Pelagia Research Library
Advances in Applied Science Research, 2014, 5(3):356-358

A fixed point theorem on continuous self maps

Rajesh Shrivastava*, Kiran Rathore* and K. Qureshi**
*Department of Mathematics, Govt. Science \& Commerce College, Benazir, Bhopal, (MP)
**Higher Education Department, Govt. of M. P., Bhopal, (MP)

Abstract

The aim of this paper is to prove a unique common fixed point theorem which generalizes the result of Aage C.T. The conditions continuity and completeness of a metric space are replaced by weaker conditions such as compatible pair of reciprocally continuous self maps.

Keywords: continuous maps, fixed point, self map

INTRODUCTION

According to G. Jungck [4] two self maps P and T of a Metric space compatible mappings if
$\lim _{\mathrm{n} \rightarrow \infty} d\left(P T x_{n}, T P x_{n}\right)=0$ whenever $<x_{n}>$ is $\lim _{\mathrm{n} \rightarrow \infty} P x_{n}=\lim _{\mathrm{n} \rightarrow \infty} T x_{n}=t$
for some t belongs to X .
Metric Space (X, d) are said to be a sequence in X such that
Two self maps P and T of a Metric Space (X, d) are said to be Reciprocally continuous if
$\lim _{n \rightarrow \infty} P T x_{n}=P t$ and $\lim _{n \rightarrow \infty} T P x_{n}=T t$
whenever $\langle x\rangle$ is a sequence in X such that $\lim _{n \rightarrow \infty} P x_{n}=\lim _{n \rightarrow \infty} T x_{n}=t$
for some t belongs to X .
Definition : A real valued function φ defined on X, R is said to be upper semi continuous if
$\lim _{\mathrm{n} \rightarrow \infty} \varnothing\left(t_{n}\right) \leq \emptyset(t)$, for every sequence $\left\{t_{n}\right\}, \mathrm{X}$ with $t_{n} \rightarrow t \quad$ as $n \rightarrow \infty$.
Aage C.T. and Salunke J.N. [1] proved the following theorem:-
Theorem A: Suppose $\mathrm{P}, \mathrm{R}, \mathrm{T}$ and Q are four self mappings of a complete metric space (X, d) into itself satisfying the conditions
(i) $P(X) \in Q(X), T(X) \in R(X)$
(ii) $d^{2}(P x, T y) \max \{\varnothing(d(R x, Q x)) \emptyset d(R x, P x)), \varnothing(d(R x, Q y)) \emptyset(d(Q y, T y))$,
$\phi(d(R x, P x)) \emptyset(d(Q y, T y)) \varphi(\mathrm{d}(\mathrm{Rx}, \mathrm{Ty})) \varphi(\mathrm{d}(\mathrm{Qy}, \mathrm{Px}))\}$
for all $x, y \quad \bar{X}$.
(iii) φ is contractive modulus as in definition (1.2).
(iv) one of $\mathrm{P}, \mathrm{R}, \mathrm{T}$ and Q is continuous.

And if
(v) the pairs (P, R) and (T, Q) are compatible of type
(A)Then $\mathrm{P}, \mathrm{R}, \mathrm{T}$ and Q have a unique common fixed point.

Now we prove the following theorem.
Theorem B. Suppose P, R, T and Q are four self mappings of a metric space (X, d) into itself satisfying the conditions
(i) $\mathrm{P}(\mathrm{X}){ }^{-} \mathrm{Q}(\mathrm{X}), \mathrm{T}(\mathrm{X}){ }^{-} \mathrm{R}(\mathrm{X})$.
(ii) $\mathrm{d}^{2}(\mathrm{Px}, \mathrm{Ty}) \leq \max \{\varphi(\mathrm{d}(\mathrm{Rx}, \mathrm{Qy})) \varphi(\mathrm{d}(\mathrm{Rx}, \mathrm{Px})), \varphi(\mathrm{d}(\mathrm{Rx}, \mathrm{Qy})) \varphi(\mathrm{d}(\mathrm{Qy}, \mathrm{Ty}))$,
$\varphi(\mathrm{d}(\mathrm{Rx}, \mathrm{Px})) \varphi(\mathrm{d}(\mathrm{Qy}, \mathrm{Ty})), \varphi(\mathrm{d}(\mathrm{Rx}, \mathrm{Ty})) \varphi(\mathrm{d}(\mathrm{Qy}, \mathrm{Px}))\}$,
for all $x, y \in X$.

Proof: Let x_{0} in X be arbitrary. Choose a point x_{1} in X such that $\mathrm{P} x_{0}=\mathrm{Qx} \mathrm{x}_{0}$.
This can be done
since $P(X) \in Q(X)$. Let x_{2} be a point in X such that $T x_{1}=R x_{1}$. This can be done since $T(X) \bar{R}(X)$.In general we can choose $x_{2 n}, x_{2 n+1}, x_{2 n+2}, \cdots$ such that $\mathrm{Px}_{2 n}=\mathrm{Qx}_{2 n+1}$ and $\mathrm{Tx}_{2 \mathrm{n}+1}=\mathrm{Rx}_{2 \mathrm{n}+2}$, so that we obtain a sequence
$P x_{0}, T x_{1}, P x_{2}, T x_{3}, \cdots$.(1)
Taking condition (i). (ii) and (iii) as in Aage and Salunke [1] $\left\{P x_{2 n}\right\}$ is a Cauchy sequence and consequently the sequence (1) is a Cauchy. The sequence (1) converges to a limit z in X . Hence the subsequences $\left\{P x_{2 n}\right\}=$ $\left\{Q x_{2 n+1}\right\}$ and $\left\{T x_{2 n-1}\right\}=\left\{R x_{2 n}\right\}$ also converge to the limit point z .

