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ABSTRACT 
 
The purpose of our work is to develop a method to compute the electromagnetic compatibility of 
complex networks. We starts from the tensorial analysis of networks developed by Sir Gabriel 
KRON in 1939[1] extended with the antennas interactions [2]. We add the hybrid tensors 
concept developed by A.REINEIX and O.MAURICE[3] to define a multidomain metric (hybrid 
metric). The result is a generalized tensorial equation representing the problem to solve. Many 
validations of the technique exist today, given through references. The French army project 
DIAMANTS (DIAkoptic Methodology for ANalysis of Disturbances on Systems) has for purpose 
to begin a first automatisation of the method. The paper presents the basic concepts, then details 
the tensorial equation to resolve for one network and in conclusion, presents the future works to 
construct a system of networks. The method is a topological one, using the union operation of the 
topology [15] to construct complex networks from simple ones. 
 
Key words: EMC, Tensorial Analysis of Networks, topology. 
______________________________________________________________________________ 

INTRODUCTION 
 

After defining a complex network, we describe a typical complex network from the 
electromagnetic compatibility (EMC) point of view. Then we explain how the reality can be 
synthesized under a symbolic graph. From this graph we define a complex metric based on a 
topology before to construct the tensorial equation (an hybrid one) representing all the 
interferences in the network. This hybrid tensor is based on both lagrangian and hamiltonian 
formalisms. We give a simple example to illustrate the mechanism of the method and for show 
how the coupling are taken into account inside the equations using the hybrid tensors. Finally we 
conclude on the future extension to complex systems. 
 
Complex Networks 
Compare to a complicated network, a complex one has entangled elements and multiscale 
behaviours[3]. The entanglement means that firstly the modelling network using classical 
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numerical techniques would take to many resources and secondly more than ever we need a 
theory to understand how it works. Numerical techniques are virtual experiments, but give no 
way to theoretically understanding the network behaviour. An example of complex network for 
EMC is a computer for planes with all its peripherals and cables. Inside this subsystem, many 
electromagnetic interactions occur: that's the purpose of the EMC job. 
 
A complex network from the EMC point of view 
Topologically, a complex network is made from simple ones using the union operation of 
topology [14]. Any electronic system can be seen as a system constructed in five layers: the 
component layer which includes all the electronic components and the printed circuit boards, the 
cable layer, which includes all the wires and cables traveling information between the equipment 
and the structure layer which involves the structures including the equipment and cables and the 
last layer which is the environment around the system. A complex network is nothing more than 
a particular system but without movement. It can be made of many subnetworks. It means that 
the elements of the network still fixed. Under this hypothesis we can detailed the interactions 
present in the network. According to Maxwell's equations, the various electromagnetic 
interactions between the components of a network (or between various subnetworks) are: 
conducted noises, electrical influence, magnetic induction and radiated fields. Added to these 
fundamental processes, there is the guided waves exchange of information between subnetworks. 
The available modellinginvites us to distinguish the guided waves and the radiated ones. Inside 
the electronic network we find as usual components like resistors, inductances and capacitances. 
The primary observables are loads, currents and voltages. The first job in front of a complex 
network is to represent it under a symbolic form. This symbolic representation, which is a graph, 
will help us to construct the metric of the network in a topological approach. 
 
Link between the reality and a graph as a symbolic representation 
If we take a look to a real experiment in electronic, we see parts where the currents keep the 
same intensity and still homogeneous. For a given scale of observation and starting from a 
generator, we always find under this assumption, at least one closed circuit of constant current. 
This first basic fact gives for many simple circuits the equivalent topology. As an evident 
example, we can consider a battery connected to a resistor, it constitutes the simplest topology 
that can be defined with one mesh: the closed electrical circuit of the battery and the resistor; and 
two branches, one linked with the battery and another for the resistor. One can wonder why a 
branch is devoted to the battery and another branch to the resistor. Each branch must be a 
primitive network. It means that any branch can be connected to a load or a generator in order to 
characterize its own electrical properties. The primitive network defined by G.Kron [1] is a 
single branch whose properties can be extracted through analysis of its response to external 
excitation. For any real network and using this principle, it is possible to link topology and the 
associated graph by identifying these areas with constant currents to the branch in the topology. 
This is done from a long time in electrical representation as SPICE. What is less obvious and 
does not appear in the patterns of electrical circuits are the radiated interactions. In case of near 
field interactions, symbols like capacitance or inductance, represent electrostatic or 
magnetostatic field lines under the same assumption of homogeneity. But there are no symbols 
for the far field interactions. In how representation, we use ropes. Ropes are some Poynting's 
flux going from one emitter to a receptor. Anyway it gives the radiated energy received on one 
branch or one mesh and coming from a remote current. The formal separation of the components 
of near field and far field is a key point of constructing the topology from the reality of 
electromagnetic phenomena. This can always be done if one accepts an extended definition of 
the capacitance and of the inductance. We begin from the field development of an electrical 
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dipole (p is the electrical moment of the dipole and r the distance between the point where the 
field is measured and the dipol

