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A B S T R A C T 
 

 

The aim of this paper is to introduce the concept of arbitrary lags in n-
jobs, m machines flowshop scheduling problem involving the processing 
times and transportation times of jobs. Start lag is the minimum time 
which must elapse between starting of job i on the first machine and 
starting of job i on the last machine. The stop lag for the job i is the 
minimum time which must elapse between completing job i on the first 
machine and completing it on the last machine. The concept of fuzzy 
processing time to represent the uncertainty, vagueness in processing of 
jobs is introduced. An algorithm to find the optimal sequence so as to 
minimize the total elapsed time subject to some specified lag time 
constraint is discussed. A numerical illustration is given to demonstrate 
the computational efficiency of proposed algorithm as a valuable 
analytical tool for the researchers. 
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INTRODUCTION 

The scheduling of jobs and control of 
their flow through production process is 
essential to modern production / manufacturing 
companies. Ever since the first results of modern 
scheduling theory appeared 50 years ago, 
scheduling has attracted a lot of attention from 
both academia and industry. In a general 
flowshop scheduling problem, n jobs are to be 
scheduled on m machines in order to optimize 
some measures of performance. A time lag is the 
minimum time delay required between the 
executions of two consecutive operations of the 
same job. Practically time lags represents: when 
the time needed to move a job from one machine 
to another is not negligible, we have to take 
transportation delays into account when 
constructing a schedule.  

In the literature dealing with a flowshop 
scheduling problems, processing times are 
usually assumed to be known exactly. But, the 
real world is complex; complexity in the world 
generally arises from uncertainty. From this 
prospective, the concept of fuzzy environment is 
introduced in the theory of scheduling. The past 
few years have witnessed a rapid growth in the 
number and variety of applications of fuzzy 
logic. Zadeh17 introduced the term fuzzy logic in 
his seminal work “Fuzzy Sets”, which described 
the mathematics of fuzzy set theory. One of the 
earliest researches in arbitrary lags is due to 
Mitten5 who studied sequencing of n jobs on two 
machines with arbitrary time lags. He considered 
Start-to-Start type combined with Finish-to-
Finish lags. Kern and Nawijn4 studied 
scheduling of multi-operation jobs with time 
lags on a single machine. MacCahon and Lee6 
discussed the job sequencing with fuzzy 
processing time. Ishibuchi and Lee1 addressed 
the formulation of fuzzy flow shop scheduling 
problem with fuzzy processing time. Martin and 
Roberto7 discussed the concept of fuzzy 
scheduling with application to real life system. 
Reizebos and Gaalman8 studied the time lag size 
in multiple operation flowshop scheduling 
heuristics. Shukla and Chen9 described the real 
time FMS control as a comprehensive survey. 
Sanuja and Song10 discussed a new approach for 
two machine flowshop problems with uncertain 
processing times. Singh et al11 studied the 

reformation of non-fuzzy scheduling using the 
concept of fuzzy processing time under 
blocking. Gupta et al12 discussed flowshop 
scheduling on two machines with setup time and 
single transport facility under fuzzy 
environment. Sharma et al13 studied multistage 
bi-criteria scheduling problems involving n jobs 
on m machines to minimize the rental cost of 
machines with minimum makespan.   
Gupta, Shefali and Sharm14 studied n jobs, 2 
machine fuzzy flowshop scheduling problem 
with some time lags. The present work is an 
attempt to extend their study by generalizing the 
numbers of machines in which uncertain, 
vagueness in processing times are represented 
by triangular fuzzy numbers.  

 
ROLE OF FUZZY LOGIC IN 
SCHEDULING 

A fuzzy system can be thought of an 
attempt to understand a system for which no 
model exists, and it does so with the information 
that can be uncertain in a sense of being vague, 
or fuzzy, or imprecise, or altogether lacking. 
From this angle, fuzzy logic is a method to 
formalize the human capacity of imprecise 
reasoning. Such reasoning represents the human 
ability to reason approximately and judge under 
uncertainty. In fuzzy logic all truths are partial 
or approximate. In this sense the reasoning has 
also been termed interpolative reasoning, where 
the process of interpolating between the binary 
extremes of truth and false is represented by the 
ability of fuzzy logic to encapsulate partial 
truths. 

