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ABSTRACT

The purpose of our work is to develop a methodtopute the electromagnetic compatibility of
complex networks. We starts from the tensorial ysislof networks developed by Sir Gabriel
KRON in 1939[1] extended with the antennas intacas [2]. We add the hybrid tensors
concept developed by A.REINEIX and O.MAURICE[3{leéfine a multidomain metric (hybrid
metric). The result is a generalized tensorial dgprarepresenting the problem to solve. Many
validations of the technique exist today, giverotigh references. The French army project
DIAMANTS (DIAkoptic Methodology for ANalysis of Dibances on Systems) has for purpose
to begin a first automatisation of the method. Pphper presents the basic concepts, then details
the tensorial equation to resolve for one netwank & conclusion, presents the future works to
construct a system of networks. The method is@dgjzal one, using the union operation of the
topology [15] to construct complex networks frommsie ones.
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INTRODUCTION

After defining a complex network, we describe aidgp complex network from the
electromagnetic compatibility (EMC) point of viewhen we explain how the reality can be
synthesized under a symbolic graph. From this graphdefine a complex metric based on a
topology before to construct the tensorial equati@an hybrid one) representing all the
interferences in the network. This hybrid tensob@&sed on both lagrangian and hamiltonian
formalisms. We give a simple example to illustréite mechanism of the method and for show
how the coupling are taken into account insidecitpgations using the hybrid tensors. Finally we
conclude on the future extension to complex systems

Complex Networks
Compare to a complicated network, a complex one drdangled elements and multiscale
behaviours[3]. The entanglement means that firitly modelling network using classical
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numerical techniques would take to many resources secondly more than ever we need a
theory to understand how it works. Numerical teghes are virtual experiments, but give no
way to theoretically understanding the network lvéha. An example of complex network for
EMC is a computer for planes with all its peripherand cables. Inside this subsystem, many
electromagnetic interactions occur: that's the pseppf the EMC job.

A complex network from the EMC point of view

Topologically, a complex network is made from simmines using the union operation of
topology [14]. Any electronic system can be seeraagstem constructed in five layers: the
component layer which includes all the electromimponents and the printed circuit boards, the
cable layer, which includes all the wires and caittaveling information between the equipment
and the structure layer which involves the strueguncluding the equipment and cables and the
last layer which is the environment around theeystA complex network is nothing more than
a particular system but without movement. It canrsgle of many subnetworks. It means that
the elements of the network still fixed. Under thigothesis we can detailed the interactions
present in the network. According to Maxwell's eguss, the various electromagnetic
interactions between the components of a networkb@ween various subnetworks) are:
conducted noises, electrical influence, magnetituation and radiated fields. Added to these
fundamental processes, there is the guided wawasege of information between subnetworks.
The available modellinginvites us to distinguisk tuided waves and the radiated ones. Inside
the electronic network we find as usual compong&késresistors, inductances and capacitances.
The primary observables are loads, currents anthges. The first job in front of a complex
network is to represent it under a symbolic forrisIsymbolic representation, which is a graph,
will help us to construct the metric of the netwarka topological approach.