The function f can be formally separated in two parts:
 

The functionf1relates with the far field emission, and is represented by a rope. The 
functionfntakes in charge the near field interaction. The components depending on
treated as capacitors. The components depending on
near electrostatic field when we look in front of the dipole. In the detailed expression, one 
factor is transformed in
derivative of p in these relations
some branches (including the mutual partial inductances between the two branches in 
interaction), we obtain the same function
currents, following in that the superposition principle. The tricky part constituted through the 
adding of the far field interactions in a symbolic graph is so resolved.
 
Topological approach to modeling the syste
At this step, a graph exists with its nodes (numbered from 1 to N), its branches (numbered from 1 
to B), its meshes (numbered from 1 to M). Nodes, branches, meshes are parts of networks 
(numbered from 1 to R) with:
having its coordinates in a defined referential. A branch can be defined between two nodes, 
whatever is its trajectory in the 3D space. Currents can be considered as flowing on branches and 
a current vectoris created to identify
description space of branches. By the fact, currents are natural projection of the branches on a 
space whose base (of dimension B) is made of all the vectors
write: . By abuse, we note the current vector through its components
used from here). Now, we create a dual space fr
is the Kronecker’s symbol). 
space of the voltages and of the electromotive forces. From the tensorial algebra, it exists a 
metric relation z between the two 
voltage vector: . 
invariant (in all this document we use the 
 

S is a generalized power of the whole circuit.
 
If we look at the circuit with a different 
branches, but looking at the meshes, h
vision? Firstly we create a matrix to change of bases:
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dipole (p is the electrical moment of the dipole and r the distance between the point where the 
field is measured and the dipole)[5]: 

 

 
 

The function f can be formally separated in two parts: 

 
relates with the far field emission, and is represented by a rope. The 

takes in charge the near field interaction. The components depending on
capacitors. The components depending on the time derivative of p 

near electrostatic field when we look in front of the dipole. In the detailed expression, one 
: the magnetic permeability, by the c-1whi

these relations. When both near and far fields are created through a rope and 
some branches (including the mutual partial inductances between the two branches in 
interaction), we obtain the same function f because both energies will be add through the induced 
currents, following in that the superposition principle. The tricky part constituted through the 
adding of the far field interactions in a symbolic graph is so resolved. 

Topological approach to modeling the system 
At this step, a graph exists with its nodes (numbered from 1 to N), its branches (numbered from 1 
to B), its meshes (numbered from 1 to M). Nodes, branches, meshes are parts of networks 
(numbered from 1 to R) with: M=B-N+R. Each node is located in a thre
having its coordinates in a defined referential. A branch can be defined between two nodes, 
whatever is its trajectory in the 3D space. Currents can be considered as flowing on branches and 

is created to identify each branch with one component of this vector in the 
description space of branches. By the fact, currents are natural projection of the branches on a 
space whose base (of dimension B) is made of all the vectors coming from the nodes pairs. We 

By abuse, we note the current vector through its components
used from here). Now, we create a dual space from the natural space by writing

 are the base vectors of the dual space. This dual space is the 
space of the voltages and of the electromotive forces. From the tensorial algebra, it exists a 

between the two spaces that makes a link between the current vector and the 
. By replacement, we obtain the definition of the fundamental 

invariant (in all this document we use the mute index technique [6]): 

 
 

s a generalized power of the whole circuit. 

