &, & and the initial values of the perturbationg(), Ux(t), Uso(t),uso(t) of the
species § S, S5, S Of these 576 situations some typical variatians illustrated through
respective solution curves that would facilitatertake some reasonable observations.

The solutions are illustrated in figures 1 & 2.
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Case(i) : If U30<Uz0<U10<Upo, &; < |l <a,<a,

In this case initially the predator fSdominates over the prey {Sill the time instantt,, and

there after the dominance is reverdeds evident both the species prey and Predamigamg
away from the equilibrium point while the other twpecies converge to the equilibrium point.

Hence the equilibrium state is unstable.
Fig.1

U U

Uzo

1o

Case (ii) : If upe<use<tho<uzo, &, <a,<a,<l,

In this case initially the host {of S, dominates over the prey§SS; and the predator ¢ytill
the time instantt,. ,t,; t,, respectively and there after the dominance isrseee Also

dominated over by the predator,(Sill the time instantt,, and there after the dominance is

reversed.
Fig.2

!

R
al.e .+ L+ e
s Lay By s t

4.2  Stability of the Equilibrium State 7
N, =0,N, =% N, = 0N, =%

2 a'44

Substituting (4.1.1) in (2.1), (2.2), (2.3), (2.4hd neglecting products and higher powers
ofu,, u,, u,, u,, we get

du, du aa
—L=ru ...(4.21 —2=-agu,+—22y ... (422
dt 11 ( ) dt a2 2 azz 1 ( )
du, du a,a
—=lu ...(4.2.3 —4 =—au,+—2"4y ... (424
dt 3¥3 ( ) dt 44 a44 3 ( )
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Hererlzal—%, I3:a3+% .. (4.2.5)

2 a'44
The characteristic equation of which is
(A-r)(A+a)(A-1;)(A+a,)=0 .. (4.2.6)

Case (A): Whenr, <0 (i.e., wherg, <@)

2

The roots,,—a,, —a, are negative ant] is positive.
Hence the equilibrium state usistable.

The solutions of the equations (4.2.1) (4.2.22.@), (4.2.4) are

u, =u, e .. (4.2.7)
U, =[Uy - B0 1oat BB Ha0 ... (4.2.8)
a22(r1 + a2) a22(r1+ aZ)
U, = U, €e? .. (4.2.9)
= [u, ——2fta0 jerary AaBlHa g ... (4.2.10)
a44(|3+ a4) a44(I 3+a4)

The solution curves are as shown in figures 3 & 4.
Case(i): If u,<u,, <u, <u, and a,<l;<a,<r,

In this case initially $dominates over the Host4Sf S till the time instantt,, and there after

the dominance is reversed. Also the commensaiespéecobserved to be going away from the
equilibrium point while the other three specieswage to the equilibrium point. Hence the
equilibrium state is unstable.

Fig. 3

Case (ii): If uy, <uy,,<u,<ugand,<a,<r<a,.

In this case initially the Prey {Bdominates over 5Sthe host (§ of S, and the Predator £§5till
the time instantt,,t;,t,, respectively and there after the dominance isrseee Also %
dominates over the Host4)Sof S till the time instantt,, and there after the dominance is
reversed.
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R
141131134 t}l t

Fig. 4

Case (B): Whenr, >0 (i.e., wherg, >@)

2
The roots-a,, —a, are negative and,|, are positive.
Hence the equilibrium state usistable.

In this case the solutions are same as in casar(@}he solutions are illustrated in figures 5 & 6.
Case(i): If u,, <uy,<u,<u,and,<l,<a,<a,.

In this case initially $dominates over the PreyjSand the Host (§ of S till the time instant
t,,.t;, respectively and there after the dominance isrseee Also the Prey (Bdominates the

Host (S) of S till the time instant;, and there after the dominance is reversed.