Link between thereality and a graph asa symbolic representation

If we take a look to a real experiment in electeconve see parts where the currents keep the
same intensity and still homogeneous. For a givalesof observation and starting from a
generator, we always find under this assumptiotteadt one closed circuit of constant current.
This first basic fact gives for many simple cirsuihe equivalent topology. As an evident
example, we can consider a battery connected &siator, it constitutes the simplest topology
that can be defined with one mesh: the closedréattircuit of the battery and the resistor; and
two branches, one linked with the battery and aarotbr the resistor. One can wonder why a
branch is devoted to the battery and another braocthe resistor. Each branch must be a
primitive network. It means that any branch carctwenected to a load or a generator in order to
characterize its own electrical properties. Themgiive network defined by G.Kron [1] is a
single branch whose properties can be extractemlghr analysis of its response to external
excitation. For any real network and using this)giple, it is possible to link topology and the
associated graph by identifying these areas witistamt currents to the branch in the topology.
This is done from a long time in electrical repregagéon as SPICE. What is less obvious and
does not appear in the patterns of electrical itsa@re the radiated interactions. In case of near
field interactions, symbols like capacitance or ucince, represent electrostatic or
magnetostatic field lines under the same assumptidromogeneity. But there are no symbols
for the far field interactions. In how represerdatiwe use ropes. Ropes are some Poynting's
flux going from one emitter to a receptor. Anywayives the radiated energy received on one
branch or one mesh and coming from a remote curfét formal separation of the components
of near field and far field is a key point of camsting the topology from the reality of
electromagnetic phenomena. This can always be daee accepts an extended definition of
the capacitance and of the inductance. We begim filee field development of an electrical
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dipole (p is the electrical moment of the dipol@ arthe distance between the point where
field is measured and the die)[5]:

N2  n 05
E(r,p) = f( ¥ T—E@)
n,g=1,

The function f can be formally separated in twas

N2 i N2 i 2 =
g 9\ _ @q 9p aq 97p
f ( Z rr dta = fn Zo rn Jta +h Z;] r ofa

=1, n,g==42, g=

The functionfrelates with the far field emission, and is repnéseé by a rope. Th

functionfitakes in charge the near field interaction. The poments depending p can be
treated asapacitors. The components dependin the time derivative of [relates in fact to the
near electrostatic field when we look in front dietdipole. In the detailed expression,

factor  is transformed in : the magnetic permeability, by thé'vehich is factor of the
derivative of p inthese relatior. When both near and far fields are created througbpa anc

some branches (including the mutual partial indumta between the two branches

interaction), we obtain the same func f because bbtenergies will be add through the indut

currents, following in that the superposition pipie. The tricky part constituted through {

adding of the far field interactions in a symbaraph is so resolve

Topological approach to modeling the system

At this step, a graph exists with its nodes (nuratiérom 1 to N), its branches (numbered froi
to B), its meshes (numbered from 1 to M). Nodegnbines, meshes are parts of netw
(numbered from 1 to R) wit M=B-N+R. Each node is located in a te dimensional space,
having its coordinates in a defined referentialbranch can be defined between two no
whatever is its trajectory in the 3D space. Cus@ain be considered as flowing on branches
a current vectoilis created to identi eachbranch with one component of this vector in
description space of branches. By the fact, cusrant natural projection of the branches ¢
space whose base (of dimension B) is made of aNéttor coming from the nodes pairs. V
write: . By abuse, we note the current vector through itemaent!(this is always
used from here). Now, we create a dual spcom the natural space by writi: (

is the Kronecker’'s symbol). are the base vectors of the dual spddes dual space is tt
space of the voltages and of the electromotiveefaré&rom the tensorial algebra, it exist
metric relation zbetween the twspaces thamakes a link between the current vector anc
voltage vector: . By replacement, we obtain the definition of the damenta
invariant (in all this document we use mute index technique [6]):

v % =z, IFI™ = §

S is a generalized power of the whole circ

If we look at the circuit with a differerpoint of view, for example without looking at t
brarches, but looking at the mesheow the circuit equation will be expressed undes tiew
vision? Firstly we create a matrix to change ofelsi C. The currents on the branches
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expressed like linegacombination of currents on the mes| . In an electrical circuit
branches without any source of current but withctetenotive sources have the Kirchho
equation given by: . In this equation,¥s the difference vitage vector
developed on each branch. In this equation we eplace the current vector by its expressio
the mesh space: . Due to the duality properties, then

. Multiplying to the left b we obtain: which leads to:
ey = Zyu "

The V voltages have disappeared because of thalarscharacteristic. According to Maxwe!
equationRot(Grad(V))=0,the integration of V on a closed circulin is zero. As the
transformation from branch to meshes makes the guthe voltages across the branches,
term has disappeared.We see here that the tensor algefes us an equation invarie
circuit, but destitute of the scalar potential. Tagt equation is to t“complexifieC’, even if it is
with the same form, in order to take into accouams specific intractions, and static
interactions will be added using a coupled expoge