Scheduling is an enduring process where the 
existence of real time information frequently 
forces the review and modification of pre-
established schedules. The real world is 
complex; complexity in the world generally 
arises from uncertainty. From this prospective, 
the concept of fuzzy environment is introduced 
in the theory of scheduling. 
 
Fuzzy Membership Function 
              All information contained in a fuzzy set 
is described by its membership function. The 
triangular      membership functions are used to 
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represent fuzzy processing times in our 
algorithm. The membership value of the x 

denoted by ,x x R  , can be calculated 

according to the formula 
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Fig. 1: Triangular membership function 

 
The above figure shows the triangular 

membership function of a fuzzy set 
~

P , 
~

P =(a, b, 
c). The membership value reaches the highest 

point at ‘b’, while ‘a’ and ‘c’ denote the lower 

bound and upper bound of the set 
~

P

respectively.
 
AVERAGE HIGH RANKING (A.H.R.) 

 

 The system characteristics are 
described by membership function; it preserves 
the fuzziness of input information. However, the 
designer would prefer one crisp value for one of 

the system characteristics rather than fuzzy set. 
In order to overcome this problem, we defuzzify 
the fuzzy values of system characteristic by 
using the Yager’s10 approximation formula

 

    crisp(A) = 2 3 13
( )

3

a a a
h A

 
 . 

 
FUZZY ARITHMETIC OPERATIONS 
            The following are the four operations 
that can be performed on triangular fuzzy 
numbers: 
 

Let 1 2 3( , , )A a a a and 1 2 3( , , )B b b b  be the two 

triangular fuzzy numbers then 

Addition: 1 1 2 2 3 3( , , )A B a b a b a b      
 
Subtraction: 1 1 2 2 3 3( , , )A B a b a b a b     . 

This subtraction operation exist only if the 
following condition is satisfied DP(A) ≥ DP(B), 

x  

x 

1 

P 

a b c 
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where and 3 1( ) ( ) / 2,DP B b b  3 1( ) ( ) / 2DP A a a  ; 

where DP denote difference point of a triangular 

fuzzy number 

 
else;

 1 3 2 2 3 1( , , )A B a b a b a b      

 
Multiplication: 1 1 1 3 3 1 3 3 1 1 1 3 3 1 3 3(min( , , , ),max( , , , ))A B a b a b a b a b a b a b a b a b   

 
Division: 1 1 1 3 3 1 3 3 1 1 1 3 3 1 3 3/ (min( / , / , / , / ),max( / , / , / , / )).A B a b a b a b a b a b a b a b a b

 
 
NOTATIONS & DEFINITIONS 

The following notations have been used in the progress of the paper: 
                        S  : Sequence of jobs 1,2,3,….,n 
                     Sk   : Sequence obtained by applying Johnson’s procedure, k = 1, 2, 3, ----- 
                     Mj         : Machine j, j= 1, 2 
                      M  : Minimum makespan 

    aij   : Fuzzy Processing time of ith job on machine Mj 
    Di       : Start lag for job i 
   E    : Stop lag for job i 

ijA     : AHR of processing time of ith job on machine Mj 

iXU    : Starting time of any job i on machine X 

iXT    : Completion time of any job i on machine X 

CT(Si)   : Total completion time of jobs for the sequence Si 

,i j kT     : Transportation time of ith job from jth machine to kth machine 

,'i j kT   
: Effective transportation time of ith job from jth   machine to kth machine. 

