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ABSTRACT 
 
In this work, we have derived amplitude and frequency determining equations using complex conjugate terms of 
electric field and polarization in Maxwell’s equation. It is observed that the derived basics equations are different 
from the original equations derived by Lamb and his coworkers. The derived additional terms have physical 
significance related to the lasing action in Fabry-Perot type and Zemann laser cavities. 
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INTRODUCTION 
 

The semiclassical theory [1] prescribed by Lamb and his coworkers [1-5] have successfully derived different 
parameters of laser cavities. Semiclassical theory has been applied to various types of cavities. The purpose of the 
present work is to present a comparison of amplitude and frequency determining equations using complex conjugate 
terms with the help of semiclassical theory of laser which was left out in original work of Lamb.  Lamb and 
coworkers [6, 7] had worked out the theory of Zeeman Laser and explained about Electromagnetic field equations, 
polarization of the medium [8, 9], equation of motion, cavity anisotropy, transverse magnetic field, atomic decay 
rate, Lande’s factor etc in laser. 
 

MATERIALS AND METHODS 
 

The active medium consists of thermally moving atoms of varying isotopic abundance which have two electric 
states with arbitrary angular momenta. The electromagnetic field is treated classically for a general state of 
polarization in a cavity with any desired degree of cavity anisotropy.  The self-consistency requirement is that a 
quasi-stationary field should be sustained by the induced polarization lead to the equations which determine the 
amplitude and frequencies of multimode oscillations as functions of the laser parameters. The Maxwell’s equations 
in mks unit as, neglecting vector properties 
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Here P, polarization is used to describe the induced atomic polarization of the active medium. It is desirable to 
provide for different cavity resonant frequencies for the linearly polarized radiation along orthogonal Cartesian axes 
transverse to the maser axis.  
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Inside the cavity only certain discrete modes achieve appreciable magnitude whose circular frequency is  
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Where L is the length of the cavity, c is the velocity of light, n is a large integer in our discussion we take normal 
modes to have sinusoidal z dependence. The electric field can be expressed as a sum of modes as: 
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The single polarization component of the electric field is written as 
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Here, the amplitude coefficientnE and complex polarization component nP  very small in optical frequency range. 
The real part of polarization is in phase with the electric field leads to dispersion due to medium. The imaginary part 
is in quadrature with the electric field and results in gain or loss.  
 
Now putting values of (2) and (3), neglecting complex conjugate terms, in equation (1),  
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Here, we neglect the slowly varying terms with frequency. Adjusting the fictional conductivity σ to create the 
desired value of Q  of the mode  
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From equation (4), by comparing real and imaginary part, we get  
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Which are basic equations of the semiclassical theory of laser.  
 
Using the same procedure for the complex conjugate terms, we get the gain and dispersion relations as  
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In case of Zeeman laser, the vectorial electric field with two transverse degrees of freedom is particularly convenient 
choice of representation with circularly polarized components. 
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Where, the complex circularly polarized unit vectors ), ŷ ix̂ ( 2

1
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-,φφ+  are slowly varying functions of time. The induced polarization of the medium corresponding to field has the 

form 
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Where, the complex Fourier components of polarization −Ρ+Ρ , are slowly varying functions of time. Putting the 

values from (9) & (10) in (1), ignoring complex conjugate term and also neglecting slowly varying terms with 

frequency, ÷÷++ E andEσ,σ, &&&& φφ , we get  
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Where, the relative phase angle is       
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And the conductivity matrix  
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Equating the real and imaginary part   of equation (11) separately to zero, the self consistency equations           
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Using the complex conjugate terms and following the same procedure we get 
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Equating the real and imaginary parts these equations to zero; we obtain the self-consistency equations  
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For diagonal losses, these become  
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RESULTS AND DISCUSSION 

 
For Fabry-Perot type cavity, in absence of active medium, Pn = 0, the amplitude and frequency determining 
equations with real terms becomes                                                    
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The equations (5) and (7) are same except the negative sign. But equations (6) and (8) are different which represents 
dispersion of the medium. In absence of active medium, the equations using complex conjugate terms become  
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From equation (8), we get two relations, one part  is  
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This equation is same as the real part of the original basic equation of laser derived by Lamb. The another part of the 
equation is 
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Which represents dispersion but with different form. 
 
Physical   significance:  
The complex polarization for complex susceptibility                   
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Thus the frequency determining equations with real and that of complex conjugate term show a distinct difference 
between gain and classical problem. 
 
In case of Zeeman laser cavity, for diagonal losses, the self-consistency equations (12) & (13) reduces to 
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These equations are the same as equations of semiclassical theory of laser of which represents the oscillation 
conditions of laser and the dispersion of the medium. 
 
In absence of active medium 0=+P , we get 
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Which are also different as derived for Fabry-Perot type cavity. 
 

CONCLUSION 
 

For Zeeman laser, the equation (13) can be divided as  
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This represents dispersion as that derived for Fabry-Perot type cavity. And the other part is 
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This equation represents dispersion in different form. It is reasonable to believe that the additional term will be 
contributed in the determination of atomic decay rates and g values for the laser medium. These equations are 
similar as the equations in absence of active medium in the former calculations with real or complex conjugate term 
only. Thus it is observed that the complex conjugate term has overall affect on the gain and dispersion relations.  
 

REFERENCES 
 
[1] W E Lamb Jr, Phys. Rev., A1429, 134, 1964. 
[2] W E Lamb Jr, M O Scully, Phys. Rev., 159, 208, 1967. 
[3] M Sargent, M O Scrully, W E Lamb Jr, “Laser Physics”, Addition Wesley, 1974. 
[4] M Sargent III, W E Lamb Jr , R L Fork, Phys. Rev., 436, 164, 1967; Phys. Rev., ,450,164,  
1967. 
[5] P Meystre, M Sargent III, Elements of Quantum Optics, Springer Verlag, 1992. 
[6] J I Hall, In Atomic Physics, eds.; S J Smith, D K Valters, Plenum Press, 3, 615, 1973. 
[7] J Mudoi, J Dutta, K C Sarma, Archives of Physics Research, , 2 (1): 154-159, 2011. 
[8] R G Breawer, Science, 178,197, 1972. 
[9] L N Menegozzi , W E (Jr) Lamb, Phys. Rev., A8, 2103, 1973. 
 