If we look at the circuit with a different point of view, for example without looking at the 
ches, but looking at the meshes, how the circuit equation will be expressed under this new 

vision? Firstly we create a matrix to change of bases: C. The currents on the branches are 
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dipole (p is the electrical moment of the dipole and r the distance between the point where the 

 

relates with the far field emission, and is represented by a rope. The 
takes in charge the near field interaction. The components depending on p can be 

the time derivative of p relates in fact to the 
near electrostatic field when we look in front of the dipole. In the detailed expression, one 

which is factor of the 
When both near and far fields are created through a rope and 

some branches (including the mutual partial inductances between the two branches in 
h energies will be add through the induced 

currents, following in that the superposition principle. The tricky part constituted through the 

At this step, a graph exists with its nodes (numbered from 1 to N), its branches (numbered from 1 
to B), its meshes (numbered from 1 to M). Nodes, branches, meshes are parts of networks 

Each node is located in a three dimensional space, 
having its coordinates in a defined referential. A branch can be defined between two nodes, 
whatever is its trajectory in the 3D space. Currents can be considered as flowing on branches and 

branch with one component of this vector in the 
description space of branches. By the fact, currents are natural projection of the branches on a 

coming from the nodes pairs. We 
By abuse, we note the current vector through its componentsIk(this is always 

om the natural space by writing:  (  
This dual space is the 

space of the voltages and of the electromotive forces. From the tensorial algebra, it exists a 
makes a link between the current vector and the 

By replacement, we obtain the definition of the fundamental 

point of view, for example without looking at the 
ow the circuit equation will be expressed under this new 

The currents on the branches are 
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expressed like linear combination of currents on the meshes:
branches without any source of current but with electromotive sources have the Kirchhoff's 
equation given by:
developed on each branch. In this equation we can replace the current vector by its expression in 
the mesh space:

. Multiplying to the left by
 

The V voltages have disappeared because of their scalar characteristic. According to Maxwell's 
equationRot(Grad(V))=0, the integration of V on a closed circulatio
transformation from branch to meshes makes the sum of the voltages across the branches, the 
term has disappeared.We see here that the tensor algebra gives us an equation invariant 
circuit, but destitute of the scalar potential. The last equation is to be 
with the same form, in order to take into account some specific inte
interactions will be added using a coupled expression.
 
General lagrangian approach
The energy can be separated in three parts: 
circuits, these three energies are known under the
(inductances) and losses through resistors. The three energies have the next form:
 

With using temporal operators, these expressions can be rewritten:
 

These are the average power dissipated in the network, bu
metric in the space of the meshes [
in the space of meshes as the lagrangian expression of the network.In this space of configuration 
we compute the currents of meshes from whose we deduce the current of branches and the 
voltages through the connectivity. But it doesn't give the static 
currents. To take into account this static energy, it is better to employ the hamiltonian.
 
Hamiltonian approach 
If the hamiltonian doesn't allow to discriminate the degenerate cases, at the opposite, it allows to 
compute the static constraint applied to the networks. The hamiltonian is the total energy under 
electrostatic or magnetostatic forms. S
magnetostatic forces. After a derivation in time of the hamiltonian depending on the loads and of 
magnetomotive forces, we obtain the generalized coordinates which are the potential vector and 
the magnetic flux. The hamiltonian is:
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r combination of currents on the meshes: . In an electrical circuit, 
branches without any source of current but with electromotive sources have the Kirchhoff's 

. In this equation,Vkis the difference vol
developed on each branch. In this equation we can replace the current vector by its expression in 

. Due to the duality properties, if
ultiplying to the left by  we obtain: 

 
 

The V voltages have disappeared because of their scalar characteristic. According to Maxwell's 
the integration of V on a closed circulatio

transformation from branch to meshes makes the sum of the voltages across the branches, the 
has disappeared.We see here that the tensor algebra gives us an equation invariant 

circuit, but destitute of the scalar potential. The last equation is to be “complexified
with the same form, in order to take into account some specific inte
interactions will be added using a coupled expression. 

General lagrangian approach 
The energy can be separated in three parts: kinetic (T), potential (U) and losses (D). In electrical 
circuits, these three energies are known under the forms electrical (capacitors), magnetic
(inductances) and losses through resistors. The three energies have the next form:

 
With using temporal operators, these expressions can be rewritten: 

 
These are the average power dissipated in the network, but also the temporal operators of the 

meshes [2][7]. For this reason, we consider the expression of the metric 
in the space of meshes as the lagrangian expression of the network.In this space of configuration 

ts of meshes from whose we deduce the current of branches and the 
voltages through the connectivity. But it doesn't give the static loads, as they don't generate 
currents. To take into account this static energy, it is better to employ the hamiltonian.