Fig.5

u;

Uz

H '
0 v e -
zH l"31 zBl t

Case (ii): If u,<ug,<u,<u,anda,<r<l,<a,.
In this case initially the Predator jSdominates over the HostfSof S, and S till the time
instant t,,,t,, respectively and the dominance gets reversed thitee. Also the Prey (%

dominates the Host ¢Bof S till the time instant;, and there after the dominance is reversed.

Fig.6

U Uy

Tho
Uz

Uan

| uy
Wo—

;

:

o= s
132 £3l il] t
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3 Stability of the Equilibrium State 8
N,=0N, =2 N,=3% N,=0

2 a33

Substituting (4.1.1) in (2.1), (2.2), (2.3), (2.4hd neglecting products and higher powers
ofu,, u,, u,, u,, we get

du, du a,a
—L=su .. (4.3.1 —2z=-au,+—22y, ... (432
dt %. 1 ( ) dt a2 2 a22 1 ( )
du3 a34a3 du4
— =-au,+——=u .. (4.3.3 —=n,U .. (434
dt a3 3 a33 4 ( ) dt 44 ( )
a8 _ A, - A58,
Heres =a +—— .. (4.3.5) n=a,+ .. (4.3.6)
T P ey
The characteristic equation of which is
A-s)(A+a,)(A+a)(A-n,)=0 .. (4.3.7)
Case (A): Whens <0 (i.e., Wheral+M<al—zaz)
3 a22

The rootss , —a,, —a, are negative and, is positive.
Hence the equilibrium state usistable.
The solutions of the equations (4.3.1) (4.3.28.@), (4.3.4) are

u = uloeslt ... (4.3.8)

U, =[Uy = B0 e+ MeSlt .. (4.3.9)
aQZ(Sl + a2) a22(sl+ a)

u, = [U30 _ ;a5 U 9 e_aat + Mew (4310)
ag(n, +ay) a;{n,+ay

0, =u e .. (4.3.12)

The solution curves are exhibited in figures 7 & 8.

Case(i): If uy,<u,<uy,<uzand a,<a,<s <n,
In this case initially the Host gBof S, dominates over Sill the time instantt,, and there after

the dominance is reversed. Also the Predatgrd@minates over the,8ll the time instantt,,

and there after the dominance is reversed.
Fig.7

Uy

Uz
Yz
Ugpn ;

L]
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Case (ii): If u,, <u,<uy,<uzanda,<n,<a,<s
In this case initially the Prey {Sdominates over &ill the time instantt,, and there after the
dominance is reversed. Also the Predatg) ®minates over the,8ll the time instantt,, and

there after the dominance is reversed. SimilagyHlost (9) of S dominates over Sill the time
instantt,, and the dominance is gets reversed there after.

Fig.8

Uy

i) - + '. ol
o g 253 t

Case (B): Whens >0 (i.e., wherg, + 2% >a1—2a2)

3 a'22
The roots-a,, —a, are negative argl,n, are positive.
Hence the equilibrium state usistable.

In this case the solutions are same as in casar{@)}he solutions are illustrated in figures 9 &
10.

Case(i): If u,<u, <u,<u, ands<a,<a,<n,
In this case initially the Host ¢pof S dominates the Predator,jSand Prey (§ till the time
instant t;,,t’,, respectively and there after the dominance isrseee Also the Predator AS

dominates over the Prey,Sill the time instant;, and the dominance gets reversed there after.

Similarly S; dominates over the Predator)%nd the Prey ($ till the time instantt,,,t,,
respectively and there after the dominance is s=¢kr

i Uz 1y

[ i
0 fy fply lzin t

Fig.9

Case(ii): If u,,<uy,<u,<uganda,<n,<s<a,
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In this case initially the Host ggof S dominates the Predator}Sill the time instantt,, and
there after the dominance is reversed. Algal@ninates over the Predator,)Sill the time
instantt;, and there after the dominance is reversed.