General lagrangian approach

The energy can be separated in three pkinetic (T), potential (U) and losses (D). In electri
circuits, these three energies are known unde forms eletrical (capacitors), magne
(inductances) and losses through resistors. Tlee ttmergies have the next fo

U — %gcmga T — %Lam‘ja‘j‘m D= %Ramd'aqm

With using temporal operators, these expressionbeaewritter

T -a s r Lam 5 -a:-m - ~a M
L" = —QC'I‘-"I‘IE j\fdtq q T = ] atq q _D = %Raruq q

These are the average power dissipated in the netwct also the temporal operators of
metric in the space of thmeshes?2][7]. For this reason, we consider the expressicthe metric
in the space of meshes as the lagrangian expresktbe network.In this space of configurati
we compute the currésn of meshes from whose we deduce the current ariches and th
voltages through the connectivity. But it doesmitegthe staticloads, as they don't genera
currents. To take into account this static eneitgg,better to employ the hamiltoni

Hamiltonian approach

If the hamiltonian doesn't allow to discriminate tthegenerate cases, at the opposite, it allo
compute the static constraint applied to the nétsaiofhe hamiltonian is the total energy un
electrostatic or magnetostatic formso fact it is written using the electrostatic loaalsd
magnetostatic forces. After a derivation in timele hamiltonian depending on the loads an
magnetomotive forces, we obtain the generalizeddioates which are the potential vector
the magetic flux. The hamiltonian i

k. m
q°q F,Fy
H =

2ctm T 3R,
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With g the electrical loads, F the magnetomotive for€and R respectivelrespectively: the
inverse of the metric and the metric obtained frive potential and dissipative energies.
derivation in time of thénamiltonian gives the generalized coordinates:pibtentia and the
flux

aH / 8H Lk

agt = Yk BF, — @

The equations to solve are: and We now will see how these equatic
can be coupled with these of lagrangian.

TheL-H formalism
If we consider both equatio and (more than two equations may
considered), we can group them in a single expre:

Vi =10 e )

Underthis simple form, therare no couplingseccurring between the two equations. In orde
add these coupling, some ndimgonalterms appear in the matrix of the second mer

€y _J Zpo 1"'”m I°
qk jkg }fkm L‘m

But if a tensorial space, even a little special banconstructed on the first expression (as
matrix made oftie metric and of a inverse metric is purely diagjabhaan be inversed by bloc:
this new expression doesn't allow to compute aars®. Fortunately we can use the fact tha
coupling terms are delayed in the time. We canrs¢pshese terms for ite implicitly:

e I Jme 0 I° {+‘+ 0 I# | G R
qk N 0 },«"k‘m "-‘.-'ll"m .j II&Icr 0 '?-}:I“ m

By grouping the sources and the passed terms wievestthe previous expression where

source vector is enriched of the coupling termse Timanipulated objects are called hyt
tensors by the authors [3] and their propertiesimilar to these of tensors under the assumyg
of theprevious operation. This tri is a key method to obtain the equations of a coxgystem
using both hamiltonian and lagrangian formalismaim approach of tensors hybric-H.

Typically, three equatits will be grouped in an unique hybrid tensor: bagrange's equation

the mesh space and two Hamilton's equations foelgwtrostatic and magnetostatic interacti

The technique can be extended to multiphysic problas the one address in [.