If the hamiltonian doesn't allow to discriminate the degenerate cases, at the opposite, it allows to 
compute the static constraint applied to the networks. The hamiltonian is the total energy under 
electrostatic or magnetostatic forms. So fact it is written using the electrostatic loads and 
magnetostatic forces. After a derivation in time of the hamiltonian depending on the loads and of 
magnetomotive forces, we obtain the generalized coordinates which are the potential vector and 

etic flux. The hamiltonian is: 
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In an electrical circuit, 
branches without any source of current but with electromotive sources have the Kirchhoff's 

is the difference voltage vector 
developed on each branch. In this equation we can replace the current vector by its expression in 

Due to the duality properties, if  then 
 which leads to:  

The V voltages have disappeared because of their scalar characteristic. According to Maxwell's 
the integration of V on a closed circulation is zero. As the 

transformation from branch to meshes makes the sum of the voltages across the branches, the 
has disappeared.We see here that the tensor algebra gives us an equation invariant 

complexified”, even if it is 
with the same form, in order to take into account some specific interactions, and static 

(T), potential (U) and losses (D). In electrical 
ctrical (capacitors), magnetic 

(inductances) and losses through resistors. The three energies have the next form: 

 

 

t also the temporal operators of the 
2][7]. For this reason, we consider the expression of the metric 

in the space of meshes as the lagrangian expression of the network.In this space of configuration 
ts of meshes from whose we deduce the current of branches and the 

as they don't generate 
currents. To take into account this static energy, it is better to employ the hamiltonian. 

If the hamiltonian doesn't allow to discriminate the degenerate cases, at the opposite, it allows to 
compute the static constraint applied to the networks. The hamiltonian is the total energy under 

o fact it is written using the electrostatic loads and 
magnetostatic forces. After a derivation in time of the hamiltonian depending on the loads and of 
magnetomotive forces, we obtain the generalized coordinates which are the potential vector and 
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With q the electrical loads, F the magnetomotive forces, C and R respectively:
inverse of the metric and the metric obtained from the potential and dissipative energies. The 
derivation in time of the hamiltonian gives the generalized coordinates: the potential
flux .  
 

The equations to solve are:
can be coupled with these of the 
 
The L-H formalism 
If we consider both equations
considered), we can group them in a single expression:
 

Under this simple form, there 
add these coupling, some non-
 

But if a tensorial space, even a little special can be constructed on the first expression (as the 
matrix made of the metric and of a inverse metric is purely diagonal, it can be inversed by blocs), 
this new expression doesn't allow to compute an inverse. Fortunately we can use the fact that the 
coupling terms are delayed in the time. We can separate these terms for wr
 

By grouping the sources and the passed terms we retrieve the previous expression where the 
source vector is enriched of the coupling terms. The manipulated objects are called hybrid 
tensors by the authors [3] and their properties are si
of the previous operation. This trick
using both hamiltonian and lagrangian formalism in an approach of tensors hybrid L
Typically, three equations will be grouped in an unique hybrid tensor: one Lagrange's equation in 
the mesh space and two Hamilton's equations for the electrostatic and magnetostatic interactions.
The technique can be extended to multiphysic problems as the one address in [16].
 
An example to illustrate the theory
Our example is here just to give a beginning of understanding of how the method works. It will 
appear very simple compared to complex systems! But the application of this technique in these 
cases is only an extension of t
dimensions many larger. Figure 1 give the graph of the problem considered, made of three parts: 
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q the electrical loads, F the magnetomotive forces, C and R respectively:
inverse of the metric and the metric obtained from the potential and dissipative energies. The 

hamiltonian gives the generalized coordinates: the potential

 
 

and .We now will see how these equations 
can be coupled with these of the lagrangian. 

consider both equations  and (more than two equations may be 
considered), we can group them in a single expression: 

 
 

this simple form, there are no couplings occurring between the two equations. In order to 
-diagonal terms appear in the matrix of the second member:

 
 

But if a tensorial space, even a little special can be constructed on the first expression (as the 
he metric and of a inverse metric is purely diagonal, it can be inversed by blocs), 

this new expression doesn't allow to compute an inverse. Fortunately we can use the fact that the 
coupling terms are delayed in the time. We can separate these terms for wr

 
By grouping the sources and the passed terms we retrieve the previous expression where the 
source vector is enriched of the coupling terms. The manipulated objects are called hybrid 
tensors by the authors [3] and their properties are similar to these of tensors under the assumption 

previous operation. This trick is a key method to obtain the equations of a complex system, 
using both hamiltonian and lagrangian formalism in an approach of tensors hybrid L

ns will be grouped in an unique hybrid tensor: one Lagrange's equation in 
the mesh space and two Hamilton's equations for the electrostatic and magnetostatic interactions.
The technique can be extended to multiphysic problems as the one address in [16].

