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ABSTRACT  
 
The wave analysis and semiclassical theory of laser can be used to find out some related parameters of any 
Quantum devices. The power spectrum for the induced transition in a Fabry -Perot cavity with two and three 
mirrors has been worked out with the help of wave analysis involving only a few parameters like transition, 
absorption and diffraction. The results obtained by wave analysis have been compared with that obtained in the 
semiclassical theory of Laser. The salient point in the comparative study is that in wave analysis, the nature of the 
ring cavity is not clearly visualized whereas semiclassical theory throws the much needed light on the interaction of 
radiation with matter inside the cavity. 
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INTRODUCTION 
 

The semiclassical theory [1] as prescribed by Lamb [1, 2] has successfully explained a large number of laser 
systems. Although the assumptions in semiclassical theory are not particularly valid for TEA and GDL laser [3], 
they are quite good for typical operations of He- Ne and other gas lasers. Semiclassical theory has been applied to 
various types of cavities. The ring cavity [4-8] is one of very important cavities with considerable interest in science 
and engineering. It is worthwhile to note that the wave analysis to consider the problem of Laser oscillation was 
originally proposed by George Birnbaum [4]. The method contains some salient features which describe the laser 
behavior (induced and spontaneous emission) in an adequate way, while discussing about wave analysis, we have 
noted few interesting features which may be compared with those in a semiclassical theory. The purpose of the 
present work is present a comparison of the steady state theory of optical maser and the semiclassical theory of laser. 
It must be noted that the comparison is only for historical interest because we believe that the semiclassical and 
Quantum of Laser are considered as nearly complete theory. 
 

MATERIALS AND MATHODS 
 

It is natural to consider the maser as an amplifier driven by spontaneous emission. In particular, consider the open 
sided resonator of the Fabry-Perot type, consisting of plane parallel, partially transmitting mirrors whose complex 
transmission and reflection coefficients are t/ and r/. Let the resonator be uniformly filled with a material whose 

complex propagation constant is β
α

i
kK +

−= 2
)(  , where α is the negative absorption, k is the dielectric loss of 

the host material and β  is the phase shift due o the maser atoms and the host material. To calculate the amplitudes 
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of the waves, in a single cavity mode, generated by the spontaneous emission noise from a slab of active material. 
The reflected waves emanating from the mirror second to first sides of the slab are respectively,  
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Multiplying (1) and (2) by their complex conjugates and adding we find that the power per unit length of material 
per unit frequency range transmitted though mirror second is given by  
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The quantity A2 is defined by 

22)a-(                  P

a               1    hν  dz a 2dzdν2A
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Where P′  is the number of modes in cross sectional area a and is given by – 
2V

2 4 a
P

πν=′  

 
The quantity D β  is the single pass phase shift and for a standing wave to build up in the cavity. i.e. to obtain 

resonance, D β  must be an integral multiple of π . The power reflection coefficient ,2
2
2r R=  and the power 

transmission coefficient 2
2
2t T=  are related by- R2 + T2 + A2 + F2 = 1; where A2 and F2 are respectively the fraction 

of light absorbed and diffracted by the mirror. 
 
With the assumption that k = 0*, 1212   1,    D α ≈〈〈 rr , we obtain from (3) by performing the integration over z,  
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We have used thee relation that the phase shiftD β =φ , near resonance is D cβ-D βD β =∆ ; where πqD cβ =  

and 1βD〈〈∆ . Now the phase shift for a wave traveling once through a resonator length D and waveguide wavelength, 

gλ  is 

c

n  D ν  π2

λ

D   π2

g

≈=φ                                                            --- (6) 

 

We have taken gλ  to be n  ν
c and n is the refractive index of medium. Hence the cavity has resonance frequencies 

separated by n 2D
c . Small changes in phase measured from the phase at the cavity frequency are given by 
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From (6) and (7) we have for the change in phase shift due to the dispersion of the resonator 

C
D n  π2

ν)c(νc∆ 0−=φ ; Where  0nn =ν  = total population (n1+ n2) 

 
To calculate the phase change due to the dispersion of the amplifying medium, we write for a Lorentzian line,  

1]2/2)(1)[()( −∆−+= aaa ννννανα  and 
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absorption coefficient at the atomic resonance. Now, from (5) and (4) 
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In obtaining (8) we have neglected 2/2)( aaY ννν ∆−=  in comparison with 1 on the basis that 1   〉〉G . The limiting 

case ∞→G  will be recognized as the oscillation condition. 
 
For half cavity width, at half amplitude  cν∆  , is    D0n  π4  / )2 11 (   c cν ∆ rr−=  

 
For half width ocν∆ , the power spectrum has a Lorentzian shape 

acGcos νννν ∆∆+∆=∆ /1(/                                                          --- (10) 

 
When  a∆ν   c∆ν 〈〈  , the equation (10) will be         Gcos /νν ∆=∆  

In equation (8) we see that the term 2)(2)/(

)/(1

cGYc

dGYc
ννν
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π −+∆

∆  is the atomic resonance has the 

Lorentz shape. So, this term equal to 1. 
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Since 2∆ν2ν)o(ν  /     
1

 )S( +−∆= ν
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Upon performing the integration in (8) and omitting the term )2 11 (  /  2
2 t rr− , then the power is given by 
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The term 
ahV
a

ν
νµπ

∆3

228
 is the induced transition rate resulting from one photon per unit volume and when multiplied 

by νhN2  represents the emitted power for N2 atoms in the excited state. 

 
RESULT AND DISCUSSION 

 
Semiclassical theory of laser and wave analysis: 
From the semiclassical theory of Laser (5) the expression for population difference necessary for inversion is given 
in density matrix formulize as,  
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Equation (12) in fact include the gain coefficient given in semi classical theory as 
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It is worthwhile to compare equation (9) representing gain and wave analysis with equation (12) and (13) 
representing population inversion as well as gain coefficient. Further we note that the α gain coefficient is written 
as 
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Where, K includes every term in the RH S excepting square bracket. 
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CONCLUSION 
 

An evaluation of gain coefficient as given by equation (9) shows that gain is dependent on reflectivity and 
absorption coefficient. The salient point of discussion of equation (9) is that gain increases as reflectivity increases 
as seen in the Fig1.         
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Fig 1 Variation of reflectivity at a particular value of absorption co-efficient 

(Y- axis) against gain co- efficient (X-axis) 
 

But this is applicable only when the reflectivity (r = r1 r2) is above 0.96, below this value significance gain is not 
observed. This is considered as general rule because we observed that to achieve laser action; we need dielectric 
mirror of extremely high reflectivity.  
                 
But a singular situation arises when r1 r2 = 1, this indicates the limitation of wave analysis. Also the oscillating 
condition is given by G >> 1. This is an ideal situation only. From Equations (12), (15) and (18) we may conclude 
that gain co-efficient includes the term for inversion whereas in the wave analysis the expression for population 
inversion is somehow missing. 
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