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ABSTRACT

The problem ofriply diffusive magnetoconvection is consideredthie present paper. An attempt is made to
establish the relationship between various energiegeronis’ type configurations. The analysis méxdi@gs out
that for Veronis type configuration, the total Kiceenergy associated with a disturbance exceeglstim of its total
magnetic and concentration energies in some pdercparameter regime. Further, this result is validr any
combination of dynamically free or rigid boundaribsit are either perfectly conducting or insulating
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INTRODUCTION

Thermohaline convection or more generally doublusive convection has matured into a subject pEseg
fundamental departure from its counterpart, nansétgle diffusive convection, and is of direct relace in the
fields of oceanography, astrophysics, liminologd @hemical engineering etc. For a broad and a tecew of the
subject one may be referred to [1]. Two fundamemmhfigurations have been studied in the context of
thermohaline instability problem, the first one 8] wherein the temperature gradient is stabiliziewgd the
concentration gradient is destabilizing and theosdcone by [3] wherein the gradient is destabitzemd the
concentration gradient is stabilizing. The mainuhss derived by Stern and Veronis for their respect
configurations are that both allow the occurrenteacstationary pattern of motions or oscillatory trons of
growing amplitude provided the destabilizing cortcation gradient or the temperature gradient ificehtly large.
However, stationary pattern of motion is the pneférmode of setting in of instability in case ofei®ts
configuration whereas oscillatory motions of grogviemplitude are preferred in Veronis' configuratidviore
complicated double-diffusive phenomenon appeaitseifdestabilizing thermal/concentration gradierdpposed by
the effect of magnetic field or rotation. [4]invigstted the problem of thermohaline convection cedplith cross-
diffusions for the Veronis type configuration amigrived a semi-circle theorem that prescribed uppets for the
complex growth rate of oscillatory motions of nalitor growing amplitude in such a manner that iturelly
culminates in sufficient conditions precluding then- existence of such motions. [5] investigateel Rayleigh-
Taylor instability of a Newtonian viscous fluid algng Walters’ B’ viscoelastic fluid through porsunedium. [6]
have considered the hydromagnetic instability of {flane interface between two uniform, superposed a
streaming Rivlin-Ericksen viscoelastic fluids thgbuporous medium.
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All the above researchers have considered the afasgo component systems. However, it has beengrézed
later on by [7], [8] that there are many situatievigerein more than two components are present. fbesnof such
multiple diffusive convection fluid systems incluttee solidification of molten alloys, geothermaligated lakes,
magmas and their laboratory models and sea wdtePgaristein et al. [10]and [11]have theoreticaflydied the
onset of convection in a horizontal layer, of iiténextension of a triply diffusive fluid (wheredfdensity depends
on three independently diffusing agencies with edght diffusivities). These researchers found thiaalls
concentrations of a third component with a smalléfusivity can have a significant effect upon thature of
diffusive instabilities and oscillatory and direslt finger modes are simultaneously unstable uadeide range of
conditions, when the density gradients due to corepts with the greatest and smallest diffusivity af same
signs .Some fundamental differences between théleaand triply convection are noticed by these aedeers
diffusive. Among these differences, one is thdh# gradients of two of the stratifying agencies laeld fixed ,then
three critical values of the Rayleigh number of tthied agency are sometimes required to specifyitiear stability
criteria(only one critical number is required inuthte diffusive convection ) . Another differencelist the onset of
convection may occur via a quassiperiodic bifumratirom the motionless basic state. [12] studieal effect of
cross-diffusion on the stability criteria in a tyigdiffusive system. [13] studied the case of nudthonent mixture
with application to thermogravitational column. 4]lalso studied the longwave instability of a mudthponent
fluid with Soret effect. [15] studied a triply coeetive diffusive fluid mixture saturating a poroogrizontal layer,
heated from below and salted from above and oldasuéficient conditions for inhibiting the onset adnvection
and guaranteeing the global nonlinear stabilitytted thermal conduction solution. [16] also investegl the
multicomponent diffusive convection in porous lajer the more general case when heated from betwhsalted
by m salts partly from above and partly from bel[@w] investigated the problem of triply diffusivemvection in
Maxwell fluid saturated porous layer and obtainé@ triterion for the onset of stationary and oatilty
convection. [18] investigated the bifurcation as@éyof a triply diffusive coupled stress fluid ierins of a
simplified model consisting of seven nonlinear nedty differential equations. [19] have studied timear and
weakly nonlinear triple diffusive convection in euple stress fluid layer.