n example to illustrate the theory 
Our example is here just to give a beginning of understanding of how the method works. It will 
appear very simple compared to complex systems! But the application of this technique in these 
cases is only an extension of the example with more complex models and with spaces 
dimensions many larger. Figure 1 give the graph of the problem considered, made of three parts: 
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q the electrical loads, F the magnetomotive forces, C and R respectively:respectively: the 
inverse of the metric and the metric obtained from the potential and dissipative energies. The 

hamiltonian gives the generalized coordinates: the potential  and the 

We now will see how these equations 
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terms appear in the matrix of the second member: 

But if a tensorial space, even a little special can be constructed on the first expression (as the 
he metric and of a inverse metric is purely diagonal, it can be inversed by blocs), 
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coupling terms are delayed in the time. We can separate these terms for write implicitly: 

 

By grouping the sources and the passed terms we retrieve the previous expression where the 
source vector is enriched of the coupling terms. The manipulated objects are called hybrid 

milar to these of tensors under the assumption 
is a key method to obtain the equations of a complex system, 

using both hamiltonian and lagrangian formalism in an approach of tensors hybrid L-H. 
ns will be grouped in an unique hybrid tensor: one Lagrange's equation in 

the mesh space and two Hamilton's equations for the electrostatic and magnetostatic interactions. 
The technique can be extended to multiphysic problems as the one address in [16]. 

Our example is here just to give a beginning of understanding of how the method works. It will 
appear very simple compared to complex systems! But the application of this technique in these 

he example with more complex models and with spaces 
dimensions many larger. Figure 1 give the graph of the problem considered, made of three parts: 
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a first one is a generator, connected through a transformer to another circuit (the second part), 
which radiates in the direction of one distant receiver.
 

On the figure we see three networks made with two branches and two nodes numbered from 1 to 
6. The first network is equipped a power supply generator G. Between the 
network there is a magnetic interaction symbolised by a closed line B that cross two nodes. 
Between the second and the third network, there is a far field interaction symbolised by a dashed 
line. We suppose that the topology is suffici
representation by a symbolic graph.
 
Metric 
For a known problem, the metric is also known. We don't represent the characteristics of the 
branches in the symbolic graph. Just to recall that these properties c
restricted to those of classical electrical circuits. We suppose that the first two branches are for 
resistive branches (R1, R2). The third branch is a resistive branch
capacitor (C4). The branches n
to the currents of meshes 1 to 3) has its own inductance:
the previous information are sufficient to construct the metric
it is purely diagonal (under our assumptions of metric, no interaction is described in this space.), 
we can express it by a matrix of a single line:
 

(p is the Laplace's operator). The real metric is easily obtained by making from this matrix a 
diagonal matrix. With our choices of directions for the currents, we can establish the relations 
between the currents of the branches and the currents of the meshes. If we take
first branch, the impedance R1 sees the current I1 of the branch
of its point of view, it sees the current k1 of the mesh 1. Using the same process for all the 
currents, we obtain the next matrix for connectivity between the space of the branches and the 
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a first one is a generator, connected through a transformer to another circuit (the second part), 
ates in the direction of one distant receiver. 

Fig1: graph of the system calculated 
 

On the figure we see three networks made with two branches and two nodes numbered from 1 to 
6. The first network is equipped a power supply generator G. Between the 
network there is a magnetic interaction symbolised by a closed line B that cross two nodes. 
Between the second and the third network, there is a far field interaction symbolised by a dashed 
line. We suppose that the topology is sufficiently intelligible to avoid any confusion in its 
representation by a symbolic graph. 

For a known problem, the metric is also known. We don't represent the characteristics of the 
branches in the symbolic graph. Just to recall that these properties can be any function and not 
restricted to those of classical electrical circuits. We suppose that the first two branches are for 

The third branch is a resistive branch (R3) also but the fourth is a 
The branches number 5 and 6 are resistive branches (R5, R6). 

to the currents of meshes 1 to 3) has its own inductance: L1 or L2. In the lagrangian description, 
the previous information are sufficient to construct the metric z in the space of the branch
it is purely diagonal (under our assumptions of metric, no interaction is described in this space.), 
we can express it by a matrix of a single line: 

 
 

(p is the Laplace's operator). The real metric is easily obtained by making from this matrix a 
iagonal matrix. With our choices of directions for the currents, we can establish the relations 

between the currents of the branches and the currents of the meshes. If we take
he impedance R1 sees the current I1 of the branch 1, or, it doesn't change 

of its point of view, it sees the current k1 of the mesh 1. Using the same process for all the 
currents, we obtain the next matrix for connectivity between the space of the branches and the 
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a first one is a generator, connected through a transformer to another circuit (the second part), 