Suppose that the pair (P, R) is compatible pair of reciprocally continuous.By the definition of reciprocally continuous, there is a sequence $<x n>$ in X such that
$P x_{2 n} \rightarrow z, R x_{2 n} \rightarrow z$ then $P R x_{2 n} \rightarrow P z, R P x_{2 n} \rightarrow R z$ as $n \rightarrow \infty$
Since the pair (P, R) is compatible we have $P x_{2 n} \rightarrow z, R x_{2 n} \rightarrow z$ as $n \rightarrow \infty$ and
$\lim _{n \rightarrow \infty} d\left(P R x_{2 n} ., R P x_{2 n}\right)=0 .$.
using (2) and (3) we get
$d(P z, R z)=0$ or $P z=R z$. Since $P z=R z,$.
Now by (ii)

$$
\begin{aligned}
& d^{2}\left(P z, T x_{2 n+1}\right) \leq \max \left\{\varphi (d (R z , Q x _ { 2 n + 1 })) \varphi \left(d(R z, P z), \varphi\left(d\left(R z, Q x_{2 n+1}\right)\right)\right.\right. \\
& \varphi\left(d\left(Q x_{2 n+1}, T x_{2 n+1}\right)\right), \varphi(d(R z, P z)) \varphi\left(d\left(Q x_{2 n+1}, T x_{2 n+1}\right)\right), \\
& \left.\varphi\left(d\left(R z, T x_{2 n+1}\right)\right) \varphi\left(d\left(Q x_{2 n+1}, P z\right)\right)\right\} . \\
& Q x_{2 n+1} \rightarrow z, T x_{2 n+1} \rightarrow z \text { as } n \rightarrow \infty \text { and } R z=P z \text {, so letting } n \rightarrow \infty \text { we get }
\end{aligned}
$$

```
\(d^{2}(P z, z) \leq \max \{\varphi(d(P z, z)) \varphi(d(P z, P z))\),
\(\varphi(d(P z, z)) \varphi(d(z, z)), \varphi(d(P z, P z)) \varphi(d(z, z)), \varphi(d(P z, z)) \varphi(d(z, P z))\}\)
\(=\varphi(d(P z, z)) \varphi(d(z, P z))\)
i.e. \(d(P z, z) \leq \varphi(d(P z, z)) \leq d(P z, z)\). Hence \(\varphi(d(P z, z))=0\) i.e. \(P z=z\) Thus \(P z=R z=z\)
```

Further
Since $P(X) Q(X)$, there is a point w X such that
$z P z=Q w$.
Now we prove that $Q w=T w$. Now by (ii)
$d^{2}(P z, w) \leq \max \{\varphi(d(R z, Q w)) \varphi(d(R z, P z)), \varphi(d(R z, Q w)) \varphi(d(Q w, T w))$, $\varphi(d(R z, P z)) \varphi(d(Q w, T w)), \varphi(d(R z, T w)) \varphi(d(Q w, P z))\}$
$=\max \{\varphi(d(Q w, Q w)) \varphi(d(Q w, Q w)), \varphi(d(Q w, Q w)) \varphi(d(Q w, T w))$,
$\varphi(d(Q w, Q w)) \varphi(d(Q w, T w)), \varphi(d(Q w, T w)) \varphi(d(Q w, Q w))\}$
so $d^{2}(Q w, T w) \leq 0$ implies $d(Q w, T w)=0$, hence $z=Q w=T w$.
Since the pair (T, Q) is compatible pair of reciprocally continuous.By the definition of reciprocally continuous, there is a sequence $<x_{n}>$ in X such that
$T x_{2 n} \rightarrow z, Q x_{2 n} \rightarrow z$ then $T Q x_{2 n} \rightarrow T z, Q T x_{2 n} \rightarrow Q z$ as $n \rightarrow \infty .$.
Since the pair (T, J) is compatible we have $T x_{2 n} \rightarrow z, Q x_{2 n} \rightarrow z$ as $n \rightarrow \infty$ and.
$\lim _{n \rightarrow \infty} d\left(T Q x_{2 n}, Q T x_{2 n}\right)=0 \ldots . .(5)$
using (4) and (5) we get
$d(T z, Q z)=0$, hence $T z=Q z$. Now $\left.d^{2}(z, T z)=d^{2} P z, T z\right)$
$\leq \max \{\varphi(d(R z, Q z)) \varphi(d(R z, P z)), \varphi(d(R z, Q z)) \varphi(d(Q z, T z))$,
$\leq \varphi(d(R z, P z)) \varphi(d(Q z, T z)), \varphi(d(R z, T z)) \varphi(d(Q z, P z))\}$
$=\max \{\varphi(d(z, T z)) \varphi(d(z, z)), \varphi(d(z, T z)) \varphi(d(T z, T z)), \varphi(d(z, z)) \varphi(d(T z, T z)), \varphi(d(z, T z)) \varphi(d(T z, z))\}$
$=\varphi(d(T z, z)) \varphi(d(T z, z))$
implies that $d(T z, z) \leq \varphi(d(T z, z)) \leq d(T z, z)$.
Hence $\varphi(d(T z, z))=0$ i.e. $T z=z$ and $z=T z=Q z$. So z is a common fixed point of $\mathrm{P}, \mathrm{R}, \mathrm{Q}$ and T .

REFERENCES

[1] Aage C.T., Salunke J.N., Int. Journal of Math. Analysis, 2(28): 1369-1380(2008).
[2] Pant R.P. and Padaliya S., Jnanabha, 29: 137-143(1999).
[3] Umamaheshwar Rao R.,V. Srinivas and P. Srikanath Rao, Indian J. of Mathematics and Mathematical Sci., 3(2): 207-215(2007),.
[4] Jungck Inst. J. Math Sci. 9: 771-779(1986).