 
The effective transportation time of job i 
denoted by , 1'i s sT   is defined as 

 

    , 1 , 1' max( , , ); 1,2,3,....( 1)i s s i i i i i s sT D G E H T s m       

 
Where; 1 2 3 ( 1) 2 3 4.... ; ....i i i i i m i i i i imG A A A A H A A A A i          

. 
THEOREMS 

The following theorems have been 
established to find the optimal sequence 

optimizing the multistage fuzzy flowshop 
scheduling problems with time lag contraints. 

 
a. Let n jobs J1, J2, J3… Jn are processed through m machines Mj (j = 1, 2,…, m) in order M1-

M2-M3-…….-Mm with no passing allowed. Let tij represents the processing time of ith job (i =1, 
2, …, n) on jth machine (j = 1, 2, …., m) such that ( 1)min maxis i st t  ; s = 1, 2, …, (m-2), then the 

optimal schedule minimizing the total elapsed time is given by the following decision rule:  

job Jk proceeds job Jk+1 if    1 1min , min ,k k k kG H G H  ; where  

1 2 ( 1) 2 3 and i i i i m i i i imG t t t H t t t              . 

 
Proof: Let S be a sequence of jobs defined as

 1 2 3 1 1 2k k k k nS J J J J J J J J         

. Let S’ be another sequence of jobs processing 
in which jobs Jk and Jk+1 are switched, .i.e.
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 '
1 2 3 1 1 2k k k k nS J J J J J J J J         

. Let Ap,j and Cp,j denote the processing time and 
completion time of pth job on machine Mj in job 

schedule S. Let '
,p jA and '

,p jC  denote the 

processing time and completion time of pth job 

on machine Mj in job schedule 'S . First, we shall 
prove the following lemma: 

 
Lemma: The completion time of ith job Ji on (m-1)th machine Mm-1 is given by 

,( 1) ,1 ,2 ,3 ,( 1)  ; m=2,3,4,...,mi m i i i i mC C A A A         . 

 
We shall prove the result with the help 

of mathematical induction. Let P(i) denote the 
statement 

 

 
 

 

P(i) :  ,( 1) ,1 ,2 ,3 ,( 1)  ; for any natural number i m i i i i mC C A A A i         .  --- (1) 

 

For i = 1, we have 1,( 1) 1,1 1,2 1,3 1,( 1) 1,1 1,2 1,3 1,( 1) = Cm m mC A A A A A A A                  1,1 1,1C A
 

 
Therefore, statement P (1) is true. 
 

Let us assume that the result (1) is true 
for any arbitrary numbers say k, .i.e. P(k) is true. 
Therefore, we have 
  
P(k) :  ,( 1) ,1 ,2 ,3 ,( 1)  k m k k k k mC C A A A              --- (2) 

 
Let a new statement a new statement ' ( )P S  as  

 
'

( 1), ,( 1)( ) :  ; 1,2,3,....,( 2),  m being a natural number.r s r sP S C C s m   
 

 
Now, first we validate this statement 

with the help of induction. 
 
 
Since ( 1),1 ,1 ( 1),1r r rC C A          --- (3) 

 
and ,2 ,1 ,2r r rC C A    (using (2))       --- (4) 

 
From the structural relationship it is obvious that ( 1),1 ,2r rA A     --- (5) 

 
On combining results (3), (4) and (5), we get 
 

( 1),1 ,2r rC C  , hence ' (1)P  is true. 

 
Let us assume that the statement ' ( )P S is 

true for any arbitrary value say q. 
 
.i.e. we have ( 1), ,( 1)r q r qC C         --- (6) 
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Now,  ( 1),( 1) ( 1), ,( 1) ( 1),( 1) ( 1), ( 1),( 1)  max ,r q r q r q r q r q r qC C C A C A           
   

--- (7) 

 
From (1), we have 
 

,( 1) ,1 ,2 ,3 ,( 1)r q r r r r qC C A A A         
 

 

,( 2) ,1 ,2 ,3 ,( 1) ,( 2)r q r r r r q r qC C A A A A            = ,( 1) ,( 2)r q r qC A     --- (8) 

 
From structural relationship, it is obvious that ( 1),( 1) ,( 2)r q r qA A      --- (9) 

 
On combining results (6), (7), (8) and (9), we get 
 

( 1),( 1) ,( 2)r q r qC C   . 