An exampletoillustrate the theory

Our example is here just to give a beginning ofarsthnding of how the method works. It v
appear very simple compared to complex systemsthgutpplication of this technique in the
cases is only an extension che example with more complex models and with sp
dimensions many larger. Figure 1 give the grapthefproblem considered, made of three pi
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a first one is a generator, connected through resstoamer to another circuit (the second ps
which radates in the direction of one distant recei

Figl: graph of the system calculated

On the figure we see three networks made with trandhes and two nodes numbered from
6. The first network is equipped a power supplyagator G. Between thfirst and the second
network there is a magnetic interaction symbolibgda closed line B that cross two noc
Between the second and the third network, theeaefés field interaction symbolised by a dasl
line. We suppose that the topology is suently intelligible to avoid any confusion in |
representation by a symbolic gre

Metric

For a known problem, the metric is also known. Véa'drepresent the characteristics of
branches in the symbolic graph. Just to recall these propertiesan be any function and n
restricted to those of classical electrical cirsuitVe suppose that the first two branches ar:
resistive branches (R1, RZ2)he third branch is a resistive bra (R3) also but the fourth is
capacitor (C4)The branchesumber 5 and 6 are resistive branc{iRS, R6).Each mesh (linked
to the currents of meshes 1 to 3) has its own itashee L1 or L2.In the lagrangian descriptio
the previous information are sufficient to constrile metrii z in the space of the brares. As
it is purely diagonal (under our assumptions ofriogho interaction is described in this spac
we can express it by a matrix of a single |

zas=( Rl R2 R3 _L; R5 R6)

(p is the Laplace's operator). The real metricasilg obtained by making from this matrix
diagonal matrix. With our choices of directions the currents, we can establish the relat
between the currents of the branches and the ¢aroérthe meshes. If we te for example the
first branch, lhe impedance R1 sees the current I1 of the b 1, or, it doesn't chancanything
of its point of view, it sees the current k1 of thresh 1. Using the same process for all
currents, we obtain the next matrix for connegivaetween the space of the branches ant
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space of the meshes (We agio use latin letters for the indices of the tensoithe space of th
branches, and greec letters for the tensors isghee of the meshe

ch =

[ T e B S e R e
[l == == R =R ==

q
e Rl e Bl e W e B =

As said before, we operate a change of base taftmam the metric z of the space of !

branches to a nedescription of it in the space of the meshes. Bking we obtain:
R2+R1 0 0
e =0 22008, = 0 R+ 2 0
0 0 R6+ R5

We must define the sources of energy. In the gthghe is only one generator. The sot
vector in the space of the branches has a dimewn$i6mwith only itsfirst element different fror
zero, which is the function of the generator define the time domain or in the frequer
domain: . The transformation ofm the space of the mesr
gives the vector:

If we compute the equation we should obtain zero for all the currents of mes
except the first one and the result obtained fa finst current will be incorrect. This
completely normal by the fact that firstly therenis exchange of energy between the first n
and the meshes two and three due to the absence abapling, secondly the inductances of
meshes are not still taken into account. As dissdigseviously, throtationa part of the electric
field is computed in the space of the meshes. R eaon, the inductances of the fr
magnetic energy must be added in this space andoefore. In a first step we create
metric  for the magnetic energy. It is purely diagonal @agh element is the inductance
each mesh. As foggve can write it asa matrix with a single line:

Now, the metric completely defined for the spac¢hefmeshes is obtained by adc to .
The previous equation still gives zero for the nesst2 and 3, because if our operation giv
correct metric, it doesn't yet defined the functions amiupling between the meshes. Th
functions of coupling are about to be defined tigloather kind of descriptior

Coupling through the modd of reluctances

The reluctance, coined by Heaviside in 18gives the ratio between the magnetomotive fi
and the magnetic flux. A parallel network to theadtical one, made of reluctances, car
created in order to take into account the distrdpubf energy through magnetostatic proces
It will give the opportunity to benefit of the powerful models comifnom the reluctances.

this space, the dimension of the generalized coatéds is no more the ampere but the we
The sourcesare the magnetomotive force in amj-turns, and the reluctances are

components of the metric (amp-turns per weber). From the currents in the spaceeshes wi
define the source in the space of reluctances; fiteenmagnetic flux in the same space,
compute electromotive force in the meshes space.nméchanism folws a two steps proces
the current in the mesh 1 creates a magnetic flins flux is transported to the mesh 2
reluctance. Finally, this flux generates an elenttive force in the mesh 2. A reciprocal proc
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exists and creates an electromotivece in mesh 1 coming from the current in the mesO.
equation of the coupled network is now given

