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ABSTRACT

In this paper we have proved fixed point theorem for continuous contraction mappings in didocated Quasi
Metric Spaces. Also we obtain a common fixed point theorem for a pair of mappings in Didocated Metric Spaces.
The purpose of this paper isto prove some fixed point theorems satisfying rational type of contractive condition due
to Jaggi [1] in the setting of dislocated-quasi metric spaces. Also for A-Contraction, a general class of contraction
defined by Akram et al. [2], established a common fixed pointtheorem for a pair of mappings
in dislocated metric space.
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INTRODUCTION
Dass and Gupta [1] generalized Banach’s Contra®idmciple in Metric Space. Also Rhoads [1977]acdtuced a
partial ordering for various Definitions Contrizet Mappings. The objective of this theoremadstove some
fixed point theorem for continuous contraction magpdefined by Dass and Gupta [1] , Rhoades [4Badach
in Dislocated Quasi Metric Spaces. Banach [1992)ved Fixed Point Theorem for Contraction Mappings i
Complete Matrix Space. It is well known as a Bankotted Point Theorem.
PRELIMINARIES
Definition 1 [3] : A SequencdX,,] is dq Metric Space (Dislocated Quasi Metric Space§)d) is called Cauchy
Sequence if for givem > 0,3 any, € N such thatym,n >ny, = d(Xm, xn)
< ecordXnxm)<e
i.emin {d(m Xn), d(Xn,xm )} < e
Definition 2 [3] : A Sequence,,] dislocated Quastonvergence to if

1tn->owod(xx,) =1tn->wd(xx,)=0

In this casex is called adq limit of [x,] we write x, — x
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Definition 4 [3] : A dq Metric Space X, d) is called complete if every Cauchy Sequence iis i@ dq
convergent.

Definition 5 [3] : Let (X, d) and {r, d) be dg Metric Spaces and LgtX — Y be a function. Therf is
which isdy — g convergent ta, in X, thesequencéf (x,)] is d, - convergent te, in X, the sequencéf (x,,)]

is d, -q convergent tfi(x,) in Y.

Definition 6 [3] : Let (X, d) be adq Metric Space. A magf:X — X is called contraction if there exists
0 <x <1 such that

d(Fx,Fy) < Ad(x,y)Vx,y € X

Theorem 1 : Let (X, d) be adg Metric and letf: X — X be continuous contracting mapping. Thehds a unique
fixed point.

RESULTS

Theorem 1 : Let (X, d) be adg Metric Space and lef: X - X be continuous mapping satisfying the following
condition.

(d(y, Fy)[1 +d(x, Fx)]
(d(x, FX)[1 +d(y, Fy)]

d(Fx,Fy) =«

Vx,y€X, a >0, B >0, r>0, a+pf+y<1
Then Fhas a unique fixed point.

Proof : Let [X,] be a sequence X defined as follows. Let

X, EX, F(xq) = x4, F(x;) = x,, F(x3) = X4 wovvenenn
F(xp) = Xn41

Consider

d (Xn,Xp41) = d(Fxp_q, Fxp) <

d(xnt Fxn)[l + d(xn—lfF Xn-1 )]
[1 + d(xn—lﬁxn)]

+ Bd (1, %n) + yd (X, Tx)] con e v (0)

d
d ()21 < @ g B (n ) + ¥ (¥ Xsr)

[1+d(xn-12n)

Therefore

d (xn » Xn+1 )_ ad(xn'xn+1) - yd(xn;xn+1)

=>d (x,,x )<Ld(x X,)
n»*n+1 1—(1—]/ n-14*n

let §=— witho<s<1
1-a-y
Thend(xn' xn+1) < d(xn—l'xn)

on further decomposing we get
d(Xp-1, %) < 8 d(Xp—2, Xp_1)
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and finally we can write

d(Xp, Xny1) < 6 d(Xp_2,%p-1)

On continuing this process n times

Since0 < § <1 andn - o«,8™ - 0.

Hece[x,] is adq sequence in the complete dislocated Quasi MetcSiX.

Thus(x,,] dislocated Quasi sequence converges to cbm&ince Fis continuous we have
F(to) = 1ty F(Xn) = 1ty Xy = o

ThusF(t,) = t,

Thus Fhas a fixed point.

Uniqueness
Let x be a fixed point of F. Then by given condition waevh

d(x,x) =d(Fx,x) < (a+ B +y)d(x,x)
Which givesd(x,x) = 0 Since
0<(a+p+y)<1 and d(x,x) > 0.
Thusd(x, Fx) = d(x,x)
if xis a fixed point of F.
Letx,y € X be fixed point of F, i.e. i§x =x;Fy=x;Fy =y
Then by condition 3.H(x,y) = d(Fx,Fy) < B d(x,y)
Similarly d (y,x) = 0 and hencex = y. Thus fixed point of Fs unique.
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