Fig. 10

[N Uz g

JJ /

Vo /
T
:

4.4  Stability of the Equilibrium State 9
Wl:i'N_zzo,Ws: O’E:&

1 =
Substituting (4.1.1) in (2.1), (2.2), (2.3), (2.4hd neglecting products and higher powers
ofu,, u,, u,, u,, we get

dul a:I.2a1 al?‘l
—=-au, - u,+ u ...(441
dt ai 1 all 2 all 3 ( )
du
d_tz =q,Uu, .. (4.2
du, du a,a
—2=|u ... (4.4.3) —2 =-g,u,+—"4y ... (4.4.4)
dt 33 dt 44 » 3
Hereq, =a, + el o= aﬁM ... (4.4.5)
1 Ay
The characteristic equation of which is
(A+a)(A-aq)(A-1;)(A+a,)=0 .. (4.4.6)

The rootsq,,l, are positive and-a,,—a, are negative.
Hence the equilibrium state usmstable.

The solutions of the equations (4.4.1) (4.4.2%.@), (4.4.4) are

U, :[Ulo_ a38U30 + a, Al 5 e 4 a,a4 s e — a gy !
all(|3+a1) all(q 2+a]) alﬂ 3+a) a 1gq 2+a)l
... (4.4.7)
U, = U,e™ .. (448)  u =u.e? .. (4.4.9)
s = [ugy——2a0 erary QaBH30 g .. (4.4.10)
a44(|3+ a4) a44(| 3+ aﬂ)

The solution curves are as shown in figures 11 & 12
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Case (i): If uy,<uz<u,<u,and g <a,<l,<q,

In this case initially the Prey {5Sdominates over the Hostg}Sf S and the Predator £§till the
time instantt,,,t,, respectively and there after the dominance isrseee Also $ dominates
over the Host (§ of S; and the Predator £5till the time instantt,,,t,, respectively and there
after the dominance is reversed. Similarly theti§g of S, dominates over the Predaton)S
till the time instantt,, and there after the dominance is reversed.

Uz Uz g

g3‘1 5:;1 f;;%’a 5;4 t
Fig. 11
Case (ii): If uy, <u,<u,,<u,andg, <l;<a <a,.
In this case initially the Prey {Fdominates over 55and the host b of S till the time instant

t,.,t;, respectively and there after the dominance isrsede Also $ dominates over the Host

(Ss) of S till the time instant,, and there after the dominance is reversed.
Fig. 12

y

<]

th

LAY 2N t

u Uy -
U
Uz
Uig
Ugn
=]
3 t

24

Fig. 13

45  Stability of the Equilibrium State 10
N, = alasg+a3als'N—2=0E:$ N,=0
a11a33 a33
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Substituting (4.1.1) in (2.1), (2.2), (2.3), (2.4hd neglecting products and higher powers
ofu,, u,, u,, u,, we get

du — ~
d_tl:Mlul_aiszJz"'alsNP: .. (4.5.1)
du
d_tz =r,u, .. (2D.
du, Ay, du
—2 =-au,+ u .. (4.5.3 —2=n,u .. (454
TSR . (453) =N (4.5.4)
Here M, = —a, — 5% .. (455)
% _
r,=a,+a,N,n,=a,+a,N, ... (4.5.6)

The characteristic equation of which is

A+M)A-r)A+a)(A-n,)=0 .. (4.5.7)

The rootsr,,n, are positive and-M,,—a, are negative.

Hence the equilibrium state usistable.

The solutions of the equations (4.5.1) (4.5.25.@), (4.5.4) are

u=Ju + aizﬁluzo(_as'*' M ])_alN'.t’l 3&r ;M )_ g Mt
' 0 (rz + Ml)(_a3+ M 1)

. [amﬁl[(ugo—n»eaf g M) -a Ny g(-a M )1}

(rz + Ml)(_a3+ M 1)

... (4.5.8)
U, = U,e? ... (4.5.9)
Uy =[Ug— Goldlao e ™ T e ... (4.5.10)
(N, tay) a;{n,ta,)
u, =u,e™ LLR41)
ay
Wherey, = %o
" ag(n,+ay)

