

Pelagia Research Library

Advances in Applied Science Research, 2014, 5(3):356-358

A fixed point theorem on continuous self maps

Rajesh Shrivastava*, Kiran Rathore* and K. Qureshi**

*Department of Mathematics, Govt. Science & Commerce College, Benazir, Bhopal, (MP) **Higher Education Department, Govt. of M. P., Bhopal, (MP)

ABSTRACT

The aim of this paper is to prove a unique common fixed point theorem which generalizes the result of Aage C.T. The conditions continuity and completeness of a metric space are replaced by weaker conditions such as compatible pair of reciprocally continuous self maps.

Keywords: continuous maps, fixed point, self map

INTRODUCTION

According to G. Jungck [4] two self maps P and T of a Metric space compatible mappings if

 $\lim_{n\to\infty} d(PTx_n, TPx_n) = 0 \text{ whenever } < x_n > \text{ is } \lim_{n\to\infty} Px_n = \lim_{n\to\infty} Tx_n = t$

for some t belongs to X.

Metric Space (X, d) are said to be a sequence in X such that

Two self maps P and T of a Metric Space (X, d) are said to be Reciprocally continuous if

 $\lim_{n\to\infty} PTx_n = Pt$ and $\lim_{n\to\infty} TPx_n = Tt$

whenever $\langle x \rangle$ is a sequence in X such that $\lim_{n\to\infty} Px_n = \lim_{n\to\infty} Tx_n = t$

for some t belongs to X.

Definition : A real valued function φ defined on *X*, *R* is said to be upper semi continuous if

 $\lim_{n\to\infty} \phi(t_n) \le \phi(t)$, for every sequence $\{t_n\}$, X with $t_n \to t$ as $n \to \infty$.

Aage C.T. and Salunke J.N. [1] proved the following theorem:-

Theorem A: Suppose P,R, T and Q are four self mappings of a complete metric space (X, d) into itself satisfying the conditions

(i) $P(X) \in Q(X), T(X) \in R(X)$

(ii) $d^2(Px, Ty) \max \left\{ \phi(d(Rx, Qx)) \phi(Rx, Px) \right\}, \phi(d(Rx, Qy)) \phi(d(Qy, Ty)),$

 $\phi(d(Rx, Px))\phi(d(Qy, Ty))\phi(d(Rx, Ty))\phi(d(Qy, Px))\}$

for all $x, y \quad \overline{X}$.

(iii) φ is contractive modulus as in definition (1.2).

(iv) one of P, R, T and Q is continuous.

And if

(v) the pairs (P, R) and (T, Q) are compatible of type

(A)Then P, R, T and Q have a unique common fixed point.

Now we prove the following theorem.

Theorem B. Suppose P, R, T and Q are four self mappings of a metric space (X, d) into itself satisfying the conditions

(i) $P(X) \ Q(X), T(X) \ R(X).$ (ii) $d^2(Px, Ty) \le \max\{\varphi(d(Rx, Qy))\varphi(d(Rx, Px)), \varphi(d(Rx, Qy))\varphi(d(Qy, Ty)), \varphi(d(Qy, Ty)), \varphi(d(Qy,$

 $\varphi(d(Rx, Px))\varphi(d(Qy, Ty)), \varphi(d(Rx, Ty))\varphi(d(Qy, Px))\},$

for all $x, y \in X$.

Proof: Let x_0 in X be arbitrary. Choose a point x_1 in X such that $Px_0 = Qx_0$.

This can be done

since $P(X) \in Q(X)$. Let x_2 be a point in X such that $Tx_1 = Rx_1$. This can be done since $T(X) \ R(X)$. In general we can choose $x_{2n}, x_{2n+1}, x_{2n+2}, \cdots$ such that $Px_{2n} = Qx_{2n+1}$ and $Tx_{2n+1} = Rx_{2n+2}$, so that we obtain a sequence

 $Px_0, Tx_1, Px_2, Tx_3, \cdots$ (1)

Taking condition (i). (ii) and (iii) as in Aage and Salunke [1] $\{Px_{2n}\}$ is a Cauchy sequence and consequently the sequence (1) is a Cauchy. The sequence (1) converges to a limit z in X. Hence the subsequences $\{Px_{2n}\} = \{Qx_{2n+1}\}$ and $\{Tx_{2n-1}\} = \{Rx_{2n}\}$ also converge to the limit point z.