Chandrasekhar [20] in his investigation of magnkydrodynamic simple Be’nard convection problem saug
unsuccessfully the regime in terms of the pararsetdrthe system alone, in which the total kinetiergy
associated with a disturbance exceeds the totaheti@genergy associated with it, since these cenaitbns are of
decisive significance in deciding the validity bktprinciple of exchange of stabilities. Howevée solution for w

(= constant(sinz z))is not correct mathematically (and Chandrasekhar aweare of it).Banerjee et. al. until

1985 did not pursue their investigation in thisedtion and consequently did not see this conneclibis gap in the
literature on magnetoconvection has been complatg@1]who presented a simple mathematical proastablish

that Chandrasekhar’s conjecture is valid in théme§) g, < 777 and further this result is uniformly applicable fo
any combination of a dynamically free or rigid bdany when the region outside the liquid are peljeminducting

g
L <1 the total kinetic energy associated with a

or insulating. [21] showed that in the parametegime

disturbance is greater than the total magneticggressociated with it.

[22] further extended these energy considerattons more general problem, namely, magnetohydradica
thermohaline convection problem, of Veronis typed amstablished that in the parameter regime

Qo N Rso
-
and thermal energies. A similar characterizaticgotem in magnetothermohaline convection of the Nistdype
was also established by Banerjee et. al in the ezt year.[23] derived a characterization theoiem

hydromagnetic double diffusive convection and di&héd that the total kinetic energy associatedhwdt
disturbance is greater than the sum of its totajretic and concentration energies in the parameggme,

< 1,the total kinetic energy associated with a distndeaexceeds the sum of its total magnetic

Q0-1+ RSU Sl
n®  ar*n*
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The present analysis extends these energies coatsites to another complex problem, namely, trigiffusive
magnetoconvection problem (analogous to magnetoibiesline convection of the Veronis type) whereire on
destabilizing heat component and two stabilizingaemtration components have been considered. Stéblish

R.o R.o
S + S

g
here that in the parameter regiﬂ(ge—1 + <1, the total kinetic energy associated with a

armt Ar,tnt
disturbance exceeds the sum of its total magneiic cmncentration energies. Further, this resultaitdd for any
combination of dynamically free or rigid boundaribat are either perfectly conducting or insulating

MATHEMATICAL FORMULATION AND ANALYSIS
A viscous and finitely heat conducting Boussindfgjd is statically confined between two horizdnt@undaries
z=0 and z=d of infinite horizontal extension anuité vertical depth which are respectively mainggirat uniform

temperaturesT, and T, (T, >T,) and uniform concentrations,,, S,, and S;;(< S;p), S,,(,< S,p) in the

presence of uniform vertical magnetic fickd.

Following [7]and[22]), the relevant governing edaat and boundary conditions for the triply diffussi
magnetoconvection in their non-dimensional formgiven by:

(D2 - az) (DZ -a’ —EJW: R, a’6-Rsa’g - Ria’e —QD(D2 - a2) h, @)
g
D?-a?-pp=-w. 2)
D2-a?-Plg=-2 3)
I 4]
D2-a?-P g =-" (4)
[P P
and
Dz—az—&jhz =-Dw. (5)
o
with
w=0=0=¢g=¢ on both the boundaries,
D?w=0 on a tangent streese-fsoundary everywhere,
Dw=0 on a rigid boundary,
h,=0 on both the bounekaif the regions outside

theiflare perfectly conducting,

if the regions outside the fluid amsulating.

Dh, =-ah,atz=1
Dh, =ah,atz=0
(6)

d
In the above equations (1)—(6), z is real indepehdariable such that9z<1, D = d_ is differentiation w.r.t z ,
P4

w is the vertical velocityd is the temperaturegg@andg, are two concentrationl, is the vertical magnetic field,
a is the square of the wave numbeis the Prandtl number; is the magnetic Prandtl number,andr, are the

Lewis numbers for two concentration componentseetiyely, Ry > Ois the thermal Rayliegh numberg RO and
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R:s > Qare the concentration Rayliegh numbers for the darmcentration components respectively, p # jp; is
complex constant in general.