The solution curves are exhibited in figures 134& 1

Case (i): If uy<uz<u,<u,,anda,<M,<n,<r,
In this case initially the Host gBof S; dominates over the Predator)8ll the time instantt,
and there after the dominance is reversed.
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Fig. 14

Case (ii): If u,<u,<uy,<uzanda,<M,<r,<n,

In this case initially the Host ¢pof S, dominates over the Predatop) S5, and the Prey (, till
the time instantt,,,t,,,t,. respectively and there after the dominance isrseee Also the
Predator (9§ dominates over the Prey,|Sill the time instant;, and there after the dominance
is reversed. And the Predatop)8ominates over Jill the time instantt,, and the dominance
is gets reversed there after. Similarlyd®minates the Prey {&ill the time instant,, and there
after the dominance is reversed.

4.6  Stability of the Equilibrium State 11
le Qay, —ad, ,sz a§21+a§‘11’ﬁ3=0,N_4= 0
a11a22+ al? 21 al?‘ 22+ a 19 21

Substituting (4.1.1) in (2.1), (2.2), (2.3), (2.4hd neglecting products and higher powers
ofu,, u,, u,, u,, we get
du, _

o - Nt @ Nt g Ny e (4.6.1)
du - —

d—tzza21N2u1— a,Nu, e (4.6.2)
du,

—Z=au, e 4.6.3
d o (4.6.3)
du

d_t4 a4, (4.6.4)

The characteristic equation of which is
(A2 + (@, N+ &, N, M+ a,3, NN K- a X- & (4.6.5)

The characteristic roots of (4.6.5) are

A= —(auN; +a,,N ) i\/(alﬂf a,N)-4aa NN, S A=a A= --- (4.6.6)
> 8y &

Two roots of the equation (4.6.5) are positive #mel other two roots are negative. Hence the
equilibrium state is unstable.
The trajectories are given by
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U = alZ_Nl( ugt uzo) B a13_N1u30—(p 11\ 2 asﬂ ght

' )‘2_)\1
~ _ _ (4.6.7)
+ (u10_(p1)()\2_)\1)_a12N1( U, u29+ alleus(')"(p A 7 dj eA2t+(plea3t
L )‘2_)‘1
u :_a12N1( U,gt uzo)_ a13_N1u30_(p 1(\ 5 95 Ee)\lt
- _ _ ... (4.6.8)
+ (u10_(p1)()\2_)\1)_a12N1( u,g u2()+ alleus(')"(p 1{ 7 Qs g eAZt_Hp gt
I )\2_)\1 2 2
U, = Uy €' ---- (4.6.9) U, = U,,& --- (4.6.10)
Here
— Bz — a13N1u30—(p1(a3+ Ps) —a N
Q=T ¢~ = » B=a;N
a’ + 3 +p, a, N, 2

B = (a3, + 3,8, )NN, , B = uya,N a a,N,

_ N Yl _ _(/11 + Ps) — _(/]2 + Pa)
- N ’ e -_—
¢1 a; N, + azzN 2 51 2N1 52 alle

The solutions are illustrated in figures 15 & 16.

Case(i) : Ifuy, <u,<u,<uzanda,<a <a,<a,

In this case initially the host {5of S, dominates over Sthe prey (9 and the predator ¢5in
natural growth rate as well as in its initial pagidn strength. It is evident that all the four

species going away from the equilibrium point. Hetlee equilibrium state is unstable as shown
in figure.

Fig. 15

U J
Uy
Usn J uy
U4p
Tho
t

Uzo

Case(ii): Ifu,y <u,<uy,<u, a,<a,<a <a,
In this case initially the prey (bdominates over Sand the host (8 of S till the time instant
t,, ,t,, respectively and there after the dominance isrsexk Also the predator {fSdominates
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over § and the host ($ of S till the time instantt,, ,t,, respectively and there after the

dominance is reversed.
Fig. 16

L Lain I t
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