 
Therefore, the statement ' ( )P s is true for s=q+1, .i.e. ' ( 1)P q  is true. 

 
Hence, by principle of induction ' ( )P s is true, .i.e. ( 1), ,( 1) ;   1, 2,3, , ( 2)r s r sC C s m      

 --- (10) 
 

Let us define a new statement ''
( 1),( 1) ( 1),1 ( 1),2 ( 1),3 ( 1),( 1)( ) : r l r r r r lP l C C A A A            --- (11) 

 
Again, we have to test the consistency of result (11), by mathematical induction. 
 

For l = 1,    ( 1),2 ( 1),1 ,2 ( 1),2 ( 1),1 ( 1),2  max ,      of  result (10)r r r r r rC C C A C A        
 

 
Hence, '' (1)P is true. 

 
Let the statement '' ( )P l is true for any arbitrary 

number (say) x, .i.e. 
 

''
( 1),( 1) ( 1),1 ( 1),2 ( 1),3 ( 1),( 1)( ) : r x r r r r xP l C C A A A                                            --- (12) 

 

Now,  ( 1),( 2) ( 1),( 1) ,( 2) ( 1),( 2) ( 1),( 1) ( 1),( 2)max ,      (Using (10))r x r x r x r x r x r xC C C A C A               

                          ( 1),1 ( 1),2 ( 1),3 ( 1),( 1) ( 1),( 2)r r r r x r xC A A A A              
 

 
Therefore, the statement '' ( )P l is true for l = x + 1.  

 
Hence, by the mathematical induction '' ( )P l . 

 
On taking l = m - 2 in result (11), we have 
 

( 1),( 1) ( 1),1 ( 1),2 ( 1),3 ( 1),( 1)r m r r r r mC C A A A             
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Therefore, statement P (i) (result (1)) is 
true for i = r+1. Hence, by mathematical 
induction P (i) is true, .i.e. 
 

 
 
 

  ,( 1) ,1 ,2 ,3 ,( 1)  ; for any natural number i m i i i i mC C A A A i         . 

 
Hence, lemma is proved. 
 

Now, we proceed to proof of main 
theorem. By definition, we have 
 
 

   , ,( 1) ( 1), , ,1 ,2 ,( 1) ( 1), ,max , max ,p m p m p m p m p p p m p m p mC C C A C A A C A        
    

--- (13) 

 

Now, schedule S is preferable to 'S if  '
, ,n m n mC C       --- (14) 

 

.i.e.    ' ' ' ' '
,1 ,2 ,( 1) ( 1), , ,1 ,2 ( 1), ( 1), ,max , max ,n n n m n m n m n n n m n m n mC A A C A C A A C A         

 
 

Now, we have ' '
,1 ,1 ,1 , ,

1

;   Also  ( 1,2,3,..., )
n

n n i n j n j
i

C C t A A j m


    . 

 

The result (14) is true, if '
( 1), ( 1),n m n mC C  . 

 

Continuing in this manner, we get '
( 1), ( 1),k m k mC C        --- (15) 

 

Now,    ( 1), ( 1),( 1) , ( 1), ( 1),1 ( 1),2 ( 1),3 ( 1),( 1) , ( 1),max , max ,k m k m k m k m k k k k m k m k mC C C A C A A A C A                     

          ,1 ( 1),1 ( 1),2 ( 1),3 ( 1),( 1) , ( 1),max ,k k k k k m k m k mC A A A A C A              
 

 
Since, , ,k j k jA t , therefore ( 1),1 ( 1),2 ( 1),( 1) ( 1),1 ( 1),2 ( 1),( 1) 1k k k m k k k m kA A A t t t G                       

 
 