 

On the figure we see three networks made with two branches and two nodes numbered from 1 to 
6. The first network is equipped a power supply generator G. Between the first and the second 
network there is a magnetic interaction symbolised by a closed line B that cross two nodes. 
Between the second and the third network, there is a far field interaction symbolised by a dashed 

ently intelligible to avoid any confusion in its 

For a known problem, the metric is also known. We don't represent the characteristics of the 
an be any function and not 

restricted to those of classical electrical circuits. We suppose that the first two branches are for 
also but the fourth is a 

(R5, R6). Each mesh (linked 
In the lagrangian description, 

in the space of the branches. As 
it is purely diagonal (under our assumptions of metric, no interaction is described in this space.), 

(p is the Laplace's operator). The real metric is easily obtained by making from this matrix a 
iagonal matrix. With our choices of directions for the currents, we can establish the relations 

between the currents of the branches and the currents of the meshes. If we take for example the 
1, or, it doesn't change anything 

of its point of view, it sees the current k1 of the mesh 1. Using the same process for all the 
currents, we obtain the next matrix for connectivity between the space of the branches and the 
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space of the meshes (We agree t
branches, and greec letters for the tensors in the space of the meshes):
 

As said before, we operate a change of base to transform the metric z of the space of the 
branches to a new description of it in the space of the meshes. By making
 

We must define the sources of energy. In the graph there is only one generator. The source 
vector in the space of the branches has a dimension of 6 with only its 
zero, which is the function of the generator defined in the time domain or in the frequency 
domain:
gives the vector:
 
If we compute the equation
except the first one and the result obtained for the first current will be incorrect. This is 
completely normal by the fact that firstly there is no exchange of energy between the first mesh 
and the meshes two and three due to the absence of any coupling, secondly the inductances of the 
meshes are not still taken into account. As discussed previously, the 
field is computed in the space of the meshes. For this reas
magnetic energy must be added in this space and not before. In a first step we create a 
metric for the magnetic energy. It is purely diagonal and each element is the inductance of 
each mesh. As forzabwe can write it as 
Now, the metric completely defined for the space of the meshes is obtained by adding
The previous equation still gives zero for the meshes: 2 and 3, because if our operation gives a 
correct metric, it doesn't yet defined the functions of coupling between the meshes. These 
functions of coupling are about to be defined through other kind of descriptions.
 
Coupling through the model of reluctances
The reluctance, coined by Heaviside in 1888, 
and the magnetic flux. A parallel network to the electrical one, made of reluctances, can be 
created in order to take into account the distribution of energy through magnetostatic processes. 
It will give the opportunity to benefit of the powerful models coming from the reluctances. In 
this space, the dimension of the generalized coordinates is no more the ampere but the weber. 
The sources are the magnetomotive force in ampere
components of the metric (ampere
define the source in the space of reluctances; from the magnetic flux in the same space, we 
compute electromotive force in the meshes space. The mechanism follo
the current in the mesh 1 creates a magnetic flux. This flux is transported to the mesh 2 by 
reluctance. Finally, this flux generates an electromotive force in the mesh 2. A reciprocal process 

                                                        Adv. Appl. Sci. Res., 2011, 2 (5):
_____________________________________________________________________________

Pelagia Research Library 

space of the meshes (We agree to use latin letters for the indices of the tensors in the space of the 
branches, and greec letters for the tensors in the space of the meshes): 

 
 

As said before, we operate a change of base to transform the metric z of the space of the 
description of it in the space of the meshes. By making

 
We must define the sources of energy. In the graph there is only one generator. The source 
vector in the space of the branches has a dimension of 6 with only its first element different from 
zero, which is the function of the generator defined in the time domain or in the frequency 

. The transformation ofeain the space of the meshes 
. 

we should obtain zero for all the currents of meshes, 
except the first one and the result obtained for the first current will be incorrect. This is 
completely normal by the fact that firstly there is no exchange of energy between the first mesh 

d the meshes two and three due to the absence of any coupling, secondly the inductances of the 
meshes are not still taken into account. As discussed previously, the rotational
field is computed in the space of the meshes. For this reason, the inductances of the free 
magnetic energy must be added in this space and not before. In a first step we create a 

for the magnetic energy. It is purely diagonal and each element is the inductance of 
we can write it as a matrix with a single line:

Now, the metric completely defined for the space of the meshes is obtained by adding
The previous equation still gives zero for the meshes: 2 and 3, because if our operation gives a 

ct metric, it doesn't yet defined the functions of coupling between the meshes. These 
functions of coupling are about to be defined through other kind of descriptions.