" {+)_ be () 17 {—1: C %aC? + Myy 0 I°
0 Jro 0 Pm 0 R s

t is a tensor that connect the passed of the cumerttsee meshes as generators of the next st
computep is a matrix made with timderivative totransform the passed magnetic flux i
electromotive forcei$ the connectivity that makes the relation betwésn currents on th
meshes and the magnetomotive forces that creatmalgaetic flux. If we resolve this syste
we will find curents on the meshes 1 and 2, but not on the me#is 3he meshes 2 and
interact through a far field process, there stilatld this interaction in the moments sg

The moment space
When a current (i) traverses a loop, it radiatefarafield givenby [10] (at a distance r,
surfaceA, and a current | in the mes

2 ':'TAESETIQ

B = —pop I

Am2c2y

If the two loops are aligned, the loop in receptfaith a surfacA,) develops an electromotiy
force given by:

e=—pA.B = pgﬁoL;iﬁ;ne

by making the ratio between the induced electromoforce andthe current, we define
coupling impedance that can be added it metric. This previous impedance relation ¢
be many more complicated, coming from 3D codes|yénal computation with vectors, et
This what will change nothing on the fact 1 finally, it is always possible to reduce thc
computations into this kind of coupling impedantke tensc is enriched of the compone
M3z and Mps, whichare the far field coupling between the meshes 23arithis kind of coupling
can be deduceflom a moment space where some special conneatiake a link between tf
meshes and their normalized moment [11]. Let usdefonnectivit A between the surfaces
the meshes and the meshes themselves. The radigdigram is enclosed in a functF,ythat
gives all the relation of the radiation between ploet of emissio (x) and any point on the 3
sphere in reception (yJ.he previous relation can always be written unter dassumptiol

Sinf}

M,
Arc?r

I.o(radiation) = AT (p?';_tg

) AY, =AFF A%,

Fis the radiation function of the antenna, obtaifrem the fields and of Maxwell's equatic

Conclusion about the example

The formulation used with the Laplace's formalisnaigeneral formulation. We have to trans
it in the time domain or in the frequency domatnslimportant to remark that both domains
be treated simultaneously. One network can beeteat thetime domain, while another can
treated in the frequency domain, like if the netemsrdevoted to another physical domain. TF
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are matrices of coupling exchange the informatietwieen the two networks working in the two
domains. The usual problems linked with the nunaérapplication of the calculations are
encountered, but the method can take benefit othallknowledge in this domain, it is not
particular of this point of view and even reduckd humber of unknowns in the spaces of the
meshes or of the junctions for example.

CONCLUSION

Even if we don't have detailed all the mechanismslved in the tensorial analysis of networks
and its capabilities (including the capability taaulate the interactions between moving objects
through Christoffel's symbols [2]), we hope havigyen the reader a good image of the
formalism. The technique of the "hybrid tensorséganted allows coupling some equations
coming from both formalisms: the Lagrange's forsraliand Hamilton's formalism. Many
applications [12][13] were made with the Lagrang®em, more particularly they concern
sometimes very complex problems of power systerke [17] where it can be many
moreefficient than the classical techniques. Infal cases, exceptional results compared to the
complexity of the problems were obtained. Thesdoperances were principally due to the
capacity to couple models from various scales afcdptions of the physics problems. For
example, to compute the near field interaction wb tdipoles, comparisons between the
measurement and the computation has give 0,6%vefgince [10]. In another case, to compute
the interaction between two antennas in a closddm® [11], the comparison between the
measurement and the computation was less than ftodB 200MHz to 2GHz. Today around
twenty publications have presented studies usiegKiton's method applied to EMC. Our next
step is to couple the L-H formalism with a spacehef junctions. This last connection will give
to the method a capability for changing of scaletha infinity. Some particular applications as
began could concerns some very specific domairsiikes [14]
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