Hence,  ( 1), ,1 1 , ( 1),max ,k m k k k m k mC C G C A            --- (16) 

 

Now,    , ,( 1) ( 1), , ,1 ,2 ,3 ,( 1) ( 1), ,max , max ,k m k m k m k m k k k k m k m k mC C C A C A A A C A                

      ( 1),1 ,1 ,2 ,3 ,( 1) ( 1), ,max ,k k k k k m k m k mC A A A A C A            
 

 
Also, ,1 ,2 ,( 1) ,1 ,2 ,( 1)k k k m k k k m kA A A t t t G                  

 
 

Hence,  , ( 1),1 ( 1), ,max ,k m k k k m k mC C G C A     

        ( 1),1 , ( 1), ,max ,k k k m k m k mC G A C A           --- (17) 
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On using (17), the result (16) can be written as 
 

 1, ,1 1 1,1 , ( 1), , ( 1),max , ,k m k k k k k m k m k m k mC C G C G A C A A           

            ,1 1 ( 1), 1,1 , ( 1), ( 1), , ( 1),max , ,k k k m k k k m k m k m k m k mC G A C G A A C A A              

            ( 1),1 ,1 1 ( 1), 1,1 , ( 1), ( 1), , ( 1),max , ,k k k k m k k k m k m k m k m k mC A G A C G A A C A A                

            ( 1),1 ,1 1 ( 1), 1,1 , ( 1), ( 1), , ( 1),max , ,k k k k m k k k m k m k m k m k mC t G t C G t t C t t              
  --- (18) 

 
Similarly, we can obtain 

 ' ' ' '
( 1), ( 1),1 ( 1),1 , ( 1),1 1 ( 1), , ( 1), 1, ,max , ,k m k k k k m k k k m k m k m k m k mC C G t t C G t t C t t               

  --- (19) 
 

On using  (18) and (19), result (15) becomes 
 

 
 

( 1),1 ,1 1 ( 1), 1,1 , ( 1), ( 1), , ( 1),

' ' '
( 1),1 ( 1),1 , ( 1),1 1 ( 1), , ( 1), 1, ,

max , ,

       < max , ,

k k k k m k k k m k m k m k m k m

k k k k m k k k m k m k m k m k m

C t G t C G t t C t t

C G t t C G t t C t t

      

      

       

       
 

 

Since, '
( 1), ( 1),k m k mC C  and third term on both side become equal, hence, we have 

 

 
 

( 1),1 ,1 1 ( 1), 1,1 , ( 1),

' '
( 1),1 ( 1),1 , ( 1),1 1 ( 1), ,

max ,

                                            max ,

k k k k m k k k m k m

k k k k m k k k m k m

C t G t C G t t

C G t t C G t t

    

    

      

     
 

 ,1 ( 1),1 ( 1),2 ( 1),( 1) ( 1), ,1 ,2 ,( 1) , ( 1),

( 1),1 ,1 ,2 ,( 1) , ( 1),1 ( 1),2 ( 1), 1 ( 1),

max ,

                             max ,

k k k k m k m k k k m k m k m

k k k k m k m k k k m k m

t t t t t t t t t t

t t t t t t t t t

      

      

         

       ,k mt
 

 

On subtracting    ,1 ,2 , 1,1 1,2 1,k k k m k k k mt t t t t t        from each side, we get 

 

   ,2 ,3 , ( 1),1 ( 1),2 ( 1),( 1) 1,2 1,3 1, ,1 ,2 , 1max .... , ... max .... , ...k k k m k k k m k k k m k k k mt t t t t t t t t t t t                       
 

 

   1, 1max , max ,k k k kH G H G      
 

 

   1 1min , min ,k k k kG H G H   , i.e.    1 1min , min ,k k k kG H G H 
 

 
Hence, theorem verified.  
 