Coupling through the model of reluctances 
The reluctance, coined by Heaviside in 1888, gives the ratio between the magnetomotive force 
and the magnetic flux. A parallel network to the electrical one, made of reluctances, can be 
created in order to take into account the distribution of energy through magnetostatic processes. 

opportunity to benefit of the powerful models coming from the reluctances. In 
this space, the dimension of the generalized coordinates is no more the ampere but the weber. 

are the magnetomotive force in ampere-turns, and the reluctances are the
components of the metric (ampere-turns per weber). From the currents in the space of meshes we 
define the source in the space of reluctances; from the magnetic flux in the same space, we 
compute electromotive force in the meshes space. The mechanism follows a two steps process: 
the current in the mesh 1 creates a magnetic flux. This flux is transported to the mesh 2 by 
reluctance. Finally, this flux generates an electromotive force in the mesh 2. A reciprocal process 
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As said before, we operate a change of base to transform the metric z of the space of the 
 we obtain: 

 

We must define the sources of energy. In the graph there is only one generator. The source 
first element different from 

zero, which is the function of the generator defined in the time domain or in the frequency 
in the space of the meshes 

we should obtain zero for all the currents of meshes, 
except the first one and the result obtained for the first current will be incorrect. This is 
completely normal by the fact that firstly there is no exchange of energy between the first mesh 

d the meshes two and three due to the absence of any coupling, secondly the inductances of the 
rotational part of the electric 

on, the inductances of the free 
magnetic energy must be added in this space and not before. In a first step we create a 

for the magnetic energy. It is purely diagonal and each element is the inductance of 
. 

Now, the metric completely defined for the space of the meshes is obtained by adding to . 
The previous equation still gives zero for the meshes: 2 and 3, because if our operation gives a 

ct metric, it doesn't yet defined the functions of coupling between the meshes. These 
functions of coupling are about to be defined through other kind of descriptions. 

gives the ratio between the magnetomotive force 
and the magnetic flux. A parallel network to the electrical one, made of reluctances, can be 
created in order to take into account the distribution of energy through magnetostatic processes. 

opportunity to benefit of the powerful models coming from the reluctances. In 
this space, the dimension of the generalized coordinates is no more the ampere but the weber. 

turns, and the reluctances are the 
turns per weber). From the currents in the space of meshes we 

define the source in the space of reluctances; from the magnetic flux in the same space, we 
ws a two steps process: 

the current in the mesh 1 creates a magnetic flux. This flux is transported to the mesh 2 by 
reluctance. Finally, this flux generates an electromotive force in the mesh 2. A reciprocal process 
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exists and creates an electromotive for
equation of the coupled network is now given by:
 

t is a tensor that connect the passed of the currents on the meshes as generators of the next step to 
compute.p is a matrix made with time 
electromotive force.jis the connectivity that makes the relation between the currents on the 
meshes and the magnetomotive forces that create the magnetic flux. If we resolve this system, 
we will find currents on the meshes 1 and 2, but not on the mesh 3. As the meshes 2 and 3 
interact through a far field process, there still to add this interaction in the moments space.
 
The moment space 
When a current (i) traverses a loop, it radiates a far field given 
surfaceAe, and a current I in the mesh):
 

If the two loops are aligned, the loop in reception (with a surface
force given by: 
 

by making the ratio between the induced electromotive force and 
coupling impedance that can be added in the
be many more complicated, coming from 3D codes, analytical computation with vectors, etc. 
This what will change nothing on the fact that
computations into this kind of coupling impedance. The tensor
M32 and M23, which are the far field coupling between the meshes 2 and 3. This kind of coupling 
can be deduced from a moment space where some special connections make a link between the 
meshes and their normalized moment [11]. Let us define connectivity
the meshes and the meshes themselves. The radiation diagram is enclosed in a function
gives all the relation of the radiation between the point of emission
sphere in reception (y). The previous relation can always be written under this assumption:
 

F is the radiation function of the antenna, obtained fro
 
Conclusion about the example
The formulation used with the Laplace's formalism is a general formulation. We have to translate 
it in the time domain or in the frequency domain. It is important to remark that both domains can 
be treated simultaneously. One network can be treated in the 
treated in the frequency domain, like if the network is devoted to another physical domain. There 
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exists and creates an electromotive force in mesh 1 coming from the current in the mesh 2. Our 
equation of the coupled network is now given by: 

 
s a tensor that connect the passed of the currents on the meshes as generators of the next step to 

p is a matrix made with time derivative to transform the passed magnetic flux into 
is the connectivity that makes the relation between the currents on the 

meshes and the magnetomotive forces that create the magnetic flux. If we resolve this system, 
rrents on the meshes 1 and 2, but not on the mesh 3. As the meshes 2 and 3 

interact through a far field process, there still to add this interaction in the moments space.

