Available online at www.pelagiaresearchlibrary.com

Pelagia Research Library

Advances in Applied Science Research, 2014, 5(3):417-419

A common fixed point theorem for a pair of mappings in dislocated metric spaces

Rajesh Shrivastava*, K. Qureshi** and Kiran Rathore*

*Deptt. of Mathematics, Govt. Science & Commerce College, Benazir, Bhopal, (MP) **Higher Education Department, Govt. of M. P., Bhopal, (MP)

ABSTRACT

In this paper we have proved fixed point theorem for continuous contraction mappings in dislocated Quasi Metric Spaces. Also we obtain a common fixed point theorem for a pair of mappings in Dislocated Metric Spaces. The purpose of this paper is to prove some fixed point theorems satisfying rational type of contractive condition due to Jaggi [1] in the setting of dislocated-quasi metric spaces. Also for A-Contraction, a general class of contraction defined by Akram et al. [2], established a common fixed point theorem for a pair of mappings in dislocated metric space.

Keywords: Dislocated quasi matrices fixed point, Continous contraction mapping

INTRODUCTION

Dass and Gupta [1] generalized Banach's Contraction Principle in Metric Space. Also Rhoads [1977] introduced a partial ordering for various Definitions Contractive Mappings. The objective of this theorem is to prove some fixed point theorem for continuous contraction mapping defined by Dass and Gupta [1], Rhoades [4]and Banach in Dislocated Quasi Metric Spaces. Banach [1992] proved Fixed Point Theorem for Contraction Mappings in Complete Matrix Space. It is well known as a Banach Fixed Point Theorem.

PRELIMINARIES

Definition 1 [3] : A Sequence $[X_n]$ is dq Metric Space (Dislocated Quasi Metric Spaces) (X, d) is called Cauchy Sequence if for given $\varepsilon > 0, \exists a n_0 \in N$ such that $\forall m, n > n_0 \Rightarrow d(x_m, x_n)$

 $< \varepsilon \text{ or } d(x_n, x_m) < \varepsilon$

i.e. $min \{d(x_m, x_n), d(x_n, x_m)\} < \varepsilon$

Definition 2 [3] : A Sequence $[X_n]$ dislocated Quasi Convergence to x if

 $1t\,n\to\infty\,d(x,x_n)=1t\,n\to\infty\,d(x,x_n)=0$

In this case x is called a dq limit of $[X_n]$ we write $x_n \to x$

Pelagia Research Library

Definition 4 [3] : A dq Metric Space (X, d) is called complete if every Cauchy Sequence in it is a dq convergent.

Definition 5 [3] : Let (X, d) and (Y, d) be dq Metric Spaces and Let $f: X \to Y$ be a function. Then f is which is $d_1 - q$ convergent to x_0 in X, the sequence $[f(x_n)]$ is d, -q convergent to x_0 in X, the sequence $[f(x_n)]$ is d, -q convergent to $f(x_0)$ in Y.

Definition 6 [3] : Let (X, d) be a dq Metric Space. A map $f: X \to X$ is called contraction if there exists 0 < x < 1 such that

 $d(Fx, Fy) < \lambda \, d(x, y) \forall x, y \in X$

Theorem 1: Let (X, d) be a dq Metric and let $f: X \to X$ be continuous contracting mapping. Then F has a unique fixed point.

RESULTS

Theorem 1 : Let (X, d) be a dq Metric Space and let $f: X \to X$ be continuous mapping satisfying the following condition.

 $d(Fx, Fy) = \alpha \frac{(d(y, Fy)[1 + d(x, Fx)]}{(d(x, Fx)[1 + d(y, Fy)]}$ $\forall x, y \in X, \quad \alpha > 0, \quad \beta > 0, \quad r > 0, \quad \alpha + \beta + \gamma < 1$

Then F has a unique fixed point.

Proof: Let $[X_n]$ be a sequence in X defined as follows. Let

 $x_0 \in X$, $F(x_0) = x_1$, $F(x_1) = x_2$, $F(x_3) = x_4 \dots \dots$

 $F(x_n) = x_{n+1}$

Consider

$$d(x_{n}, x_{n+1}) = d(Fx_{n-1}, Fx_{n}) <$$

$$\alpha \frac{d(x_{n}, Fx_{n})[1 + d(x_{n-1}, Fx_{n-1})]}{[1 + d(x_{n-1}, x_{n})]} + \beta d(x_{n-1}, x_{n}) + \gamma d(x_{n}, Tx_{n})] \dots \dots \dots \dots (i)$$

$$d(x_{n}, x_{n+1}) < \alpha \frac{d(x_{n})}{[1 + d(x_{n-1}, x_{n})]} + \beta d(x_{n-1}, x_{n}) + \gamma d(x_{n}, x_{n+1})$$

Therefore $d(x_n, x_{n+1}) - \alpha d(x_n, x_{n+1}) - \gamma d(x_n, x_{n+1})$

$$\Rightarrow d(x_n, x_{n+1}) < \frac{\beta}{1 - \alpha - \gamma} d(x_{n-1}, x_n)$$

Let $\delta = \frac{\beta}{1 - \alpha - \gamma}$ with $0 < \delta < 1$
Then $d(x_n, x_{n+1}) < \delta d(x_{n-1}, x_n)$

on further decomposing we get

$$d(x_{n-1}, x_n) < \delta d(x_{n-2}, x_{n-1})$$

Pelagia Research Library

and finally we can write

 $d(x_n, x_{n+1}) < \delta d(x_{n-2}, x_{n-1})$

On continuing this process n times

Since $0 < \delta < 1$ and $n \to \infty$, $\delta^n \to 0$.

Hece $[X_n]$ is a dq sequence in the complete dislocated Quasi Metric Space X.

Thus $[X_n]$ dislocated Quasi sequence converges to come t_0 . Since F is continuous we have

$$F(t_0) = 1t_{n \to \infty} F(X_n) = 1t_{n \to \infty} \ X_{n+1} = t_0$$

Thus $F(t_0) = t_0$

Thus F has a fixed point.

Uniqueness

Let x be a fixed point of F. Then by given condition we have

$$d(x,x) = d(Fx,x) < (\alpha + \beta + \gamma)d(x,x)$$

Which gives d(x, x) = 0 Since

 $0 < (\alpha + \beta + \gamma) < 1$ and d(x, x) > 0.

Thus d(x, Fx) = d(x, x)

if x is a fixed point of F.

Let $x, y \in X$ be fixed point of F, i.e. is Fx = x; Fy = x; Fy = y

Then by condition 3.1 $d(x, y) = d(Fx, Fy) < \beta d(x, y)$

Similarly d(y, x) = 0 and hence x = y. Thus fixed point of F is unique.

REFERENCES

[1]B.K. Dass, S. Gupta, Indian Journal of Pure and Applied Mathematics, 6: 1455-1458(1975).
[2]C.T. Aage, J.N. Salunkhe, Applied Mathematical Science.
2(59): 2941-2948(2008).
[3] F.M. Zeyada, G.H. Hassan, M.A. Ahmed, The Arabian Journal for Science and Engineering, 31(1A): 111-14(2005).

[4]B.E. Rohades, Transfer, Amer. Soc. 226:257-290(1977).