Remark: If the structural relationship in the theorem can be taken as  

                         ,( 1) ,min max  ( 2,3, 4,..., 1)i s i sA A s m   
 

then the above theorem can be verified in the same fashion. 
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b. The effective transportation time of jobs 
2 1,1 2 ,'i iM i MT U T   where 

,1 2 1 2 ,1 2' max{ , , }i i i i i iT D A E A T     

 
Proof: Let Uix and Tix denote the starting time 

and completion times of any job i on 
machine X (X = M1, M2; i=1,2,...,n) 
respectively in a sequence S.  

 
From the definition of Start lag Di,  
 
           we have,                

2 1iM iM iU U D   

            Now                     
1 1 1iM iM iT U A   

              i.e.,                     
1 1 1iM iM iU T A    

 
Hence, we have                                                                                                                                                                                                                                            

2 1 1iM iM i iU T D A                                             … (1) 

 
             i.e.,                 

2 1 1iM iM i iU T D A    

 
From the definition of Stop lag Ei, 
 
           we have,                

2 1iM iM iT T E 
 

 
            Now                       

2 2 2iM iM iT U A    

 
     Hence we have        

2 12iM i iM iU A T E  
 

 
          i.e.,                    

2 1 2iM iM i iU T E A                                                          … (2) 

 
Also, from definition of transportation time ,1 2iT  , we have 

                                    
2 1 ,1 2iM iM iU T T                                   … (3) 

 
Let    ,1 2 1 2 ,1 2' max{ , , }i i i i i iT D A E A T                                                        … (4) 

 
From (1), (2) and (3), it is obvious that 

                                    
2 1,1 2 ,'i iM i MT U T                                                           

Hence, result. 
 

Algorithm 
The following algorithm is proposed to 

find the optimal sequence of jobs processing: 
 
Step 1: Find the average high ranking (AHR)

( 1,2,..., ; 1,2,..., )ijA i n j m    of the processing 

time of jobs. 
 

Step 2: Check the condition Min Ais Max 
Ai(s+1); s = 1, 2, 3, 4……… 
 If the conditions are satisfied then go to 
Step 3, else the data is out of scope of the 
present algorithm. 
 
Step 3: Introduce the two fictitious machines G 
and H with processing times Gi and Hi as 
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 1 2 3 ( 1).......i i i i i mG A A A A     
 

and  

2 3 4 .......i i i i imH A A A A      for all i. 

 
Step 4: Calculate the effective transportation 

times , 1'i s sT   as 

     

, 1 , 1' max( , , ); 1,2,3,....( 1)i s s i i i i i s sT D G E H T s m       

 
Step 5: Define the two fictitious machines 'G

and 'H having respective processing 

times for job i as 'iG and 'iH  are 

defined by 
                                

, 1 , 1' ' ; ' ' ; 1,2,3,...( 1)i i i s s i i i s sG G T H H T s m        

 
Step 6: Find the optimal sequence(s) by 

Johnson’s [2] procedure for 2 machines, 
n jobs problem on the reduced problem 
in step 3. 

 
Step 7: Prepare In-Out tables for the optimal 

sequence S and calculate the total 
elapsed time. 

 
Numerical Illustration 
  Consider 5 jobs, 4 machine flow shop 
problem with processing time described by 
triangular fuzzy numbers as given in the 

following table. Our objective is to obtain 
optimal schedule to minimize total elapsed time 
subject to some specified lag constraint.

 
 

Table 1: Machines with processing fuzzy processing time 
 

Jobs Machine M1 Machine M2 Machine M3 Machine M4 
, 1i s sT  

 Start lag Stop lag 

i ai1 ai2 ai3 ai4 Di Ei 
1 (11,12,13) (8,10,12) (6,7,9) (2,3,4) 2/3 98/3 24 
2 (12,13,14) (9,10,11) (7,8,9) (4,5,7) 8/3 100/3 70/3 
3 (6,7,21) (8,9,11) (5,6,8) (3,4,5) 4/3 97/3 71/3 
4 (10,11,12) (6,7,20) (6,7,8) (4,5,6) 5/3 89/3 76/3 
5 (8,11,12) (9,10,11) (8,9,10) (2,4,6) 9 95/3 25 
                                                                                   