Suppose that the pair (P,R) is compatible pair of reciprocally continuous. By the definition of reciprocally continuous, there is a sequence $\langle xn \rangle$ in X such that

 $Px_{2n} \rightarrow z, Rx_{2n} \rightarrow z$ then $PRx_{2n} \rightarrow Pz, RPx_{2n} \rightarrow Rz$ as $n \rightarrow \infty...(2)$

Since the pair (P, R) is compatible we have $Px_{2n} \rightarrow z, Rx_{2n} \rightarrow z \text{ as } n \rightarrow \infty$ and

 $\lim_{n \to \infty} d(PRx_{2n}, RPx_{2n}) = 0....(3)$

using (2) and (3) we get

d(Pz,Rz) = 0 or Pz = Rz. Since Pz = Rz,

Now by (ii)

 $d^{2}(Pz, Tx_{2n+1}) \leq max\{\varphi(d(Rz, Qx_{2n+1}))\varphi(d(Rz, Pz), \varphi(d(Rz, Qx_{2n+1}))) \varphi(d(Qx_{2n+1}, Tx_{2n+1})), \varphi(d(Rz, Pz))\varphi(d(Qx_{2n+1}, Tx_{2n+1})), \varphi(d(Rz, Tx_{2n+1}))\varphi(d(Qx_{2n+1}, Pz))\}.$

 $Qx_{2n+1} \rightarrow z, Tx_{2n+1} \rightarrow z \text{ as } n \rightarrow \infty \text{ and } Rz = Pz, \text{ so letting } n \rightarrow \infty \text{ we get}$

 $d^{2}(Pz,z) \leq max\{\varphi(d(Pz,z))\varphi(d(Pz,Pz)),$

 $\varphi(d(Pz,z))\varphi(d(z,z)),\varphi(d(Pz,Pz))\varphi(d(z,z)),\varphi(d(Pz,z))\varphi(d(z,Pz))\}$

 $= \varphi(d(Pz,z))\varphi(d(z,Pz))$

i.e. $d(Pz,z) \leq \varphi(d(Pz,z)) \leq d(Pz,z)$. Hence $\varphi(d(Pz,z)) = 0$ i.e. Pz = z Thus Pz = Rz = z

Further

Since P(X) Q(X), there is a point w X such that

z P z = Q w.

Now we prove that Qw = Tw. Now by (ii)

 $d^{2}(Pz,w) \leq max\{\varphi(d(Rz,Qw))\varphi(d(Rz,Pz)),\varphi(d(Rz,Qw))\varphi(d(Qw,Tw)),\varphi(d(Rz,Pz))\varphi(d(Qw,Tw)),\varphi(d(Rz,Tw))\varphi(d(Qw,Pz))\}$

 $= max\{\varphi(d(Qw, Qw))\varphi(d(Qw, Qw)), \varphi(d(Qw, Qw))\varphi(d(Qw, Tw)), \varphi(d(Qw, Qw))\varphi(d(Qw, Tw)), \varphi(d(Qw, Tw))\varphi(d(Qw, Qw))\}$

so $d^2(Qw, Tw) \leq 0$ implies d(Qw, Tw) = 0, hence z = Qw = Tw.

Since the pair (*T*, *Q*) is compatible pair of reciprocally continuous. By the definition of reciprocally continuous, there is a sequence $\langle x_n \rangle$ in X such that

 $Tx_{2n} \rightarrow z, Qx_{2n} \rightarrow z$ then $TQx_{2n} \rightarrow Tz, QTx_{2n} \rightarrow Qz$ as $n \rightarrow \infty....(4)$

Since the pair (T, J) is compatible we have $Tx_{2n} \rightarrow z, Qx_{2n} \rightarrow z$ as $n \rightarrow \infty$ and.

 $\lim_{n \to \infty} d(TQx_{2n}, QTx_{2n}) = 0....(5)$

using (4) and (5) we get

d(Tz,Qz) = 0, hence Tz = Qz. Now $d^2(z,Tz) = d^2Pz,Tz$)

 $\leq \max\{\varphi(d(Rz,Qz))\varphi(d(Rz,Pz)),\varphi(d(Rz,Qz))\varphi(d(Qz,Tz)), \\ \leq \varphi(d(Rz,Pz))\varphi(d(Qz,Tz)),\varphi(d(Rz,Tz))\varphi(d(Qz,Pz))\}$

 $= \max\{\varphi(d(z,Tz))\varphi(d(z,z)), \varphi(d(z,Tz))\varphi(d(Tz,Tz)), \varphi(d(z,z))\varphi(d(Tz,Tz)), \varphi(d(z,Tz))\varphi(d(Tz,z))\} \\ = \varphi(d(Tz,z))\varphi(d(Tz,z))$

implies that $d(Tz, z) \leq \varphi(d(Tz, z)) \leq d(Tz, z)$.

Hence $\varphi(d(Tz, z)) = 0$ *i.e.* Tz = z and z = Tz = Qz. So z is a common fixed point of P, R, Q and T.

REFERENCES

[1] Aage C.T., Salunke J.N., Int. Journal of Math. Analysis, 2(28): 1369-1380(2008).

[2] Pant R.P. and Padaliya S., Jnanabha, 29: 137-143(1999).

[3] Umamaheshwar Rao R., V. Srinivas and P. Srikanath Rao, *Indian J. of Mathematics and Mathematical Sci.*, **3**(2): 207-215(**2007**),.

[4] Jungck Inst. J. Math Sci. 9: 771-779(1986).