We now prove the following theorem:

Theorem L1: If (p, w,0, ¢, h), p=p +ip, p> 0 is a solution of (1) — (5) together with boundeonditions (6)

Qo N Rso N R’S

o Arcnt antnt

¢ 2 2 T 2 2 HIRE P

IQDM +a%|wj )dz>Q01Nth| +a’|h,| )dz+ Rg a20j|¢gl| +R’Sa20j|¢12| dz.
0 0

0 0

with R >0 Ry>0 Rg >0 and <1 then

Proof: Multiplying (5) by h*Z (the complex conjugate of)hintegrating the resulting equation over the mafyz
by parts a suitable number of times, and makingofisiee boundary conditions (6) we get

aM+j(|Dh| +a?|h,? )dz+& Ind dz_—jw Dh, | @)

where M ={(Jn,|), +(jn|*}f= 0

Equating the real part of (7), we get

an+ [ ([oh, [ +a2|n, bz P2 [|n, a2
0 o 0
= Real partof (—j'w Dh’, dz}
) 0
<{[w Dh; dz{
0

1
jw||Dh |dz
0

1/2 1 1/2
< {.[|W|2dz} {“thdz} . 8)
0 0

(using Schwartz inequality)

Since P, >0, therefore from (8), we get

1 1 1/2 1 1/2
I|th|2dz<{f|w|2dz} {I|th|2dz}
0 0

0

or

1 1

I|th|2dz<.[|w|2dz : (9)
0 0
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Using (9), it follows from (8) that

1 1
[(on.f + e, bz < [jwi? dz (10
0

0
Since w (0) = 0 = w (1), therefore using[25], we ge
1 1
2 1 2
w| dz<—||Dw| dz . 11
J wl*dz< 2 ]Dw ay

It follows from (10) and (11) that
1

[ (o, + . hiz< L ipwi“az
0 0

1
<%.([0Dw|2 +a2|w|2)dz

or
1

1 1
Qal_|‘0DhZ|2 + a2|hz|2)dz+ RsO a2j|¢1|2dz+R'Sa a2j|¢2|2dz
0 0 0

<Qallq 2, .2 2)d 21 2 ' 2l 2
7] DwW~ +a’w dz+Rs oa j|q| dz+R; oa I|¢z| dz (12)
0 0 0

Multiplying (10) by the complex conjugate of (10nchintegrating by parts over the vertical rangezdbr an
appropriate number of times and making use of thentary conditions (6) fag we get

1 1
(o] +2a2l0af +atla[* iz+ 20, ] (oaf* + oz
0 0
2 1
+%j|¢1|2dz=i2j|w|2 dz . a3)
I1 0 I1 o
Since, P, >0, therefore, from (13), we get
1 1
j(\ozgf +2a%Dgg’ +a4|¢i|2jdz<i2 [w?az. 14)
0 I1 o
Since g (0) = 0=¢ (1), therefore using Rayleigh-Ritz inequality [B§,Ave get
1 1
T[2J.|(d2d2 < I|D(ﬁ2 dz
0 0

and also

1 1
ﬂ4j|§q|2dz S”qu‘z dz . (using Schwartz inequality) (15)
0 0

It follows from (14) and (15) that
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1 1
(2 +a2) £|@|2dz<;12 £|W12dz
or
2
T e L o
0

a’r” ¢

or

1 1 t 2 2
a?(|g|?dz< DWW’ +a? dz,
flafaz< -2 (0w +aiuf )

2
_ N gnz + az) _
since the minimum value > ford>0is 4772 .

a
Rs o 1
PR MDMZ raf bz o)

1
or Rsazaj|gq|2dz<
0

Following the same procedure, we have from equgddrthat
R Rso ¢ 2 2
Ria’o||g| dz<—— GD +a? )12 (17)
Jlodz< 2 [|owf" +alu

Now from (12), (16) and (17), we get
1

1 1
Qal'[([th|2 + a2|hz|2)dz+ Rs a20j|¢i|2dz+RS’aza.[|¢2|2dz
0 0 0

Qo, Ry  R/o 10 2 5 2)d
< + + Dw™ +a z. 18
( 2 arin HAM W +aw (18)
Qal+ Rso N RS/O'
o Arcnt At
1 1 1 1
.[QDV"F +aZ|V‘42)dZ>Q01Nth|Z +a2|hz|2)dz+ Rs a20I|¢1|2 + R§a20I|¢Z|Zdz (19)
0 0

0 0
and this completes the proof of the theorem.