 
Solution: As per step 1. The AHR of processing time of jobs are as given in table 
 

Table 2: Machines with AHR for processing time 
 

Jobs Machine M1 Machine M2 Machine M3 Machine M4 , 1i s sT  

 

Start lag Stop lag 

i 1iA  2iA  3iA  4iA  Di Ei 

1 38/3 34/3 24/3 11/3 2/3 98/3 24 
2 41/3 32/3 26/3 18/3 8/3 100/3 70/3 
3 36/3 30/3 21/3 14/3 4/3 97/3 71/3 
4 35/3 35/3 23/3 17/3 5/3 89/3 76/3 
5 37/3 32/3 29/3 16/3 9 95/3 25 

                                                                                           
Here Min AisMax Ai(s+1); for s = 1, 2, 3, .i.e. the structural condition is satisfied. 
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On using the Step 3 to Step 6 of the proposed 
algorithm, we obtain S = 5 – 2 – 4 – 3 – 1 as an 

optimal sequence of jobs processing.

  
As per step 7: The In-Out table for the sequence S is as follows 
 

Table 3: The In – Out table for the optimal sequence S is 
 

Jobs Machine M1 Machine M2 Machine M3 Machine M4 
, 1i s sT  

 
i In – Out In – Out In – Out In – Out 
5 0 – 37/3 64/3 – 96/3 123/3 – 152/3 179/3 – 195/3 9 
2 37/3 – 78/3 96/3 – 128/3 152/3 – 178/3 195/3 – 213/3 8/3 
4 78/3 – 113/3 128/3 – 163/3 178/3 – 201/3 213/3 – 230/3 5/3 
3 113/3 – 149/3 163/3 – 193/3 203/3 – 224/3 234/3 – 248/3 10/3 
1 149/3 – 187/3 193/3 – 227/3 230/3 – 254/3 257/3 – 268/3 1 

 
Here CT(S) = Total elapsed time = 268/3 for this optimal sequence 5 – 2 – 4 – 3 – 1 . 
 
It may be observed that 
 

1

2

3

4

5

98 257 149 108

3 3 3 3

100 195 37 158

3 3 3 3

97 234 113 121

3 3 3 3

89 213 78 135

3 3 3 3

95 179 179
0

3 3 3

D

D

D

D

D

   

   

   

   

   

         

1

2

3

4

5

268 187 31
24

3 3 3

70 213 78 135

3 3 3 3

71 248 149 99

3 3 3 3

76 230 113 117

3 3 3 3

195 37 158
25

3 3 3

E

E

E

E

E

   

   

   

   

   

       

1, 1

2, 1

3, 1

4, 1

5, 1

2 257 187 70

3 3 3 3

8 195 78 117

3 3 3 3

4 234 149 85

3 3 3 3

5 213 113 100

3 3 3 3

179 37 142
9

3 3 3

s s

s s

s s

s s

s s

T

T

T

T

T

 

 

 

 

 

   

   

   

   

   

 

 
CONCLUSION 

Production scheduling, with the 
objective of minimizing the makespan is an 
important task in manufacturing systems. In the 
past, the processing time for each job was 
usually assumed to be exactly known, but in 
many real world applications, processing times 
may vary dynamically due to human factors or 
operating faults. Fuzzy programming techniques 
have been developed to deal with uncertain 
processing times. In this paper the concept of 

transportation time, arbitrary lags i.e. Start lag 
and Stop lag are introduced in addition to fuzzy 
processing time. The proposed algorithm yields 
an optimal schedule of job processing with 
minimum total elapsed time. The present work 
can further be extended by taking trapezoidal 
fuzzy numbers, considering weighted jobs and 
by introducing the concept of setup time, job 
block criteria and breakdown of machines etc.
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