When a current (i) traverses a loop, it radiates a far field given by [10] (at a distance r, a 
and a current I in the mesh): 

 
 

If the two loops are aligned, the loop in reception (with a surfaceAr) develops an electromotive 

 
 

by making the ratio between the induced electromotive force and the current, we define a 
coupling impedance that can be added in the metric. This previous impedance relation can 
be many more complicated, coming from 3D codes, analytical computation with vectors, etc. 
This what will change nothing on the fact that finally, it is always possible to reduce those 
computations into this kind of coupling impedance. The tensor is enriched of the components

are the far field coupling between the meshes 2 and 3. This kind of coupling 
from a moment space where some special connections make a link between the 

meshes and their normalized moment [11]. Let us define connectivity A between the surfaces of 
the meshes and the meshes themselves. The radiation diagram is enclosed in a function
gives all the relation of the radiation between the point of emission (x) and any point on the 3D 

The previous relation can always be written under this assumption:

 
is the radiation function of the antenna, obtained from the fields and of Maxwell's equations.

Conclusion about the example 
The formulation used with the Laplace's formalism is a general formulation. We have to translate 
it in the time domain or in the frequency domain. It is important to remark that both domains can 
be treated simultaneously. One network can be treated in the time domain, while another can be 
treated in the frequency domain, like if the network is devoted to another physical domain. There 
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s a tensor that connect the passed of the currents on the meshes as generators of the next step to 
transform the passed magnetic flux into 

is the connectivity that makes the relation between the currents on the 
meshes and the magnetomotive forces that create the magnetic flux. If we resolve this system, 

rrents on the meshes 1 and 2, but not on the mesh 3. As the meshes 2 and 3 
interact through a far field process, there still to add this interaction in the moments space. 

by [10] (at a distance r, a 

develops an electromotive 

the current, we define a 
This previous impedance relation can 

be many more complicated, coming from 3D codes, analytical computation with vectors, etc. 
finally, it is always possible to reduce those 

is enriched of the components 
are the far field coupling between the meshes 2 and 3. This kind of coupling 

from a moment space where some special connections make a link between the 
between the surfaces of 

the meshes and the meshes themselves. The radiation diagram is enclosed in a functionFxythat 
and any point on the 3D 

The previous relation can always be written under this assumption: 

 

m the fields and of Maxwell's equations. 

The formulation used with the Laplace's formalism is a general formulation. We have to translate 
it in the time domain or in the frequency domain. It is important to remark that both domains can 

time domain, while another can be 
treated in the frequency domain, like if the network is devoted to another physical domain. There 
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are matrices of coupling exchange the information between the two networks working in the two 
domains. The usual problems linked with the numerical application of the calculations are 
encountered, but the method can take benefit of all the knowledge in this domain, it is not 
particular of this point of view and even reduced the number of unknowns in the spaces of the 
meshes or of the junctions for example. 
 

CONCLUSION 
 
Even if we don't have detailed all the mechanisms involved in the tensorial analysis of networks 
and its capabilities (including the capability to calculate the interactions between moving objects 
through Christoffel's symbols [2]), we hope having given the reader a good image of the 
formalism. The technique of the "hybrid tensors" presented allows coupling some equations 
coming from both formalisms: the Lagrange's formalism and Hamilton's formalism. Many 
applications [12][13] were made with the Lagrange's form, more particularly they concern 
sometimes very complex problems of power systems like [17] where it can be many 
moreefficient than the classical techniques. In all the cases, exceptional results compared to the 
complexity of the problems were obtained. These performances were principally due to the 
capacity to couple models from various scales of descriptions of the physics problems. For 
example, to compute the near field interaction of two dipoles, comparisons between the 
measurement and the computation has give 0,6% of divergence [10]. In another case, to compute 
the interaction between two antennas in a closed volume [11], the comparison between the 
measurement and the computation was less than 1 dB from 200MHz to 2GHz. Today around 
twenty publications have presented studies using the Kron's method applied to EMC. Our next 
step is to couple the L-H formalism with a space of the junctions. This last connection will give 
to the method a capability for changing of scales at the infinity. Some particular applications as 
began could concerns some very specific domain like spins [14] 
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