Therefore, if < 1then from (18), we get

We note that the left hand side of (19) repres#mastotal kinetic energy associated with a distndgawhile the
right hand side represents the sum of its totalmatig and concentration energies, and Theorem lbeastated in
the following equivalent form:

At the neutral or unstable state in thiply diffusive magnetoconvection problem of therdnis' type configuration,
the total kinetic energy associated with a distndeais greater than the sum of its total magnetit @ncentration

o . Qo Rso RS/ o
energies in the parameter regime—= + - o
At 4t

combination of dynamically free or rigid boundaribat are either perfectly conducting or insulating

<1 and this result is uniformly valid for any
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CONCLUSION

In the present paper, the hydromagnetic triply udiffe convection problem of Veronis’ type configioa is
considered. The analysis made brings out the fatigunain conclusion:

At the neutral or unstable state in the hydromagneiply diffusive convection problem of the \@mis’ type
configuration, the total kinetic energy associatdith a disturbance is greater than the sum dbits magnetic and
/
Rso N Rs o
ar’m*  4Ar,m
for any combination of dynamically free or rigidaaries that are either perfectly conducting suiating.

.
concentration energies in the parameter re(j,%?l + <1, and this result is uniformly valid

REFERENCES

[1].Brandt, A., Fernando H.J.Bouble Diffusive Convectiodmerican Geophysical Union Washington, [G96.
[2] Stern, M .E. The Salt Fountain and Thermohaline Convectibellus.1960. 12, 172

[3] Veronis, G.J.Mar. Res1965. 23, 1.

[4] Mohan, H.Application and Applied Mathematics-An Internatibdaurnal (AAM). 2010. 5(10), 1428.

[5] Kumar, P., Singh.J. QApplication and Applied Mathematics-An Internatibdaurnal (AAM). 2010, 5(1), 110.
[6] Kumar, P., Mohan, HApplication and Applied Mathematics-An Internatibdaurnal (AAM). 2012. 7(1), 142.
[7] Griffiths, R.W..J.Fluid Mech 1979, 92,659.

[8] Turner,J.S.Ann. Rev. Fluid Mech985,17,11.

[9] Pearlstein, A.J., Harris, R.MI, Fluid Mech 1989, .202, 443.

[10] Lopez, A.R., Romero, L.A., Pearlstein, ARhysics of Fluids1990.2 (6), 897.

[12] Terrones, GPhys. Fluids1993. A5. 2172.

[13] Ryzhkov, I., I., Shevtsova, V.MPhys. Fluids2007. 19, 1.

[14] Ryzhkov, I., I., Shevtsova, V.MPhys. Fluids2009. 21. 1.

[15] Rionero, STriple Diffusive Convection in Porous Meddata Mech 2013a...224, 447.

[16] Rionero, SPhys Fluids2013b. 25,1.

[17] Zhao, M., Wang, S., Zhang, @pplied Mathematical Modellin@013. 38, 2352.

[18] Shivkumara, I.S., Kumar, S.B.Mternational Journal of Engineering Research armgpkcations 2013.3 (6),
372.

[19] Shivkumara, I.S., Kumar, S.B.Mternational Journal of Heat and Mass Transf2314. 68, 542.

[20] Chandrasekhar, hilos. Mag.val 1952, 43, 501.

[21] Banerjee, M.B., Katyal S.B. Math. Anal. Appl1988.129, 383.

[22] Banerjee, M.B., Gupta, J.R., Katyal, SNPath. Anal. Appl 1989. 144,141.

[23] Mohan, H., Kumar, P., Devi, Pushp@anita 2006 .57(2), 149.

[24] Schultz, M.H.Spline AnalysisRPrentice-Hall, Englewood Cliffs, N.1973.

51
Pelagia Research Library



